工程光学习题参考答案第四章光学系统中的光束限制
- 格式:doc
- 大小:192.50 KB
- 文档页数:5
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
第四章光学系统中的光束限制1.设照相物镜的焦距等于75mm,底片尺寸为55×55㎜2,求该照相物镜的最大视场角等于多少?解:2.略。
3. 在本章第二节中的双目望远镜系统中,假定物镜的口径为30mm,目镜的通光口径为20mm,如果系统中没有视场光阑,问该望远镜最大的极限视场角等于多少?渐晕系数k =0.5的视场角等于多少?解:(1)151018108=++x xmm x 252=1081825218252108181815+++=+++=x x y714286.10=y︒=33.112目ω(2) 0793651.0181081021=+=+=’目‘物目f f D tg ω ︒︒==∴08.932492‘’‘ω答:极限视场角等于11.33︒渐晕系数为0.5的视场角为9.08︒。
总黄酮生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。
在自然界中最常见的是黄酮和黄酮醇,其它包括双氢黄(醇)、异黄酮、双黄酮、黄烷醇、查尔酮、橙酮、花色苷及新黄酮类等。
简介近年来,由于自由基生命科学的进展,使具有很强的抗氧化和消除自由基作用的类黄酮受到空前的重视。
类黄酮参与了磷酸与花生四烯酸的代谢、蛋白质的磷酸化、钙离子的转移、自由基的清除、抗氧化活力的增强、氧化还原作用、螯合作用和基因的表达。
它们对健康的好处有:( 1 )抗炎症( 2 )抗过敏( 3 )抑制细菌( 4 )抑制寄生虫( 5 )抑制病毒( 6 )防治肝病(7 )防治血管疾病(8 )防治血管栓塞(9 )防治心与脑血管疾病(10 )抗肿瘤(11 )抗化学毒物等。
天然来源的生物黄酮分子量小,能被人体迅速吸收,能通过血脑屏障,能时入脂肪组织,进而体现出如下功能:消除疲劳、保护血管、防动脉硬化、扩张毛细血管、疏通微循环、活化大脑及其他脏器细胞的功能、抗脂肪氧化、抗衰老。
近年来国内外对茶多酚、银杏类黄酮等的药理和营养性的广泛深入的研究和临床试验,证实类黄酮既是药理因子,又是重要的营养因子为一种新发现的营养素,对人体具有重要的生理保健功效。
物理学:工程光学试题(题库版)1、单选原子发射光谱定性工作中,对粉末样品经常采用()作为支持电极。
A、石墨电极B、铜电极C、锌电极D、银电极正确答案:A2、名词解释光程正确答案:光经过的实际路径长度与所在介质(江南博哥)折射率的乘积3、问答题什么叫“畸变”?它与什么因素有关?正确答案:轴外点的宽光束和细光束都有像差存在,即使只有主光线通过光学系统,由于球差影响,它不能和第二近轴光一致,主光线和高斯像面焦点的高度不等于理想像高,其差别就是系统的畸变。
4、名词解释电光效应正确答案:在电场作用下,可以使某些各向同性的透明介质变为各向异性,从而使光产生双折射,这种现象称为电光效应。
5、名词解释弧矢平面正确答案:包含主光线,且与子午平面正交的平面。
6、填空题我们通常把分界面两边折射率高的介质称为光密介质,折射率低的介质称为()。
正确答案:光疏介质7、单选采用调制的空心阴极灯主要是为了()。
A.延长灯寿命B.克服火焰中的干扰谱线C.防止光源谱线变宽D.扣除背景吸收正确答案:B8、问答题正弦光栅在自身所在平面内分别平移和转动时,对夫琅禾费衍射场的衍射斑有什么影响。
正确答案:正弦光栅在自身所在平面内移动时衍射斑光强分布不变,相位分布发生变化。
在自身平面内转动时,衍射光强和相位分布都发生变化。
9、名词解释物方远心光路正确答案:光学系统的物方光线平行于光轴,主光线的汇聚中心位于物方无限远处.10、填空题发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称()正确答案:波面11、填空题棱镜摄谱仪的结构主要由(),(),(),()四部分(系统)组成。
正确答案:照明系统;准光系统;色散系统;投影系统12、名词解释物方空间正确答案:所有实物点和虚物点的集合构成的空间。
13、填空题交流电弧的激发能力强,分析的重现性好,适用于(),不足的是蒸发能力也稍弱,灵敏度稍低。
正确答案:定量分析14、问答题什么是景深,照相物镜的景深与什么有关?正确答案:能在像面上获得清晰像的物空间的深度是系统的景深。
工程光学第二章理想光学系统1、一个折射率为1.52的双凸薄透镜,其中一个折射面的曲率半径是另一个折射面的2倍,且其焦距为5cm,则这两个折射面的曲率半径分别是〔7.8〕cm和〔-3.9〕cm。
2、一个薄透镜折射率为1.5,光焦度500D。
将它浸入某液体,光焦度变成-1.00D,则此液体的折射率为〔1.502〕。
3、反远距型光组由〔一个负透镜和一个正透镜〕组成,其特点是〔工作距大于组合焦距〕。
4、远摄型光组由一个〔正透镜〕和一个〔负透镜〕组成,其主要特点是〔焦距大于筒长〕,因此该组合系统常用在〔长焦距镜头〕的设计中。
第三章平面与平面系统1、反射棱镜在光学系统中的主要作用有〔折叠光路〕、〔转折光路〕和转像、倒像等,在光路中可等效为平行平板加〔平面反射镜〕。
2、某种波长的光入射到顶角为60°的折射棱镜,测得最小偏向角为42°15′,则该种玻璃对于入射波长的折射率为〔1.557〕。
3、唯一能完善成像的光学元器件是〔平面反射镜〕,利用其旋转特性可制作光学杠杆进行放大测量;利用双光楔也可以实现〔微小角度和微小位移〕的测量,主要有〔双光楔旋转测微〕和〔双光楔移动测微〕两种形式。
4、用于制作光学元件的光学材料包括光学玻璃,〔光学晶体〕和〔光学塑料〕三类。
选用光学玻璃时的两个重要参数是〔折射率〕和〔阿贝常数〕。
5、一个右手坐标的虚物,经一个直角屋脊棱镜反射后,成〔右手〕坐标的〔虚〕像。
第四章光学系统中的光束限制1、限制轴上物点成像光束宽度的光阑是〔孔径光阑〕,而〔渐晕光阑〕在其基础上进一步限制轴外物点的成像光束宽度。
2、为减少测量误差,测量仪器一般采用〔物方远心〕光路。
3、测量显微镜的孔径光阑放置在〔物镜后焦平面上〕,视场光阑放置在〔一次实像面处〕,如果用1/2″的CCD接收图像并用14″的监视器观察图像,要求系统放大倍率为140倍,则显微镜的放大倍率是〔5倍〕。
第五章光线的光路计算及像差理论1、实际像与〔理想像〕之间的差异称为像差,包括单色像差和色差两大类。
第一章习题1、已知真空中的光速c=3×108 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
第四章光学系统的光阑与光束限制一、填空题I级I级1空1、在光学系统中,对光束起限制作用的光学元件通称为[1]。
光阑2、限制轴上物点成像光束大小的光阑称为[1]。
孔径光阑3、孔径光阑经过前面的光学系统在物空间所成的像称为[1]。
入射光瞳4、孔径光阑经过后面的光学系统在像空间所成的像称为[1]。
出射光瞳5、一般安置在物平面或像平面上,以限制成像范围的光阑称为[1]。
视场光阑6、视场光阑经其前面的光学系统所成的像称为[1]。
入射窗7、视场光阑经过后面的光学系统所成的像称为[1]。
出射窗8、轴外点发出的充满入瞳的光束受到透镜通光口径的限制,而部分被遮拦的现象称为[1]。
渐晕9、孔径光阑位于光学系统像方焦面处,光学系统的物方主光线平行于光轴,主光线汇聚中心位于物方无限远处,这样的光路称为[1]。
物方远心光路10、孔径光阑位于光学系统物方焦面处,光学系统的像方主光线平行于光轴,主光线汇聚中心位于像方无限远处,这样的光路称为[1]。
像方远心光路11、在长光路系统中,往往利用[1]达到前后系统的光瞳衔接,以减小光学零件的口径。
场镜12、在像平面上所获得的成清晰像的物空间深度称为成像空间的[1]。
景深13、像面边缘比中心暗的现象称为[1]。
渐晕14、为了减少测量误差,测量仪器一般采用[1]光路。
远心15、渐晕大小用渐晕系数衡量,线渐晕系数定义为轴外点成像光束与轴上点成像光束在[1]上线度之比。
入瞳16、与入射窗共轭的物是[1]。
视场光阑17、与入瞳共轭的物是[1]。
孔径光阑I 级2空1、在放大镜和人眼组成的光学系统中,放大镜的镜框是( ),人眼是( )。
视场光阑,孔径光阑2、一个10倍的放大镜,通光直径为20mm ,人眼离透镜15mm ,眼瞳直径为3mm ,当渐晕系数为0.5时,人眼观察到的线视场为( )mm ;无渐晕时,线视场为( )mm 。
33.33,28.333、开普勒望远系统加场镜后,视放大率不变,目镜通光口径( ),出瞳离目镜距离( )。
第四章 光学系统中的光束限制1.设照相物镜的焦距等于75mm ,底片尺寸为55×55㎜2,求该照相物镜的最大视场角等于多少?解:3.假定显微镜目镜的视角放大率Γ目=15⨯,物镜的倍率β=2.5⨯,求物镜的焦距和要求的通光口径。
如该显微镜用于测量,问物镜的通光口径需要多大(u =-︒3.42y =8mm 显微镜物镜的物平面到像平面的距离为180mm )? 解: (1)5.2'-==ll β mm l 428.51-=180'=-l l mm l 57.128'=‘物f l l 111'=- mm f 73.36=‘物 在此情况下,物镜即为显微镜的孔径光阑︒-=3.4u mm tg ltgu D 734.73.4428.5122=⨯⨯==︒物(2)用于测量时,系统中加入了孔径光阑,目镜是视场光阑 由于u 已知,根据u 可确定孔径光阑的大小 mm tg tgu L OM A 8668.33.4428.51=︒⨯=⋅=OA PA OM D A ’‘孔=2L 目-目fL ‘Zmm OM L f L D A 52.58668.357.12873.3657.12822'=⨯-⨯=⨯-⨯=∴’‘物孔在中M M B B '∆ OA P AB A O M B A D B ‘‘’‘’‘孔=++21 mm y 1045.2'=⨯= mm O M B 863.7=∴ mm D 726.15=物答:物镜的焦距为36.73mm ,物镜的孔径为7.734mm ,用于测量时物镜孔径为15.726mm 。
4. 在本章第二节中的双目望远镜系统中,假定物镜的口径为30mm ,目镜的通光口径为20mm ,如果系统中没有视场光阑,问该望远镜最大的极限视场角等于多少?渐晕系数k =0.5的视场角等于多少? 解:(1)151018108=++x xmm x 252=1081825218252108181815+++=+++=x x y714286.10=y︒=33.112目ω (2)0793651.0181081021=+=+=’目‘物目f f D tg ω ︒︒==∴08.932492‘’‘ω答:极限视场角等于11.33︒渐晕系数为0.5的视场角为9.08︒。
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学基础教程_习题参考答案工程光学基础教程_习题参考答案第一章光学基本知识与技术1.1 什么是光学?光学在人类生活中有哪些应用?答:光学是研究光的行为和性质的物理学科。
它涉及到光的产生、传播、变换、干涉、衍射、偏振以及光在介质中的行为等问题。
光学在人类生活中有着广泛的应用,如眼镜、镜头、显示器、照明、医疗器械、天文望远镜等。
1.2 光的波动性是如何描述的?答:光的波动性是指光是一种电磁波,具有振幅、频率、波长等特征。
它可以在空间中传播,并且可以表现出干涉、衍射等波动性质。
光的波动性可以通过波长、频率、振幅等参数进行描述。
1.3 什么是光的干涉?举例说明其应用。
答:光的干涉是指两列或两列以上的光波在空间中叠加时,由于光波的叠加产生明暗相间的干涉条纹的现象。
光的干涉在很多领域都有应用,例如光学干涉仪、双缝干涉实验、全息照相、光学通信等。
1.4 什么是光的衍射?举例说明其应用。
答:光的衍射是指光在遇到障碍物或孔径时,会绕过障碍物或孔径边缘,产生明暗相间的衍射图案的现象。
光的衍射在很多领域也有应用,例如光学透镜、衍射光学器件、全息照相、光学存储等。
1.5 什么是光的偏振?举例说明其应用。
答:光的偏振是指光波的电矢量在振动时,只在某个方向上振动,而在其他方向上振动为零的现象。
光的偏振在很多领域也有应用,例如偏振眼镜、偏振片、偏振光学器件等。
第二章光学透镜与成像2.1 什么是透镜?列举几种常见的透镜及其特点。
答:透镜是一种光学器件,它由一块透明材料制成,可以聚焦或发散光线。
常见的透镜包括凸透镜、凹透镜、平凸透镜、平凹透镜等。
2.2 凸透镜的成像原理是什么?如何计算凸透镜的焦距?答:凸透镜的成像原理是光线经过凸透镜后,平行于主轴的光线会聚于一点,这个点称为焦点。
焦距是指从透镜中心到焦点的距离。
凸透镜的焦距可以通过公式 f=1/v+1/u 进行计算,其中f为焦距,u为物距,v为像距。
2.3 凹透镜的成像原理是什么?如何计算凹透镜的焦距?答:凹透镜的成像原理是光线经过凹透镜后,平行于主轴的光线会朝透镜中心方向会聚于一点,这个点称为虚焦点。
第四章 光学系统中的光束限制
1.设照相物镜的焦距等于75mm ,底片尺寸为55×55㎜2,求该照相物镜的最大视场角等于多少 解:
3.假定显微镜目镜的视角放大率Γ目=15⨯
,物镜的倍率β=⨯
,求物镜的焦距和要求的通光口径。
如该显微镜用于测量,问物镜的通光口径需要多大(u =-︒3.42y =8mm 显微镜物镜的物平面到像平面的距离为180mm ) 解: (1)
5.2'
-==l
l β mm l 428.51-=
180'
=-l l mm l 57.128'
=
‘物
f l l 111'=- mm f 73.36=‘物 在此情况下,物镜即为显微镜的孔径光阑
︒-=3.4u mm tg ltgu D 734.73.4428.5122=⨯⨯==︒
物
(2)
用于测量时,系统中加入了孔径光阑,目镜是视场光阑 由于u 已知,根据u 可确定孔径光阑的大小 mm tg tgu L OM A 8668.33.4428.51=︒⨯=⋅=
O
A P
A OM D A ’‘孔
=2
mm OM L f L D A 52.58668.357
.12873
.3657.12822'=⨯-⨯
=⨯-⨯
=∴’
‘物
孔
L 目
L
目L Z
在中M M B B '∆ O
A P A
B A O M B A D B ‘
‘
’‘’‘孔=++21 mm y 1045.2'
=⨯= mm O M B 863.7=∴ mm D 726.15=物
答:物镜的焦距为36.73mm ,物镜的孔径为7.734mm ,用于测量时物镜孔径为
15.726mm 。
4. 在本章第二节中的双目望远镜系统中,假定物镜的口径为30mm ,目镜的通光口径为20mm ,
如果系统中没有视场光阑,问该望远镜最大的极限视场角等于多少渐晕系数k =的视场角等于多少 解:(1)
15
10
18108=++x x
mm x 252=
108
1825218
252108181815+++=
+++=x x y
714286.10=y
︒=33.112目ω (2)
0793651.018
1081021=+=+=’
目‘
物目
f f D t
g ω ︒
︒==∴08.932492‘’
‘
ω
答:极限视场角等于︒
渐晕系数为的视场角为︒。
5. 如果要求上述系统的出射瞳孔离开目镜像方主面的距离为15mm ,求在物镜焦面上加入的
场镜焦距。
解:
D 物对场镜成像,位置为mm f l 1081-=-=’
物 对目镜有
’目
f l l 1112'2=- l mm l Z 15'
'2== mm f 18=‘
目 可得 mm l 902=
21l l d -=’Θ mm l d l 108901821=+=+‘
对场镜
‘场
f l l 1111'1=- mm l 108'1= mm l 1081-= mm f 54=∴‘场
答:场镜焦距为54mm 。
6.思考题:当物点在垂直光轴方向上下移动时,系统的孔径光阑是否改变 答:当物点在垂直光轴方向上下移动时,孔径光阑对来自不同点的成像光束 口径限制最大,所以系统的孔径光阑不变。