常用地震剖面极性判别方法
- 格式:docx
- 大小:14.62 KB
- 文档页数:1
关于地震波极性判断问题第一节关于地震波极性判断问题地震反射波的极性是正还是负,它直接影响到反演波阻抗后,速度变高还是变低,因此是一个重要的问题。
但是这个很简单的问题,到目前为止,尚未完全争论清楚。
按理说,问题是再简单不过的,即:SEG格式规定,初至波起跳向下,记录数值是负的,此称“正常记录”。
那末,这种记录作波阻抗时,应该把极性反过来。
但在实际中,往往不反过来,反而能在解释中与地层对得更好。
奇哉!现在看来,这个问题很复杂。
仔细思考起来,本人有以下几点认识。
(1)地震子波是混合相位的,包括可控震源的子波,也因为大地的吸收作用,回到地面的子波已变成混合相位。
它的第一个向下跳的波谷很小,而跟着来的波峰及波谷很大。
请读者参看图72。
注意该图72的子波起跳是朝上的,不过这并不妨碍对问题的分析。
脉冲反褶积及预测反褶积都假设子波是最小相位,而当子波是混合相位时,反褶积后子波的波形向前压缩得不够好。
因而随着原始子波形态的不同以及所采用白噪系数的不同,反褶积后的子波有时波峰最大,有时波谷最大,见图72中我已用+-符号标出。
并且最大值并不在起跳的位置上,而有不同程度的延迟,见图72(注意该图子波的起跳朝上)。
以SEG规定的正常极性记录为例(起跳朝下),如果反褶积作得效果较好,那么第一个起跳波谷可能还是小于后面的第一波峰。
这时候,整个记录看起来似乎是“正极性”的。
如果反褶积用了较大的自噪系数,或者子波的相位谱离开零相位较远,那末,反褶积后可能以第二波谷为最强,剖面上看起来似乎是“负极性”的。
(2)如果叠后加作预测反褶积或谱白化,则频谱成分又起了变化,波形又明显变瘦,视周期变小。
加上最后还要采用时变滤波,滤波门的不同又会造成子波波形的进一步变化。
因此,不同的处理方法可以得到不同的子波波形,有时两个相位可变成三个相位。
剖面形态也可以各不相同,“视极性”也就各异。
这样一说,是否天下大乱了呢?是的!的确有些乱套。
有一个搞解释的人拿着两张不同流程的剖面给我看:一条剖面上T g波是两个相位,中间波谷最强。
地震资料解释中的极性判别技术简介地震资料解释是地震勘探领域中的重要技术之一,通过对地震资料的处理和分析,可以获取地下结构的信息,为油气勘探、地质灾害预测等提供重要依据。
在地震资料解释中,极性判别技术是一种常用的手段,用于识别地震记录中的正负相位。
一、极性判别技术的基本原理地震记录是利用地震仪器在地表或井下接收到的地震波信号的记录,其中包含了地震波的振幅、频率、振动周期等信息。
地震记录中的正负相位可以用来判断地震波传播的方向,从而帮助解释地下结构及地震事件的发生机理。
极性判别技术基于以下基本原理:地震波传播路径在地下结构中会受到反射、折射和散射的影响,当地震波从地下结构中传播至地表或井口时,受到了多次反射和折射,形成一系列到达地面的地震记录。
根据绕射波和直射波的爆发时刻和振幅变化规律,可以判断地震波传播路径的正负相位,从而确定地震源的位置和地下结构的特征。
二、极性判别技术的主要方法极性判别技术主要有以下几种方法:1. 直观判断法:需要考虑地震记录中的振幅变化规律、振动周期、震源位置等因素,通过人眼观察和分析地震记录的特征,判断正负相位。
这是一种直观的方法,但是受到观察者主观意识和经验的影响。
2. 波峰波谷交替法:通过计算地震记录中相邻的波峰和波谷的相对位置,判断正负相位。
如果相邻波峰之间的波谷位置较高,则为正相位;如果相邻波峰之间的波谷位置较低,则为负相位。
这种方法通过数值计算来判断正负相位,减少了主观因素的影响。
3. 互相关方法:通过计算地震记录之间的互相对比及相关性,判断正负相位。
互相关方法能够考虑到地震记录之间的相位差异,从而提高了判断的准确性。
4. 极性滤波法:将地震记录进行滤波处理,将正相位和负相位的地震波分离出来。
这种方法最大限度地减少了人为因素的影响,提高了判断的准确性。
三、极性判别技术的应用极性判别技术在地震资料解释中有着广泛的应用。
它可以帮助地震学家确定地震源的位置和能量释放方式,进而推断地下的构造和岩石性质。
常用地震剖面极性判别方法
1.单轨双轨剖面判别法:在正极性剖面上,正反射系数界面如基岩顶
面、海底、火成岩顶面等,表现为单轨强峰,而负反射系数界面,如大套油页岩、煤层顶面表现为双轨强峰,在负极性剖面上,特征相反。
2.多井合成地震记录法:对多口井分别用正极性和负极性的子波制作
合成地震记录,确定合成地震记录与地震剖面的匹配关系,正极性相关性好的井占多数时,剖面为正极性,反之为负极性;
对一个大反射系数的地层界面,如正反射系数界面对应波峰,此剖面为正极性剖面,反之为负极性。