微分方程数值解 第一章答案
- 格式:ppt
- 大小:572.00 KB
- 文档页数:23
常微分课后答案第一章第一章 绪论§1.1 微分方程:某些物理过程的数学模型§1.2 基本概念习题1.21.指出下面微分方程的阶数,并回答方程是否线性的:(1)y x dxdy-=24; (2)012222=+⎪⎭⎫⎝⎛-xy dx dy dx y d ;(3)0322=-+⎪⎭⎫⎝⎛y dx dy x dx dy ;(4)x xy dx dydxy d x sin 3522=+-;(5)02cos =++x y dxdy; (6)x e dx y d y=+⎪⎪⎭⎫ ⎝⎛22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程.2.试验证下面函数均为方程0222=+y dxyd ω的解,这里0>ω是常数.(1)x y ωcos =;(2)11(cos C x C y ω=是任意常数); (3)x y ωsin =;(4)22(sin C x C y ω=是任意常数);(5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).解 (1)y x dx y d x dxdy2222cos ,sin ωωωωω-=-=-=,所以0222=+y dxy d ω,故x y ωcos =为方程的解.(2)y x C y x C y 2211cos ,sin ωωωωω-=-=''-=',所以0222=+y dxyd ω,故x C y ωcos 1=为方程的解.(3)y x dx y d x dxdy2222sin ,cos ωωωωω-=-==,所以0222=+y dxy d ω,故x y ωsin =为方程的解.(4)y x C y x C y 2222sin ,cos ωωωωω-=-=''=',所以0222=+y dxyd ω,故x C y ωsin 2=为方程的解.(5)y x C x C y x C x C y 2222121sin cos ,cos sin ωωωωωωωωω-=--=''+-=',所以0222=+y dxyd ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 22)sin(,)cos(ωωωωω-=+-=''+=',故0222=+y dxyd ω,因此)sin(B x A y +=ω为方程的解.3.验证下列各函数是相应微分方程的解: (1)xxy sin =,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2=+'-(C 是任意常数); (3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-;(5)x y sin =,0cos sin sin 222=-+-+'x x x y y y ;(6)x y 1-=,1222++='xy y x y x ;(7)12+=x y ,x y x y y 2)1(22++-='; (8))()(x f x g y =,)()()()(2x f x g y x g x f y '-'='.证明 (1)因为2sin cos x xx x y -=',所以x xxx x x x y y x cos sin sin cos =+-=+'.(2)由于21xCx y --=',故x x C x x Cx x xy y x 2)12(1)1()1(2222=-++--⋅-=+'-.(3)由于x Ce y =',x Ce y ='',于是022=+-=+'-''x x x Ce Ce Ce y y y . (4)由x e y =',因此x x x x x x x x e e e e e e ye y e y 22212)(2-=⋅-+⋅=-+'--. (5)因为x y cos =',所以0cos sin sin sin 2sin cos cos sin sin 22222=-+⋅-+=-+-+'x x x x x x x x x y y y .(6)从21x y =',得1111122222++=+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅=='xy y x x x x x y x .(7)由x y 2=',得到x y x y x x x x x y 2)1(2)1)(1()1(2222222++-=+++-+=='.(8))()()()()()()()()()()()()()()(222x f x g y x g x f x f x g x f x g x g x f x f x g x f x g x f y '-'='-⎪⎪⎭⎫ ⎝⎛⋅'='-'='. 4.给定一阶微分方程x dxdy2=, (1)求出它的通解; (2)求通过点)4,1(的特解; (3)求出与直线32+=x y 相切的解; (4)求出满足条件210=⎰ydx 的解;(5)绘出(2),(3),(4)中的解的图形. 解 (1)通解 C x xdx y +==⎰22.(2)由41==x y ,得到3=C ,所以过点)4,1(的特解为32+=x y . (3)这时122=⇒=x x ,切点坐标为)5,1(,由51==x y ,得到4=C ,所以与直线32+=x y 相切的解为42+=x y .(4)由231)31()(1310210=+=+=+=⎰⎰C Cx x dx C x ydx ,得到35=C ,故满足条件21=⎰ydx 的解为352+=x y . (5)如图1-1所示.图1-15.求下列两个微分方程的公共解: (1)422x x y y -+='; (2)2422y y x x x y --++='.解 公共解必须满足2424222y y x x x x x y --++=-+,即022242=-+-x y x y ,得到2x y =或212--=x y 是微分方程422x x y y -+='和2422y y x x x y --++='的公共解.6.求微分方程02=-'+'y y x y 的直线积分曲线.解 设直线积分曲线为0=++C By Ax ,两边对x 求导得,0='+y B A ,若0=B ,则0=A ,得到0=C ,不可能.故必有0≠B ,则BAy -=',代入原方程有02=++⎪⎭⎫ ⎝⎛-+-B Cx B A B A x B A ,或0)(22=-++B A B C x B A B A ,所以, ⎪⎪⎩⎪⎪⎨⎧=-=+0,022BA B C BAB A ,得到 ⎩⎨⎧==0,0C A 或B C A -==.所求直线积分曲线为0=y 和1+=x y .7.微分方程32224xy y y x =-',证明其积分曲线关于坐标原点)0,0(成中心对称的曲线,也是此微分方程的积分曲线.证明 设0),(=y x F 是微分方程32224xy y y x =-'的积分曲线,则与其关于坐标原点)0,0(成中心对称的曲线是0),(=--y x F .由于0),(=y x F 适合微分方程32224xy y y x =-',故3222),(),(4xy y y x F y x F x y x =-⎥⎥⎦⎤⎢⎢⎣⎡-⋅,分别以y x --,代y x ,,亦有3222))(()(),(),()(4y x y y x F y x F x y x --=--⎥⎥⎦⎤⎢⎢⎣⎡-----⋅-,而由0),(=--y x F ,得到),(),(y x F y x F y y x -----=',从而0),(=--y x F 也是此微分方程的积分曲线.8.物体在空气中的冷却速度与物体和空气的温差成比例,如果物体在20分钟内由ο100C 冷至ο60C ,那么,在多久的时间内,这个物体的温度达到ο30C ?假设空气的温度为ο20C .解 设物体在时刻t 的温度为)(t u u =,20=a u ,微分方程为)(a u u k dtdu--=,解得kt a Ce u u -+= ,根据初始条件10000===u u t ,得800=-=a u u C ,因此kt a a e u u u u --+=)(0,根据60,201===u u t ,得到k a a e u u u u 2001)(--+=,由此202ln ln 20110=--=a a u u u u k ,所以得到t e u 202ln 8020-+=,当30=u 时,解出60=t (分钟)1=(小时).在1小时的时间内,这个物体的温度达到ο30C . 9.试建立分别具有下列性质的曲线所满足的微分方程: (1)曲线上任一点的切线与该点的向径夹角为α;(2)曲线上任一点的切线介于两坐标轴之间的部分等于定长l ; (3)曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数2a ;(4)曲线上任一点的切线介于两坐标轴之间的部分被切点等分; (5)曲线上任一点的切线的纵截距等于切点横坐标的平方;(6)曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项; (7)曲线上任一点的切线的斜率与切点的横坐标成正比.(提示:过点),(y x d 的横截距和纵截距分别为'-y y x 和y x y '-). 解 (1)曲线上任一点为),(y x ,则xy y x yy '+-'=1tan α,即ααtan tan y x x y y -+='. (2)曲线上任一点),(y x 处的切线方程为y y x Y X y -'=-',与两坐标轴交点为),0(y x y '-和)0,(y yy x '-',两点间距离为l y x y y y y x ='-+⎪⎪⎭⎫ ⎝⎛'-'22)(,即 222)()(l y x y y y x ='-+'-. (3)由(2),有221a y x y y yy x ='-'-',或y a y y x '=-'222)(.(4)由(2),有 2y x y y '-=,或0=+'y y x . (5)由(2),2x y x y ='-. (6)同样由(2),2yx y x y +='-,或x y x y ='-2. (7)易得kx y =' (k 为常数且0>k ).。
常微分课后答案第一章yx C x C y x C x C y 2222121sin cos ,cos sin ωωωωωωωωω-=--=''+-=',所以0222=+y dxyd ω,故xCx C y ωωsin cos 21+=为方程的解.(6)yB x A y B x A y 22)sin(,)cos(ωωωωω-=+-=''+=',故0222=+y dxyd ω,因此)sin(B x A y +=ω为方程的解.3.验证下列各函数是相应微分方程的解:(1)xxy sin =,x y y x cos =+'; (2)212x Cy -+=,xxy y x2)1(2=+'-(C 是任意常数);(3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)xe y =,xx xe ye y ey 2212-=-+'-;(5)x y sin =,0cos sin sin 222=-+-+'x x x y yy ;(6)xy 1-=,1222++='xy y x y x ; (7)12+=xy ,xy x yy 2)1(22++-=';(8))()(x f x g y =,)()()()(2x f x g y x g x f y '-'='.证明 (1)因为2sin cos x xx x y -=',所以xxxx x x x y y x cos sin sin cos =+-=+'.(2)由于21xCx y --=',故xx C x xCx x xy y x 2)12(1)1()1(2222=-++--⋅-=+'-.(3)由于xCe y =',xCe y ='',于是022=+-=+'-''x x x Ce Ce Ce y y y .(4)由xe y =',因此xx x x x x x x e e e e e e ye y e y 22212)(2-=⋅-+⋅=-+'--.(5)因为x y cos =',所以cos sin sin sin 2sin cos cos sin sin 22222=-+⋅-+=-+-+'x x x x x x x x x y y y . (6)从21xy =',得1111122222++=+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅=='xy y x x x x x y x .(7)由x y 2=',得到xy x y x x x x x y 2)1(2)1)(1()1(2222222++-=+++-+=='.(8))()()()()()()()()()()()()()()(222x f x g y x g x f x f x g x f x g x g x f x f x g x f x g x f y '-'='-⎪⎪⎭⎫ ⎝⎛⋅'='-'='.4.给定一阶微分方程x dx dy 2=, (1)求出它的通解; (2)求通过点)4,1(的特解; (3)求出与直线32+=x y 相切的解;(4)求出满足条件210=⎰ydx 的解;(5)绘出(2),(3),(4)中的解的图形. 解 (1)通解 Cx xdx y +==⎰22.(2)由41==x y ,得到3=C ,所以过点)4,1(的特解为32+=xy .(3)这时122=⇒=x x ,切点坐标为)5,1(,由51==x y ,得到4=C ,所以与直线32+=x y 相切的解为42+=xy .(4)由231)31()(131210=+=+=+=⎰⎰C Cx x dx C x ydx ,得到35=C ,故满足条件21=⎰ydx 的解为352+=xy .(5)如图1-1所示.-3-2-1123x24681012y图1-15.求下列两个微分方程的公共解: (1)422x x yy -+=';(2)2422y y x xx y --++='.解 公共解必须满足2424222y y x x x x x y --++=-+,即 022242=-+-x y x y ,得到2x y =或212--=x y 是微分方程422x x y y -+='和2422y y x x x y --++='的公共解.6.求微分方程02=-'+'y y x y 的直线积分曲线.解 设直线积分曲线为0=++C By Ax ,两边对x 求导得,0='+y B A ,若0=B ,则0=A ,得到0=C ,不可能.故必有0≠B ,则B Ay -=',代入原方程有02=++⎪⎭⎫ ⎝⎛-+-B Cx B A B A x B A ,或)(22=-++B AB C x B A BA ,所以,⎪⎪⎩⎪⎪⎨⎧=-=+0,022BA B C B AB A ,得到⎩⎨⎧==0,0C A 或B C A -==.所求直线积分曲线为0=y 和1+=x y . 7.微分方程32224xy y y x=-',证明其积分曲线关于坐标原点)0,0(成中心对称的曲线,也是此微分方程的积分曲线.证明 设0),(=y x F 是微分方程32224xy y y x =-'的积分曲线,则与其关于坐标原点)0,0(成中心对称的曲线是),(=--y x F .由于),(=y x F 适合微分方程32224xy y y x =-',故3222),(),(4xyy y x F y x F x y x =-⎥⎥⎦⎤⎢⎢⎣⎡-⋅,分别以y x --,代yx ,,亦有3222))(()(),(),()(4y x y y x F y x F x y x --=--⎥⎥⎦⎤⎢⎢⎣⎡-----⋅-,而由0),(=--y x F ,得到),(),(y x F y x F y yx -----=',从而0),(=--y x F 也是此微分方程的积分曲线.8.物体在空气中的冷却速度与物体和空气的温差成比例,如果物体在20分钟内由100C 冷至60C ,那么,在多久的时间内,这个物体的温度达到30C ?假设空气的温度为20C . 解 设物体在时刻t 的温度为)(t u u =,20=au,微分方程为)(au u k dtdu --=,解得ktaCe u u -+= ,根据初始条件10000===u ut ,得80=-=a u uC ,因此 kta a e u u u u --+=)(0,根据60,201===uu t ,得到ka a e u u u u2001)(--+=,由此202ln ln 20110=--=a a u u u u k ,所以得到t e u 202ln 8020-+=,当30=u 时,解出60=t (分钟)1=(小时).在1小时的时间内,这个物体的温度达到30C .9.试建立分别具有下列性质的曲线所满足的微分方程:(1)曲线上任一点的切线与该点的向径夹角为α;(2)曲线上任一点的切线介于两坐标轴之间的部分等于定长l ;(3)曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数2a ;(4)曲线上任一点的切线介于两坐标轴之间的部分被切点等分;(5)曲线上任一点的切线的纵截距等于切点横坐标的平方;(6)曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项;(7)曲线上任一点的切线的斜率与切点的横坐标成正比.(提示:过点),(y x d 的横截距和纵截距分别为'-yy x 和y x y '-).解 (1)曲线上任一点为),(y x ,则xy y x yy '+-'=1tan α,即ααtan tan y x x y y -+='. (2)曲线上任一点),(y x 处的切线方程为yy x Y X y -'=-',与两坐标轴交点为),0(y x y '-和)0,(y yy x '-',两点间距离为l y x y y y y x ='-+⎪⎪⎭⎫ ⎝⎛'-'22)(,即 222)()(l y x y y y x ='-+'-. (3)由(2),有221a y x y y yy x ='-'-',或y a y y x '=-'222)(.(4)由(2),有2y x y y '-=,或0=+'y y x .(5)由(2),2xy xy='-.(6)同样由(2),2yxy xy +='-,或xy xy='-2.(7)易得kxy='(k为常数且0>k).。
李微分方程数值解习题解答 1-1 如果0)0('=ϕ,则称0x 是)(x J 的 驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解证明:由)(λϕ的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλϕ+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλϕ+-=必要性:由0)0('=ϕ,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλϕx Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的广义导数几乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的广义导数,由广义导数的定义可知,对于任意)()(0I C x ∞∈ϕ,有⎰⎰-=ba ba dx x x f dx x x g )()()()('1ϕϕ ⎰⎰-=ba ba dx x x f dx x x g )()()()('2ϕϕ 两式相减,得到)(0)()(021I C x g g ba ∞∈∀=-⎰ϕϕ 由变分基本引理,21g g -几乎处处为零,即21,g g 几乎处处相等.补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=⎰11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的一阶广义导数,试用类似的方法定义)(x f 的k 阶导数,...2,1(=k ) 解:一阶广义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈ϕ,有 ⎰⎰-=bak kba dx x x f dx x x g )()()1()()()(ϕϕ则称)(x f 有k 阶广义导数,)(x g 称为)(x f 的k 阶广义导数,并记kk dxfd x g =)(注:高阶广义导数不是通过递推定义的,可能有高阶导数而没有低阶导数.2.利用)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|ϕϕf f x x f x f n ba n -≤-⎰ 00'''|||||||||)())()((|ϕϕf f dx x x g x f nb a n -≤-⎰对于任意的)()(0I C x ∞∈ϕ,成立⎰⎰=∞→ba ba n n dx x x f dx x x f )()()()(lim ϕϕ⎰⎰=∞→ba b a nn dx x x g dx x x f )()()()(lim 'ϕϕ由⎰⎰-=ba nb a ndx x x f dx x x f )()()()(''ϕϕ取极限得到dx x x f dx x x g ba b a ⎰⎰-=)()()()('ϕϕ 即')(f x g =,即)(1I H f ∈,且0||||||||||||0''01→-+-=-f f f f f f n n n故)(1I H 中的基本列是收敛的,)(1I H 是完全的. 3.证明非齐次两点边值问题证明:边界条件齐次化令)()(0a x x u -+=βα,则0u u w -=满足齐次边界条件.w 满足的方程为00Lu f Lu Lu Lw -=-=,即w 对应的边值问题为⎩⎨⎧==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w EHw E ∈=∈ 其中),(),(21)(0*w Lu f w w a w J --=.而Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*而200)()(),(),(C b u b p u u a u Lu +-=-β从而**)()()(~)(C b u b p u Jw J +-=β 则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题(1.2.28)建立虚功原理 解:令)(0a x u -+=βα,0u u w -=,则w 满足)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈∀0),(),(0=--v Lu f v Lw应用分部积分,⎰⎰+-=-=-b a b a b a dx dx dv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),((还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈∀,成立0)()(),(),(=--b v b p v f v u a β注:形式上与用v 去乘方程两端,应用分部积分得到的相同. 5试建立与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈ 用v 乘方程两端,应用分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu而⎰⎰-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ⎰⎰=+-=2222222222| 上式为),(][2222v f dx uv dxvd dx u d b a =+⎰定义dx uv dxvd dx u d v u a ba ][),(2222+=⎰,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈∀),(),(v f v u a =1-41.用Galerkin Ritz -方法求边值问题⎩⎨⎧==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==πϕ解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满足齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1ϕ,其中),...2,1(n i c i =满足的Galerkin Ritz -方程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑=ϕϕϕ 又xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ⎰⎰⎰⎰-=+=+=ππππππππϕϕϕϕϕϕ)cos()cos(2)sin()sin()cos()cos()(),(1010210''⎰-+πππjx ix sin sin 21由三角函数的正交性,得到⎪⎩⎪⎨⎧≠=+=j i ji i a j i ,0,212),(22πϕϕ而]1)1[()(2)sin()1(),(3102--=-=-⎰jj j dx x j x x x x ππϕ于是得到⎪⎩⎪⎨⎧+-=-=为偶数为奇数j j j j a x x c j j j j 0)1()(8),(),(2232ππϕϕϕ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,用0)1(=u 代替右边值条件,)(x u n 是用Galerkin Ritz -方法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差. 证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题(1.2.28)和基函数),...,2,1()()(n i a x x i i =-=ϕ,写出Galerkin Ritz -方程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分方程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分方程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ⎰⎰+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分方程为dx v qu x pv b v b p v f v w a ba ⎰--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=ϕ,则Galerkin -Ritz 方程为⎰⎰∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβϕβϕϕϕ⎰+=ba j i j i j i dx q p a ][),(''ϕϕϕϕϕϕ取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==⎰ϕϕ221)(21)()()(21a b a b a b a b d -=---+-=ββ,)(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=⎰ϕϕϕϕ3222)(34)(4),(a b dx a x a ba -=-=⎰ϕϕ3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=⎰⎰ββββ 得到方程组为⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型方程有限元法§1.1 用线性元求下列边值问题的数值解:10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y 解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数.Galerkin 形式的变分方程为),(),(v f v Lu =,其中⎰⎰+-=10210"4),(uvdx vdx u v Lu π,⎰=1)(2sin 2),(dx x xv v f π又dx v u dx v u v u vdx u ⎰⎰⎰=+-=-10''10''10'10"| 因此dx uv v u v u a )4(),(102''⎰+=π在单元],[1i i i x x I -=中,应用仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξϕ⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+++=++=⎰⎰⎰⎰1022210222222'111)1(41]41[]4[),(1021ξξπξξπϕπϕϕϕd h d hh dxa x x x x取2/1=h ,则计算得124),(211πϕϕ+=a122)1(41[),(210221πξξξπϕϕ+-=-+-=⎰d h h a⎰⎰-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπϕd d h h f ⎰⎰-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπϕd h f ⎰+=102)2121(2sin 2),(代数方程组为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛),(),(),(),(),(),(212122212111ϕϕϕϕϕϕϕϕϕϕf f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,方程为4,3,2,1),(),(41==∑=j f ua j i ijiϕϕϕ应用局部坐标ξ表示,⎰⎰-+++=10221022])1(41[)41(),(ξξπξξπϕϕd hh d h h a j j248]88[21022πξξπ+=+=⎰dξξξπϕϕd hh a j j ])1(41[),(1021⎰-+-=++964)1(164212πξξξπ+-=-+-=⎰d 964),(21πϕϕ+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=⎰⎰ξξξξϕd h d h f j⎰⎰-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπϕd h x h d h x h f j j j ⎰⎰-++++=1010)1)](441(2sin[21)]44(2sin[42ξξξπξξξπd j d j⎰⎰++⨯=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就非齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元方程.解:设方程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈∀)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a pb v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表示为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =ϕ 则有限元方程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=ϕϕϕ具体计算使用标准坐标ξ.。
常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dydy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:微分方程数值解法(戴嘉尊_第二版)习题讲解】答杨韧吴世良(编)成都信息工程学院数学学院二o一o年四月编写目录第一章常微分方程数值解 ......................................................................3 第二章抛物型方程的差分方法 ..............................................................8 第三章椭圆型方程的差分方法 ............................................................16 第四章双曲型方程的差分方法 (25)第一章常微分方程数值解1.解: 由欧拉公式得yn1 yn hf (xn, yn) yn h( 由梯形公式得 yn1 ynyn2 11 2 1x n2yn 2 ) yn 0.2yn20.1 1xn2h[ f (xn, yn)f (xn1, yn1)]1 2 1x n2 1h [(22yn 2 )(1x 11 2 1 2 h( 1xn 2 n12y 2 n1 )]1 1x 2n1yn hynhy 2 n1) )12 1 x n12hy n1 yn1 yn hyn2121 2 h( 1xn1 1x 2n1yn1欧拉公式计算结果xn114h(yn hyn2 2h12 1 2 h( 1xn))yn y(xn ) y(xn)yn0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1000 0.1970 0.2854 0.3609 0.4210 0.4656 0.4957 0.5137 0.5219 0.52270 0.0990 0.1923 0.2752 0.3448 0.4000 0.4412 0.4698 0.4878 0.4972 0.50000 0.0010 0.0047 0.0102 0.0160 0.0210 0.0244 0.0259 0.0259 0.0247 0.0227梯形公式计算结果xnyny(xn )y(xn)yn0 0 0 0【篇三:常微分方程习题】下列两个微分方程的公共解。
常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。
微分⽅程数值解法答案包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。
解答问题关键在过程,能够显⽰出你已经掌握了书上的内容,知道了解题⽅法。
这次考试题⽬的类型:20分的选择题,主要是基本概念的理解,后⾯有五个⼤题,包括差分格式的构造、截断误差和稳定性。
习题⼀1.略2. y y x f -=),(,梯形公式:n n n n n n y hh y y y h y y )121(),(2111+-+=+-=+++,所以0122)1(01])121[()121()121(y hh y h h y h h y hhn h h n n n +--+--+-+=+-+==+-+= ,当0→h 时,x n e y -→。
同理可以证明预报-校正法收敛到微分⽅程的解.3.局部截断误差的推导同欧拉公式;整体截断误差:++++++-++≤1),())(,(11111n nx x n n n n n n n dx y x f x y x f R εε11)(++-++≤n n n y x y Lh R ε,这⾥R R n ≤ ⽽111)(+++-=n n n y x y ε,所以 R Lh n n +=-+εε1)1(,不妨设1()]11111[1111101---++-+-+-≤≤-+-=n n n n Lh Lh Lh R Lh Lh R Lh εεε ]1[2)(02)(00-+≤--x X L x X L eLh R eε4.中点公式的局部截断误差: dx x y x f hx y h x f x y x f yx y n n x x n n n n n n))](,(2)(,2())(,([)(11*1?+++-=-++dx x y x f hx y h x f h x y h x f h x y x y dxx y x f hx y h x f hx y h x f h x y h x f x y x f n n n n x x n n n n n n n x x n n n n n n n n))](,(2)(,2())2(,2([)]2()([))](,(2)(,2())2(,2())2(,2())(,([11++-++++'-'=++-+++++-=??++所以上式为+--+''=?++dx hx x x y e n nx x n n n )2()(11θdx x y x f h x y h x f h x y h x f n n n n x x n n n n))](,(2)(,2())2(,2([1++-++?+ 3218)(LMh h x y Lh e n n ≤+''≤+?中点公式的整体截断误差:dx y x f hy h x f x y x f y x y y x y n n x x n n n n n n n n)],(2,2())(,([)()(111?+++-+-=-++dxy x f hy h x f x y x f h x y h x f x y x f hx y h x f x y x f y x y n n n n n n n n x x n n n n n n n n))],(2,2()))(,(2)(,2()))(,(2)(,2())(,([)(1++-+++++-+-=?+因⽽n n n L h Lh R εεε)21(1+++≤+,R L h Lh n n +++≤-122)21(εε≤≤])21()21(1[2)21(1222222022-+++++++--+++n nL h Lh L h Lh Lh Lh RL h Lh ε )1(00-+≤--x X L x X L e LhR eε 5.略 6.略 7.略8.(1)欧拉法:2.0≤h ;四阶Runge-Kutta ⽅法:278.0≤h (2)欧拉法:3 54≤h ;四阶Runge-Kutta ⽅法:3556.5≤h(3)欧拉法:1≤h ;四阶Runge-Kutta ⽅法:278.0≤h 9.略 10.略习题21.略 2.略 3.略4.差分格式写成矩阵形式为:n n M n M n n n M n M n n e u u u u r t r r r t r r r t r r r t u u u u +?--------= --+-+-++12211221121212121 αβαααβαααβαααβ矩阵的特征值为:)cos(221Mj r r t j πααβλ+-?-=,要使格式稳定,则特征值须满⾜t c j ?+≤1λ,即21≤r α5.利⽤泰勒展式可以得到古典隐式差分格式的截断误差为)(2h t O +?。
]第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1若误差限为5105.0-⨯,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算)~解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
(误差限的计算)解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6设x 的相对误差为%a ,求nx y =的相对误差。
李微分方程数值解习题解答 1-1 如果0)0('=ϕ,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解证明:由)(λϕ的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλϕ+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλϕ+-=必要性:由0)0('=ϕ,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλϕx Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的广义导数几乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的广义导数,由广义导数的定义可知,对于任意)()(0I C x ∞∈ϕ,有⎰⎰-=ba ba dx x x f dx x x g )()()()('1ϕϕ ⎰⎰-=ba ba dx x x f dx x x g )()()()('2ϕϕ 两式相减,得到)(0)()(021I C x g g ba ∞∈∀=-⎰ϕϕ 由变分基本引理,21g g -几乎处处为零,即21,g g 几乎处处相等.补充:证明),(v u a 的连续性条件证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=⎰11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的一阶广义导数,试用类似的方法定义)(x f 的k 阶导数,...2,1(=k ) 解:一阶广义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈ϕ,有 ⎰⎰-=bak kba dx x x f dx x x g )()()1()()()(ϕϕ则称)(x f 有k 阶广义导数,)(x g 称为)(x f 的k 阶广义导数,并记kk dxfd x g =)(注:高阶广义导数不是通过递推定义的,可能有高阶导数而没有低阶导数.2.利用)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|ϕϕf f x x f x f n ba n -≤-⎰00'''|||||||||)())()((|ϕϕf f dx x x g x f n ba n -≤-⎰对于任意的)()(0I C x ∞∈ϕ,成立⎰⎰=∞→ba ba n n dx x x f dx x x f )()()()(lim ϕϕ⎰⎰=∞→ba b a nn dx x x g dx x x f )()()()(lim 'ϕϕ由⎰⎰-=b a nba ndxxxfdxxxf)()()()(''ϕϕ取极限得到dxxxfdxxxg baba⎰⎰-=)()()()('ϕϕ即')(fxg=,即)(1IHf∈,且||||||||||||''1→-+-=-ffffffnnn故)(1IH中的基本列是收敛的,)(1IH是完全的.3.证明非齐次两点边值问题证明:边界条件齐次化令)()(axxu-+=βα,则0uuw-=满足齐次边界条件.w满足的方程为LufLuLuLw-=-=,即w对应的边值问题为⎩⎨⎧==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w EHw E ∈=∈ 其中),(),(21)(0*w Lu f w w a w J --=.而Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*而200)()(),(),(C b u b p u u a u Lu +-=-β从而**)()()(~)(C b u b p u Jw J +-=β 则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题()建立虚功原理 解:令)(0a x u -+=βα,0u u w -=,则w 满足)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈∀0),(),(0=--v Lu f v Lw应用分部积分,⎰⎰+-=-=-b a b a b a dx dxdv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),(( 还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈∀,成立0)()(),(),(=--b v b p v f v u a β注:形式上与用v 去乘方程两端,应用分部积分得到的相同. 5试建立与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈ 用v 乘方程两端,应用分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu而⎰⎰-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ⎰⎰=+-=2222222222| 上式为),(][2222v f dx uv dxvd dx u d b a =+⎰定义dx uv dxvd dx u d v u a ba ][),(2222+=⎰,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈∀),(),(v f v u a =1-41.用Galerkin Ritz -方法求边值问题⎩⎨⎧==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==πϕ解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满足齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1ϕ,其中),...2,1(n i c i =满足的Galerkin Ritz -方程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑=ϕϕϕ 又xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ⎰⎰⎰⎰-=+=+=ππππππππϕϕϕϕϕϕ)cos()cos(2)sin()sin()cos()cos()(),(1010210''⎰-+πππjx ix sin sin 21由三角函数的正交性,得到⎪⎩⎪⎨⎧≠=+=j i j i i a j i ,0,212),(22πϕϕ而]1)1[()(2)sin()1(),(3102--=-=-⎰jj j dx x j x x x x ππϕ 于是得到⎪⎩⎪⎨⎧+-=-=为偶数为奇数j j j j a x x c j j j j 0)1()(8),(),(2232ππϕϕϕ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,用0)1(=u 代替右边值条件,)(x u n 是用Galerkin Ritz -方法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差. 证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题和基函数),...,2,1()()(n i a x x i i =-=ϕ,写出Galerkin Ritz -方程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分方程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分方程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ⎰⎰+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分方程为dx v qu x pv b v b p v f v w a ba ⎰--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=ϕ,则Galerkin -Ritz 方程为⎰⎰∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβϕβϕϕϕ⎰+=ba j i j i j i dx q p a ][),(''ϕϕϕϕϕϕ取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==⎰ϕϕ221)(21)()()(21a b a b a b a b d -=---+-=ββ,)(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=⎰ϕϕϕϕ3222)(34)(4),(a b dx a x a ba -=-=⎰ϕϕ3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=⎰⎰ββββ 得到方程组为⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型方程有限元法§ 用线性元求下列边值问题的数值解:10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数.Galerkin 形式的变分方程为),(),(v f v Lu =,其中⎰⎰+-=10210"4),(uvdx vdx u v Lu π,⎰=1)(2sin 2),(dx x xv v f π又dx v u dx v u v u vdx u ⎰⎰⎰=+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''⎰+=π在单元],[1i i i x x I -=中,应用仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξϕ⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+++=++=⎰⎰⎰⎰1022210222222'111)1(41]41[]4[),(1021ξξπξξπϕπϕϕϕd h d hh dxa x x x x取2/1=h ,则计算得124),(211πϕϕ+=a122)1(41[),(210221πξξξπϕϕ+-=-+-=⎰d h h a⎰⎰-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπϕd d h h f ⎰⎰-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπϕd h f ⎰+=102)2121(2sin 2),(代数方程组为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛),(),(),(),(),(),(212122212111ϕϕϕϕϕϕϕϕϕϕf f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,方程为4,3,2,1),(),(41==∑=j f ua j i ijiϕϕϕ应用局部坐标ξ表示,⎰⎰-+++=10221022])1(41[)41(),(ξξπξξπϕϕd hh d h h a j j248]88[21022πξξπ+=+=⎰dξξξπϕϕd hh a j j ])1(41[),(1021⎰-+-=++964)1(164212πξξξπ+-=-+-=⎰d 964),(21πϕϕ+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=⎰⎰ξξξξϕd h d h f j⎰⎰-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπϕd h x h d h x h f j j j ⎰⎰-++++=1010)1)](441(2sin[21)]44(2sin[42ξξξπξξξπd j d j⎰⎰++⨯=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就非齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元方程.解:设方程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈∀)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表示为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =ϕ 则有限元方程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=ϕϕϕ具体计算使用标准坐标ξ.。
yyy[y例11110.1[1(101)]0.9,10.1[0.9(10.10.9)]0.9019,1(0.90.9019)0.900952p c y y y ì=-´´+´=ïï=-´´+´=íïï=+=î20.900950.1[0.90095(10.10.90095)]0.80274,0.900950.1[0.80274(10.20.80274)]0.80779,1(0.802740.80779)0.805262p c y y yì=-´´+´=ïï=-´´+´=íïï=+=î 这样继续计算下去,其结果列于表9.1. 表9.1 Euler 方法方法改进的Euler 方法方法准确值准确值n xn yny)(n x y0.1 0.9000000 0.9009500 0.9006235 0.2 0.8019000 0.8052632 0.8046311 0.3 0.7088491 0.7153279 0.7144298 0.4 0.6228902 0.6325651 0.6314529 0.5 0.5450815 0.5576153 0.5563460 0.6 0.4757177 0.4905510 0.4891800 0.7 0.4145675 0.4310681 0.4296445 0.8 0.3610801 0.3786397 0.3772045 0.9 0.3145418 0.3326278 0.3312129 1.0 0.2741833 0.2923593 0.2909884 从表9.1可以看出,Euler 方法的计算结果只有2位有效数字,而改进的Euler 方法确有3位有效数字,这表明改进的Euler 方法的精度比Euler 方法高. 例2 试用Euler 方法、改进的Euler 方法及四阶经典R-K 方法在不同步长下计算初值问题ïîïíì=££+-=1)0(,10),1(d d y x xy y xy 在0.2、0.4、0.8、1.0处的近似值,并比较它们的数值结果. 解 对上述三种方法,每执行一步所需计算)1(),(xy y y x f +-=的次数分别为1、2、4。
第一章绪论1设x 0, x的相对误差为「.,求In x的误差。
* * e* x * _x解:近似值x*的相对误差为:.=e*x* x*1 而In x 的误差为e In x* =lnx*「lnx e*x*进而有;(ln x*)::.2•设x的相对误差为2%求x n的相对误差。
解:设f(x—,则函数的条件数为Cp^胡1n A.x nx .又7 f '(x)= nx n」C p|=nn又;;r((x*) n) : C p ;,x*)且e r (x*)为2.;r((x*)n) 0.02 n3 •下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0.解:x;=1.1021是五位有效数字;X2 =0.031是二位有效数字;X3 =385.6是四位有效数字;x4 = 56.430是五位有效数字;x5 -7 1.0.是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4.* * * *其中X1,X2,X3,x4均为第3题所给的数。
解:*1 4;(x-| ) 102* 1 3;(x 2) 102* 1 1;(x 3) 10 * 1 3;(x 4) 102* 1 1;(x 5) 102 (1);(为 X 2 X 4)=;(为)亠:(x 2)亠:(x 4)=1 10 4 110 J 丄 10^2 2 2= 1.05 10”* * * (2)(X 1X 2X 3)* * * ** * ** *X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2)1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10(3) XX 2/X 4)X 40.031 110” 56.430 丄 10’2 256.430 56.430=10°5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 43解:球体体积为V R 3则何种函数的条件数为=1.1021汉 0.031 汉 * 汉10」+0.215RV' R 4 - R2Ik -3;r(V*) : C pL;r(R*) =3;r(R*)1故度量半径R时允许的相对误差限为;r(R*) 1 :0.3336•设Y0=28,按递推公式丄J783 (n=1,2,…)100计算到Y oo。
微分方程数值解法李荣华答案【篇一:高阶常微分方程的数值求解】t>谷照升(长春工程学院理学院,长春,130012)摘要对经典初始条件的高阶常微分方程,给出其数值求解方法。
该方法比runge-kutta法具有更好的适应性、易用性、计算速度和可控制的更高精度。
关键词常微分方程;数值解;算法中图分类号: o241.81文献标识码: a 11 引言求解复杂的1阶常微分方程,通常只能采用数值解法。
数值解法一般又以runge-kutta法为主。
对高阶常微分方程,则通常是将其转化为1阶常微分方程组,再用runge-kutta法求解[1, 2]。
但这种通用性方法,在精度、软件计算的适应度方面,常常不够理想,甚至得不到结果。
针对不同的广普性方程类型,可以建立更具针对性的计算方法。
例如,针对三类边值条件和特定形式的方程,已经有有相应的差分法和有限元法。
每一种更具针对性的方法,都有其更高的精度和更为健壮的算法,当然也存在其必然的局限性。
本文对如下形式的2阶常微分方程?d2ydy?a(x)?b(x)y?f(x)?2dxdx?? x∈[a, b](1) ?y(a)?ya?y?(a)?y?a???给出了完整、方便、高效的单步法数值求解算法,并将其推广到任意高阶问题的求解。
2 算法思路:将[a, b]分割为a=x0 x1…xn=b,步长?xi?xi?xi?1。
从i=1开始,利用数值积分公式,通过[xi-1, xi]上的数值积分,先求y??(xi),再求出y?(xi),最后求y(xi)。
依次取i=2, 3, … ,n,得到各点y??(xi)、y?(xi)、y(xi)的近似值。
根据数值积分的算法不同,主要有两种不同的计算公式。
2.1、矩形数值积分算法矩形算法形式简单,精度偏低。
基于不同的积分形式,又可以得到3种不同的计算公式,其精1 基金项目:吉林省自然科学基金项目(201215115)1度无显著差别。
此处仅给出与2.2梯形算法最为接近的一种。
第一章思考题(2012级本科学生作品)1、什么样的算法被称为不稳定算法?试列举一个例子进行说明。
在算法执行过程中,舍入算法对计算结果影响大的一类算法被称为数值不稳定的一种算法。
例如,假设初始数据有一点微小误差,就会对一个算法的数据结构产生很大的影响,造成误差扩散。
用计算公式ln 1ln n n =-,构造出的递推算法是一个数值不稳定的算法;而另一公式ln 1(1ln)/n -=-则可以构造出一个数值稳定的算法。
2、我们都知道秦九韶算法能够减少运算次数,高中也学过他的具体过程,请举出一个例子并用秦九韶算法计算。
答;一般的,一元n 次多项式的求值需要经过(1)/2n n +次乘法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法。
具体的不太会了。
3、为什么要设立相对误差的概念?答:相对误差是近似值误差与精确值的比值,用来衡量近似值的近似程度。
x=10±1,y=1000±5。
虽然x 的误差比y 的误差小,但y 的近似程度比x 更好。
这单用误差无法表现出来,而相对误差可以解决这个问题。
4、误差在生活中有什么作用?答:误差的作用不仅仅体现在数学课题研究中,在生活中误差的作用也非常大,比如在建筑行业中,设计图纸时必须要达到一定的精确度才行。
5、有效数字以及计算规则答:有效数字是指实际上能测量到的数值,在该数值中只有最后一位是可疑数字,其余的均为可靠数字。
它的实际意义在于有效数字能反映出测量时的准确程度。
例如,用最小刻度为0.1cm 的直尺量出某物体的长度为11.23cm ,显然这个数值的前3位数是准确的,而最后一位数字就不是那么可靠,医|学教育网搜集整理因为它是测试者估计出来的,这个物体的长度可能是11.24cm ,亦可能是11.22cm ,测量的结果有±0.01cm 的误差。
我们把这个数值的前面3位可靠数字和最后一位可疑数字称为有效数字。
这个数值就是四位有效数字。
在确定有效数字位数时,特别需要指出的是数字“0”来表示实际测量结果时,它便是有效数字。
偏微分方程数值解一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n Rx ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。
解: 设}0)()(),,(|{11==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u ∈,使)(m in )(10*u J u J H u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。