误差修正模型
- 格式:doc
- 大小:153.50 KB
- 文档页数:8
Stata误差修正模型命令简介误差修正模型(Error Correction Model,ECM)是一种用于描述时间序列数据之间长期和短期关系的经济模型。
它是自回归移动平均模型(ARMA)和协整关系的结合,可以用于分析变量之间的长期均衡关系和短期调整速度。
Stata是一款功能强大的统计分析软件,提供了许多用于估计和分析误差修正模型的命令。
本文将介绍Stata中常用的误差修正模型命令及其使用方法。
命令介绍vecintrovecintro命令用于估计向量自回归(Vector Autoregression,VAR)模型,并进行协整检验。
在估计VAR之前,我们需要先检验变量之间是否存在协整关系。
vecintro命令可以帮助我们进行协整检验并选择适当的滞后阶数。
使用示例:vecintro y x1 x2, lags(1/4)其中,y表示因变量,x1和x2表示自变量。
lags(1/4)表示选择滞后阶数为1至4。
vecrankvecrank命令用于估计向量错误修正模型(Vector Error Correction Model,VECM)。
VECM是一种描述协整关系和短期调整速度的模型。
使用示例:vecrank y x1 x2, lags(1/4) rank(2)其中,y表示因变量,x1和x2表示自变量。
lags(1/4)表示选择滞后阶数为1至4,rank(2)表示选择协整关系的阶数为2。
vecvec命令用于估计向量错误修正模型,并进行残差诊断和模型拟合优度检验。
使用示例:vec y x1 x2, lags(1/4) rank(2)其中,y表示因变量,x1和x2表示自变量。
lags(1/4)表示选择滞后阶数为1至4,rank(2)表示选择协整关系的阶数为2。
常用参数lags在估计误差修正模型时,我们需要选择合适的滞后阶数。
Stata中的误差修正模型命令通常都提供了lags参数来指定滞后阶数范围。
使用示例:vec y x, lags(1/4)上述示例中的lags参数指定了滞后阶数范围为1至4。
stata误差修正模型命令(原创实用版)目录1.介绍 stata 误差修正模型2.阐述 stata 误差修正模型的优点3.提供 stata 误差修正模型的命令示例4.总结正文1.介绍 stata 误差修正模型stata 是一种广泛使用的数据分析软件,它提供了各种先进的统计分析方法,误差修正模型就是其中的一种。
误差修正模型是一种用于解决因变量和自变量之间的内生性问题而设计的统计模型。
内生性问题是指模型中的因变量对自变量产生影响,这可能会导致估计出的参数偏误。
而误差修正模型则可以通过引入额外的工具变量来解决这个问题,从而得到更准确的参数估计。
2.阐述 stata 误差修正模型的优点stata 误差修正模型具有以下几个优点:(1)它可以有效地解决内生性问题。
通过引入工具变量,可以消除因变量对自变量的影响,从而得到更准确的参数估计。
(2)它具有较强的实用性。
stata 误差修正模型可以应用于各种领域,如经济学、社会学、医学等,可以解决各种实际问题。
(3)它操作简便。
stata 提供了一系列的命令,用户只需按照命令的格式输入相应的参数,就可以轻松地完成误差修正模型的估计。
3.提供 stata 误差修正模型的命令示例以下是一个 stata 误差修正模型的命令示例:```sysuse "data.dta", clearreg dep_var ind_var [if]est store err_modelerroreq```在这个命令中,`sysuse`命令用于读取数据,`reg`命令用于进行回归分析,`dep_var`和`ind_var`分别表示因变量和自变量,`[if]`表示在满足特定条件时才将样本纳入模型,`est store`命令用于将模型结果存储为临时变量,`err_model`表示模型名称,`estoreq`命令用于进行误差修正模型的估计。
4.总结总的来说,stata 误差修正模型是一种有效的解决内生性问题的方法,它具有操作简便、实用性强等优点。
第二节 误差修正模型(Error Correction Model ,ECM ) 一、误差修正模型的构造 对于y t 的(1,1)阶自回归分布滞后模型:t t t t t y x x y εβββα++++=--12110在模型两端同时减y t-1,在模型右端10-±t x β,得:tt t t t t t t tt t t t x y x x y x y x x y εααγβεββββαββεββββα+--+∆=+---+--+∆=+-+++∆+=∆------)(])1()1()[1()1()(1101012120120121100其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。
记 11011-----=t t t x y ecm αα (5-5)则 t t t t ecm x y εγβ++∆=∆-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。
二、误差修正模型的含义如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ∆,右端)0(~I x t ∆,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。
当y t 和x t 协整时,设协整回归方程为:t t t x y εαα++=10它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样0<γ;当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0,而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰好相反,所以,误差修正是一个反向调整过程(负反馈机制)。
什么是误差修正模型(ECM)如何建立和估计ECM模型误差修正模型(Error Correction Model, ECM)是一种用于揭示时间序列数据中长期和短期关系的统计模型。
它是基于协整理论(Cointegration Theory)的发展而来,用于处理非平稳时间序列数据的建模和分析。
本文将介绍误差修正模型的基本概念、建立方法以及估计过程。
一、误差修正模型的基本概念误差修正模型是基于向量自回归模型(Vector Autoregressive Model, VAR)的延伸,用于描述经济系统中变量之间的动态关系。
它的核心思想是变量之间存在长期均衡关系,并且当系统偏离均衡状态时,会通过误差修正机制迅速回归到均衡。
在误差修正模型中,被解释变量(因变量)的变化量由其自身的滞后项、其他变量的滞后项和误差修正项来决定。
其中,误差修正项是系统偏离均衡状态的驱动力,它通过反映系统失衡的程度来进行调整,促使系统回归到长期均衡。
因此,误差修正模型可以同时捕捉长期和短期的关系,具有强大的解释和预测能力。
二、建立误差修正模型的方法建立误差修正模型主要包括两个步骤:协整关系检验和模型参数估计。
1. 协整关系检验协整关系检验是判断变量之间是否存在长期均衡关系的重要步骤。
常用的协整关系检验方法包括ADF检验(Augmented Dickey-Fuller test)、PP检验(Phillips-Perron test)等。
这些检验方法可以判断变量是否为非平稳的单整序列,以及变量之间是否存在稳定的线性关系。
2. 模型参数估计在进行误差修正模型参数估计之前,需要确定模型的滞后阶数(Lag Order)。
滞后阶数的选择可以通过信息准则(如AIC、BIC等)来确定,准则值较小的滞后阶数会得到更好的模型拟合效果。
模型参数估计可以使用最小二乘法(Ordinary Least Squares, OLS)或极大似然估计法(Maximum Likelihood Estimation, MLE)进行。
误差修正模型修正系数范围
误差修正模型修正系数是在经济学和统计学领域中常用的一个概念。
它被用来解释经济模型中的误差项与自变量之间的关系,以及在模型拟合中的作用。
误差修正模型修正系数的范围是由一系列经济和统计指标所决定的,下面将对其进行详细阐述。
误差修正模型修正系数的范围取决于自变量与误差项之间的关系。
在经济学中,误差修正模型修正系数通常用来衡量当自变量变动一个单位时,误差项如何调整来达到新的均衡。
在统计学中,误差修正模型修正系数用来衡量误差项对自变量的调整速度和程度。
误差修正模型修正系数的范围一般是在[-1, 1]之间。
当修正系数接近于1时,说明误差项对自变量的调整速度和程度较大,模型的修正能力较强。
当修正系数接近于0时,说明误差项对自变量的调整速度和程度较小,模型的修正能力较弱。
当修正系数接近于-1时,说明误差项与自变量存在负相关关系,即当自变量增加时,误差项会减小。
需要注意的是,误差修正模型修正系数的范围可以根据具体的经济或统计模型而有所不同。
不同的模型可能会使用不同的指标和方法来计算修正系数。
因此,在使用误差修正模型修正系数时,需要根据具体的情况进行调整和解释。
误差修正模型修正系数是经济学和统计学中常用的一个重要概念,
用来解释自变量和误差项之间的关系以及模型的修正能力。
它的范围一般在[-1, 1]之间,可以根据具体的模型和指标进行调整和解释。
在实际应用中,我们需要根据具体的情况来选择适合的修正系数,并结合其他经济和统计指标来进行分析和判断。
stata误差修正模型命令摘要:1.Stata误差修正模型简介2.误差修正模型基本原理3.常用误差修正模型命令介绍4.实例演示5.总结与建议正文:随着计量经济学的发展,误差修正模型(Error Correction Model,简称ECM)在实证研究中得到了广泛应用。
Stata作为强大的统计分析软件,为用户提供了丰富的误差修正模型命令。
本文将介绍Stata中的误差修正模型命令,帮助读者更好地运用这些工具进行实证研究。
1.Stata误差修正模型简介误差修正模型是一种具有时间序列特征的回归模型,它将变量的当前值与过去值相结合,以预测未来趋势。
误差修正模型主要分为两类:一类是单方程误差修正模型,另一类是多元误差修正模型。
在Stata中,我们可以使用以下命令构建误差修正模型。
2.误差修正模型基本原理误差修正模型的基本原理是,将变量的当前值与过去值进行回归,得到一个方程。
然后,将这个方程的残差(即预测值与实际值之差)作为解释变量,再次进行回归,得到另一个方程。
这两个方程组成一个误差修正模型。
在Stata中,我们可以使用以下命令构建误差修正模型。
3.常用误差修正模型命令介绍(1)命令:xtserialxtserial命令用于构建单方程误差修正模型。
例如,以下命令构建了一个关于变量y的误差修正模型:```xtserial y x1 x2, ecm(1)```(2)命令:xtareasxtareas命令用于构建多元误差修正模型。
例如,以下命令构建了一个关于变量y、x1和x2的误差修正模型:```xtareas y x1 x2, ecm(1)```4.实例演示以下是一个关于我国居民消费的实例,我们使用xtserial命令构建误差修正模型:```* 导入数据use "居民消费.dta", clear* 构建误差修正模型xtserial consumption expenditure, ecm(1)```5.总结与建议本文对Stata中的误差修正模型命令进行了简要介绍。
第二节 误差修正模型(Error Correction Model ,ECM )
一、误差修正模型的构造
对于y t 的(1,1)阶自回归分布滞后模型:
t t t t t y x x y εβββα++++=--12110
在模型两端同时减y t-1,在模型右端10-±t x β,得:
t
t t t t t t t t
t t t t x y x x y x y x x y εααγβεββββαββεββββα+--+∆=+---+--+∆=+-+++∆+=∆------)(])
1()1()[1()1()(1101012120120121100
其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。
记 11011-----=t t t x y ecm αα (5-5) 则 t t t t ecm x y εγβ++∆=∆-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。
二、误差修正模型的含义
如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ∆,右端)0(~I x t ∆,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。
当y t 和x t 协整时,设协整回归方程为:
t t t x y εαα++=10
它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1
是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样
0<γ;
当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0,而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰
好相反,所以,误差修正是一个反向调整过程(负反馈机制)。
误差修正模型有以下几个明确的含义:
1.均衡的偏差调整机制
2.协整与长期均衡的关系
3.经济变量的长期与短期变化模型
长期趋势模型:
t t t x y εαα++=10 短期波动模型: t t t t ecm x y εγβ++∆=∆-10
三、误差修正模型的估计
建立ECM 的具体步骤为:
1.检验被解释变量y 与解释变量x (可以是多个变量)之间的协整性;
2.如果y 与x 存在协整关系,估计协整回归方程,计算残差序列e t :
t t t x y εβα++=0 t
t t x y e 0ˆˆβα--= 3.将e t-1作为一个解释变量,估计误差修正模型: t t t t v e x y ++∆=∆-10γβ
说明:
(1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量;
(2)第2步可以估计动态自回归分布滞后模型:
t i t i i t i t y x y εβαα∑∑+++=--
此时,长期参数为:
∑∑-=)1(i i βαθ
协整回归方程和残差也相应取成:
t t x y θ=, t
t t x y e θˆ-= (3)第2步估计出ECM 之后,可以检验模型的残差是否存在长期趋势和自相关性。
如果存在长期趋势,则在ECM 中加入趋势变量。
如果存在自相关性,则在ECM 的右端加入t t x y ∆∆和的滞后项来消除自相关性,误差修正项的滞后期一
般也要作相应调整。
如取成以下形式:
t t t t t t t t v e y x y x x y ++∆+∆+∆+∆+∆=∆-----1242312110γβββββ
由于模型中的各项都是平稳变量,所以可以用t 检验判断各项的显著性,逐个剔除其中不显著的变量,当然误差修正项要尽可能保留。
【例5-3】建立例5-2中我国货币供应量与国民收入的误差修正模型。
协整关系。
在例5-2中已经得到我国货币供应量和国民收入的对数都是一阶单整变量,而且是协整的;所以,直接估计误差修正模型(设残差序列是t e ):
LS D(LX) D(LX) E(-1)
估计结果如图5-9所示,误差修正项的符号是负的,但是t 检验不显著。
对模型的残差序列进行自相关检验,DW 检验和BG 检验结果都说明存在一阶自相关;所以,点击方程窗口的Estimate 按钮,在方程描述框中重新定义待估方程:
D(LX) D(LX) E(-1) D(LX(-1)) D(LY(-1))
根据输出结果,剔除其中不显著的1-∆t y ,得到图5-10的估计
结果。
模型中误差修正项的符号是负的,而且各项的t 检验显著,所以,我国货币供应量的误差修正模型为:
116716.0ln 1855.1ln 2922.2ln ---∆-∆=∆t t t t e x x y
(4.87) (-2.92) (-2.58) R 2=0.4693 SE =0.0603 DW =0.9649
图5-9 ECM的最初估计结果
图5-10 ECM的最终估计结果
案例分析:我国金融发展与经济增长的协整分析表5-4中列出了1989~2006年期间我国国内生产总值指数(1978=100)、货币供应量M2(亿元)、金融机构年末贷款余额(亿元)和商品零售价格指数(1978=100)的统计资料。
现以货币供应量和贷款余额反映金融的发展情况,分析金融发展与经济增长的协整关系,以及相应的误差修正模型。
1.数据处理与单整性检验
为消除价格因素的影响,将货币供应量M2和贷款余额L 都除以物价指数P ,得到实际货币量;同时为了将各项指标的变化趋势转变成线性趋势,对所有变量都取对数。
变量的处理过程为:
GENR LY=LOG(Y)
GENR LMP=LOG(M2/P)
GENR LLP=LOG(L/P)
模型形式为:
t t P L P M Y εββα+++=)/ln()/2ln(ln 21
对模型中的变量进行单位根检验,表5-5列出了有关检验结果。
该表是另外一种常用的检验结果表现形式,其中,p 表示麦金农单侧概率值,即ADF 统计量对应的伴随概率;在ADF 统计量值上的*号,表示检验的显著情况:无*号表示不显著,***、**、*分别表示在1%、5%、10%的显著水平下显著。
表5-5的检验结果表明,所有变量都是确定趋势
过程,此时不需要再对各个变量的一阶差分进行单位根检验了,即都~I(1)。
表5-5 单位根检验输出结果
2.协整性检验
估计协整回归方程,由于模型中变量都含有长期趋势,所以在原模型中再加上取食变量T,键入命令:LS LY
C LMP LLP T,估计结果如图5-11所示。
图5-11 协整回归方程估计结果(1)由于模型中LMP与LLP高度相关,多重共线性的影响使得贷款变量的系数符号为负,经济意义不合理。
经过多个模型的测算,最终将LMP与LLP合并成一个变量表示金融的发展规模,得到如图5-12所示的估计结果。
图5-12 协整回归方程估计结果(2)
在方程窗口中点击Proc \Make Residual Series ,生成残差序列(设变量名为E );进一步检验残差序列的平稳性(检验结果见图5-13),在1%的显著水平下,残差序列是平稳的。
所以,根据EG 两步检验法,lnGDP 与实际货币和实际贷款(的对数)之间存在着协整关系。
协整回归方程为:
)ln (ln 3284.082.2ˆln LP MP Y t ++=
图5-13 残差序列E 的平稳性检验结果
3.建立误差修正模型
为表示简单起见,设:LX=LMP+LLP ;键入命令: GENR LX=LMP+LLP
LS D(LY) E(-1)
输出结果显示E t-1的系数不显著,对模型进行残差检验,发现存在一阶自相关性;所以,在模型中再加入LY 和LX 的滞后项,利用t 检验剔除不显著变量后,得到ECM 的最后估计结果(见图5-14)。
图5-14 ECM 的最终估计结果
所以,我国经济增长与金融发展的关系模型可以表述成: 长期均衡关系:
)ln 5559.0(ln 3284.082.2ˆln LP MP Y t ++=
短期波动模型:
21112431.0ln 5092.0)ln (ln 0618.0)ln (ln 1106.0ln -----∆++∆++∆=∆t t t t t t t e Y LP MP LP MP Y。