冲击动力学
- 格式:docx
- 大小:12.42 KB
- 文档页数:3
冲击动力学运动条件第七章: 运动条件绑定接触/INTER/TYPE2 刚性墙/RWALL刚体/RBODY边界条件/BCS强制位移/IMPDISP用于圆柱坐标系的Icoor/SKEW强制速度/IMPVEL不兼容的运动条件绑定接触定义了从运动学上将一组从节点限定在主面上的接触,它可以用来连接粗糙网格与细分的网格,可用于模型点焊和铆钉等。
绑定接触/INTER/TYPE2 (实体点焊与金属片之间)绑定接触可通过一组从节点和一个主面来定义在定义的搜索范围(d search)内,从节点的运动和主面相连如果从节点在gap范围内,搜索找不到主面,模型检查过程中(_0000.out) 中会出现警告。
从节点不能同时被包含在两个/两个以上运动约束中,否则会出现不兼容问题。
罚函数法RADIOSS有一个选项用罚函数法来定义Type 2 接触,使用Spot flag= 25 排除潜在的不兼容运动条件。
从节点及其投影点之间定义为弹簧单元,罚刚度是恒定的,由主面和从面的平均节点刚度计算出。
绑定接触/INTER/TYPE2 公式绑定接触/INTER/TYPE2:忽略选项此选项,可用于自动删除所有无法正确投影到主面的从节点。
绑定接触/INTER/TYPE2 删除选项如果在接触的主面上定义了失效(壳单元破坏),有必要更新接触来释放在从节点与被删除单元之间的运动条件。
绑定接触/INTER/TYPE2卡片信息search 默认设置为主面的平均尺寸Spot flag 默认设置为运动学方法如若产生断裂刚性墙/RWALL刚性墙为定义刚性面与变形体节点之间的接触,提供了一种简易的方法。
PLANE –无限平面刚性墙CYL –无限柱面刚性墙从节点四种类型的刚性墙无限平面直径为Ф的无限柱面直径为Ф的球体平行四边形point M1point M or Node N球Mslave nodespoint M or Node Nn = M M1 X M M2slave nodes刚性墙,通过表面和一组从节点来定义从动节点,通过节点列表或搜索从节点的范围(距离)来定义。
非牛顿流体液滴生成和冲击动力学研究国基金非牛顿流体作为一种特殊的物质类型,其在液滴生成和冲击动力学方面的研究具有重要意义。
本文主要针对国家基金所关注的这一领域,详细探讨非牛顿流体液滴生成过程及其在冲击过程中的动力学行为。
一、非牛顿流体液滴生成研究1.液滴生成过程非牛顿流体液滴生成过程主要包括液滴的形成、生长和断裂三个阶段。
在形成阶段,流体在表面张力的作用下形成液滴;在生长阶段,液滴逐渐吸收周围流体,体积增大;在断裂阶段,液滴从流体源脱离,形成独立液滴。
2.影响因素非牛顿流体液滴生成过程受到多种因素的影响,主要包括:(1)流变性质:非牛顿流体的流变性质会影响液滴生成过程,如剪切稀化、剪切增稠等。
(2)表面张力:表面张力是液滴生成的重要驱动力,其大小直接影响液滴的形态和尺寸。
(3)流体流速:流体流速会影响液滴的生长速度和断裂过程。
(4)环境条件:如温度、湿度等,也会对液滴生成过程产生影响。
二、非牛顿流体液滴冲击动力学研究1.冲击过程非牛顿流体液滴冲击动力学主要研究液滴在撞击固体表面时的行为。
冲击过程包括液滴的变形、飞溅、反弹等。
2.影响因素(1)液滴性质:如液滴的粘度、表面张力等,会影响冲击过程中的液滴行为。
(2)固体表面性质:如表面粗糙度、润湿性等,会影响液滴在固体表面的铺展和反弹。
(3)冲击速度:冲击速度是影响液滴冲击动力学行为的关键因素,速度越大,液滴的变形和飞溅现象越明显。
(4)冲击角度:液滴冲击固体表面的角度也会影响冲击过程。
三、研究意义与应用前景非牛顿流体液滴生成和冲击动力学研究,对于揭示非牛顿流体在复杂环境下的行为规律,具有重要的理论意义。
此外,该研究在工业、农业、生物医学等领域具有广泛的应用前景,如涂料、农药喷洒、生物样本处理等。
冲击动力学一、冲击动力学的基本内涵冲击动力学——研究材料或结构在短时快速变化的冲击载荷作用下产生波动(应力波传播),并使固体材料产生运动、变形和破坏的规律,涉及固体中弹塑性波的传播和相互作用的动力学分支学科”。
什么玩意,一脸懵逼有没有。
来点通俗易懂的,“骑马射箭”、“枪械射击”、“汽车碰撞”、“炸弹爆炸”这些贴近生活的情景总知道吧,这些都是典型的冲击动力学问题。
冲击动力学,其实就是研究诸如此类的瞬变、动载荷动态作用下,结构的动态响应过程。
“原来'突然怼了一下'就是冲击动力学?”“咳!咳!这是你的理解,我这么严(装)谨(X)的人才不会那么说。
”二、冲击动力学的典型特征言归正传,冲击过程和静力过程,到底有什么区别?还是上图吧,请看图1(a)~(c),图1(a)中的胖喵靠体型取胜,这是静力问题,图1(b)中的两喵比拼的是速度,快者取胜,这就是冲击问题,图1(3)中的傻喵摇头晃脑,这是疲劳问题(说不定这只喵在治疗颈椎病)。
总结一下(注意一下,划考点了):静力学,载荷作用过程是恒定的,不随时间变化;冲击动力学,载荷作用的时间很短,高速高能量;疲劳问题,载荷持续周期作用。
我压死你(静力学问题)我拍死你(冲击问题)这么晃你不吐吗(疲劳问题)那冲击动力学到底有什么特点?对于这个问题,继续上图。
图2给出四个战场上常见的四个物件,分别是:(1)子弹、(2)沙袋、(3)刺刀、(4)钢盔。
刀剑可以轻而易举的刺穿柔软的沙袋,但是沙袋能轻易拦住速度为1000m/s的子弹;刺刀最多能在鬼子的钢盔上留下一道印痕,而子弹却能轻易击穿头盔并爆了小鬼子的头(有效射程、垂直击中)。
你可能会问”胡扯吧你,那带头盔有个卵用?”“不要暴露你的无知,头盔主要用来挡崩飞的碎石、破片的,也能把斜射子弹崩飞。
当然对我国的土掉渣的汉阳造也有很强的抵挡作用。
”很神奇有没有,和“棒子-老虎-鸡-虫子”一模一样嘛!“一物降一物”,万物相生相克,不仅在自然界适用,科学领域同样也是适用有木有?沙袋、钢盔、枪械、刺刀关系图再来说说冲击动力学的特点,直接上图,大家自己体会吧。
第31例冲击动力学分析实例——车辆受起伏路面鼓励的响应分析本例用ANSYS LS-DYNA分析了车辆受起伏路面鼓励的响应,研究了创建车辆和负载模型的方式,研究了模拟和施加起伏路面鼓励载荷的方式。
问题描述为了分析车辆受起伏路面鼓励的响应,能够成立如图31-1所示的简化模型。
由于矿石的冲击只作用于车辆底板,因此忽略车辆其余部份,车辆悬挂系统用弹簧阻尼系统模拟。
在弹簧阻尼系统的端部施加随时刻转变的位移载荷,以模拟起伏路面对车辆的鼓励。
本例各物理量单位如下:长度为mm;力为N;时刻为s;质量为t;应力及材料弹性模量均为MPa;密度为t/m3;加速度为mm/s2。
分析步骤运行AN5YSJLS-LIYNA用ANSYS产品启动器(图31-1)运行ANSYS LS-DYNA:开始→程序→→Mechanical APDL Product launch→选择Simulation Environment(分析环境)为ANSYS,选择License(授权)为ANSYS Multiphysics/LS-DYNA,设置Working Directory(工作目录)和Initial Jobname(初始任务名)等→Run。
图31-2ANSYS产品启动器31. 概念任务名拾取菜单Utility Menu→File→Change Jobname,弹出如图31-3所示的对话框,在“[/FILNAM]”文本框中输入EXAMPLE31,单击“OK”按钮。
图31-3概念任务名对话框选择单元类型拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图31-4所示的对话框,单击“Add…”按钮;弹出如图31-5所示的对话框,在左侧列表当选"LS-DYNA Explicit",在右边列表当选“3D Solid 164”,单击“Apply”按钮:再在右边列表当选“Thin Shell 163”,单击“Apply”按钮;再在右侧列表当选“Sprng-Dampr 165”单击“OK”按钮。
ABAQUS中冲击动力学问题的求解方法冲击载荷随时间迅速变化。
当物体的局部位置受到冲击时,所产生的扰动会逐渐传到未扰动的区域去,这种现象称为应力波的传播。
当载荷作用时间短、变化快,且受力物体在加载方向的尺寸又足够大时,这种应力波的传播就显得特别重要[35]。
研究动力学问题最终将简化为求解动力学平衡方程式:节点质量矩阵M乘以节点加速度u 等于节点的合力(所施加的外力P与单元内力I之间的差值):M-= (2-1)PuI由于考虑了惯性力的影响,动力学平衡方程中出现了质量矩阵,最后得到的求解方程不是代数方程组,而是常微分方程组。
1 冲击动力学求解方法如果加载时间过短或者是动态载荷,需要采用动态分析(dynamic analysis)。
复合材料的低速冲击就属于动态分析问题。
动态分析又分为隐式分析和显式分析。
在隐式分析中,结构的刚度矩阵需要进行多次生成和求逆,这使得分析求解成本大大增加,而且刚度退化和材料失效常常引起计算收敛问题。
在显示分析中,能够避免计算收敛,较好地求解这一问题。
1.1 显式与隐式分析的区别显式与隐式分析的区别在于[5]:显式分析需要很小的时间增量步,它仅依赖于模型的最高固有频率,而与载荷的类型和持续的时间无关。
通常的模拟需要10000~1000000个增量步,每个增量步的计算成本相对较低。
它的求解方法是在时间域中以很小的时间增量步向前推出结果,而无需在每一个增量步求解耦合的方程系统,或者生成总体刚度矩阵。
隐式分析对时间增量步的大小没有内在的限制,增量的大小通常取决于精度和收敛情况。
典型的隐式模拟所采用的增量步数目要比显式模拟小几个数量级。
然而,由于在每个增量步中必须求解一套全域的方程组,所以对于每一增量步的成本,隐式方法远高于显式方法。
1.2计算方法选择复合材料层合板低速冲击损伤涉及到复杂的接触问题、材料刚度随着载荷发生变化的问题、材料的退化(degradation)和失效(failure)导致的严重的收敛问题,这些问题在隐式分析中都无法实现或者求解成本比较昂贵。
冲击动力学-研究材料或结构在短期和快速变化的冲击载荷下波动(应力波传播)并导致固体材料移动,变形和破坏的定律。
它是动力学的一个分支,涉及弹塑性波在固体中的传播和相互作用。
真是该死,面对孟力。
进入一些易于理解的场景,例如“骑马和射箭”,“枪击”,“汽车碰撞”和“炸弹爆炸”。
这些是典型的冲击动力学问题。
实际上,冲击动力学是研究这种瞬态和动态载荷下结构的动力响应过程。
“事实证明,冲击力突然被震惊了吗?”
“咳嗽!咳嗽!这是您的理解,我是如此严格(安装),真诚的人不会这么说。
”
二,冲击动力学的典型特征
无论如何,影响过程和静态过程之间有什么区别?
“别暴露你的无知。
头盔主要用于阻挡飞扬的瓦砾和碎片,也可以飞扬倾斜的子弹。
当然,它也对汉阳土壤渣的产生具有强大的抵抗力。
”
太神奇了吗?它与“棍子老虎鸡蠕虫”完全相同!“万物都有其自身的劣势”,这不仅适用于自然界,而且适用于科学界。
世界上的武术是无敌的,但它们又快又坚不可摧!信不信由你,速胜的武术大师的口头禅,我会用头将你砸死。
据报道,一个俄罗斯小团体在高空潜水,由于姿势不正确被湖枪击。
相关研究表明,当从50m 高处潜水并以平坦或仰卧姿势接触水时,瞬时冲击力与撞击混凝土地面的作用之间没有本质区别。
武术十足,以刚柔相济,以刚柔相济!子弹撞击厚壁钢表面的过程在高速撞击中,该材料具有类似于水的流体力学特性。
子弹君,当你打人时,你不是很强硬吗?有时候柔软吗?。
冲击实验的原理和意义:探讨力学、动力和碰撞的关键因素冲击实验是一种经典的物理实验,主要涉及物体之间的碰撞及其产生的作用力。
在许多科学领域,如力学、动力学、材料科学和工程等领域,冲击实验都是重要的研究工具。
这篇文章将阐述冲击实验的原理和意义。
一、冲击实验的基本原理:1. 动量守恒定律:在封闭系统中,没有外力作用时,系统的总动量不变。
这意味着在物体之间的碰撞中,双方的动量将会保持不变。
2. 动能守恒定律:在理想情况下,没有摩擦力的情况下,系统动能的总和不会改变。
也就是说,在相互作用的过程中,物体的动能不会消失,只会转化成其他形式的能量,如热能或声能。
3. 力的作用:影响物体运动方向的变化。
力的方向决定了物体的速度、加速度和位置。
因此,在冲击实验中,测量力的大小和方向对于了解物体在碰撞过程中的行为至关重要。
二、为什么冲击实验如此重要?1. 探索物体间的关系:冲击实验提供了一个方便的方式,来观察和记录物质间的相互作用。
了解物质间的相互作用,有助于我们更好地理解和利用自然界的规律。
2. 应用范围广泛:冲击实验的应用范围涵盖诸多领域,包括交通工程(如车辆撞击测试)、航空航天(如飞机和卫星的设计)以及工业生产(如机器部件碰撞的影响)等。
它可以预测和分析物体间的相互作用,以确保产品安全性和性能。
3. 材料性质:冲击实验还用于探究材料属性。
例如,通过冲击实验,可以评估材料的抗冲击性、韧性等性质,并为设计制造材料提供参考依据。
4. 实验模拟:冲击实验在真实环境中再现特定事件,以便分析物体间的相互作用,为研究人员提供了宝贵的资料。
例如,通过冲击实验模拟汽车撞车等情况,有助于改善汽车安全性等。
三、结论:冲击实验在物理学领域的重要性不言而喻,它的价值在于它能够模拟现实生活中的实际情况。
此外,它也为我们提供了一种分析方法,帮助我们更好地理解和应用基本物理定律,为设计和改进工业产品的质量和性能提供参考依据。
冲击实验可以应用于各种领域,从而发挥其关键性的作用。
冲击动力学学习小结学生:胡桂宝 学号:2009200109冲击动力学是固体力学的一个分支,它涉及物理、化学和材料科学等多种学科,主要研究固体或结构在瞬变、动载荷作用下的运动、变形和破坏规律。
冲击荷载是指外载荷随时间迅速变化的载荷。
当物体的局部位置受到冲击时,这种扰动就会逐渐传播到未扰动的区域去,这种现象称为应力波的传播。
载荷作用时间短,即荷载变化快,且受力物体的加载方向的尺寸又足够大时,这种应力波的传播就显得特别重要。
在这种情况下,材料对外载荷的动态响应必须通过应力波来研究。
对于薄板、薄壳以及梁、拱这样一类结构,在最小尺寸方向上作用外载时,应力波在这个方向上传播的时间比在外载荷作用的时间要短很多,因此应力波在其中来回反射多次后应力趋于均匀化,结构的动态响应主要表现在结构的变形并且随时间而发展,最终引起结构的断裂、贯穿或破坏。
这类问题称为结构动态响应。
应力波的传播和结构动态响应是冲击动力学的两类基本问题,前者研究物体局部扰动及其传播问题,它将动态响应作为一个过程来研究;后者忽略扰动传播过程,直接研究结构的变形、断裂及其与时间的关系。
材料的力学性能往往与应变率有关,一般来说,准静态试验的应变率为510-—1110s --量级,而冲击试验的应变率范围是210—4110s -,甚至达到6110s -。
随着应变率的提高,材料的屈服极限、强度极限提高,延伸率降低、屈服滞后和断裂滞后。
材料在冲击载荷下的力学响应与静载不同的另一个原因是材料本构关系和应变率的相关性。
由一点的扰动就由近及远地传播出去不断扩大其影响,这种扰动的传播现象就是应力波。
固体中的应力波通常分为纵波和横波两大类,其中纵波包括压缩波和拉伸波。
压缩波的传播有一个特点,即扰动引起的介质质点的运动方向和波的传播方向一致,而拉伸波波后介质质点的运动方向和波的传播方向相反。
在介质中已扰动的区域和扰动还未波及的区域之间的界面就是应力波的波阵面。
扰动在介质中的传播显示波阵面的前进。
冲击动力学
冲击动力学分为四章。
第一章包括两章:弹性波和弹塑性波。
第二部分介绍了不同应变率下的动态力学实验技术,总结了高应变率下材料的本构关系。
第三章着重分析了刚塑性梁板的动力响应,第五章介绍了惯性效应和塑性铰,第六章分析了悬臂梁的动力响应,第七章讨论了轴力和剪力对梁动力性能的影响,第八章介绍了模态分析技术、极限定理和刚塑性模型的适用性,第九章介绍了刚塑性板的动力响应分析。
第四章研究材料和结构的能量吸收,其中第10章讨论了材料和结构吸能的一般特征,第11章介绍了典型的吸能结构和材料。
”“碰撞动力学”着重阐述了碰撞动力学的基本概念、基本模型和基本方法。
文中还介绍了动态实验方法以及冲击动力学在冲击防护问题中的应用。
每章附有练习和主要参考文献,供教学和科研参考。
以冲击动力学为教材,可用于40门课程的研究生课程,为固体力学、航空航天、汽车工程、防护工程和国防工程研究生等前沿科学领域的冲击动力学及相关研究方法打下基础。
为他们进行相关的科学研究。
同时,也可供教师、科研人员、工程技术人员和相关专业大四学生自学参考。
作者简介
余同希英国剑桥大学哲学博士、科学博士。
曾任北京大学力学系教授、博士生导师;英国曼彻斯特理工大学机械工程系教授。
1995年加入香港科技大学,先后任工学院副院长、机械工程系系主任、协理副校长、霍英东研究院院长等职。
研究主要集中于冲击动力学、塑性力学、结构与材料的能量吸收、复合材料与多胞材料等领域,擅长对工程问
题建立力学模型并由此揭示其变形和失效机理。
已发表论文300余篇,担任《国际冲击工程学报》副主编、《国际机械工程学报》副主编,以及十余种学术刊物的编委。
目录
绪论
第一篇固体中的应力波
第1章弹性波
1.1 圆杆中的弹性波
1.2 弹性波的分类
1.3 波的反射和相互作用
思考题
习题
第2章弹塑性波
2.1 一维弹塑性波
2.2 有限长度杆在高速冲击下的大变形2.2.1 taylor模型
2.2.2 用能量法求解taylor杆问题。