二元相图第一次作业
- 格式:ppt
- 大小:112.50 KB
- 文档页数:2
物理化学实验报告班级:姓名:学号:实验日期:2019年5月18日实验名称:二元合金相图的绘制一、实验目的(一)学习热分析法绘制相图的基本原理(二)加深对相变过程的认识和理解二、实验原理热分析法是一种常用的绘制相图方法。
由于一切相变过程都伴随着热的吸收或放出,因此将系统均匀加热或冷却时,若不发生相变,则温度T随时间t变化的T-t 曲线是光滑的,即温度随时间的变化率是连续的;当系统发生相变化时,其T-t曲线就会出现转折点或平台,其温度随时间的变化率会发生突跃。
把这种温度随时间变化的T-t曲线称为步冷曲线。
步冷曲线上的转折点或平台对应的温度就是开始发生相变化的温度。
根据多个组成不同的二组分系统的步冷曲线即可绘制出相图。
图2.9.1(b)就是一种常见的二组分简单低共熔物系的相图。
所谓简单低共熔物系是指两种不同物质在固态互不相溶(即彼此不生成固溶体),这两种物质也不生成化合物。
Pb-Sn二元凝聚物系相图就属于简单低共熔混合物系相图。
对于纯物质而言,当把它冷却到凝固点时,其步冷曲线上会出现一个水平段。
二组分液态混合物系的凝固过程并不是在一个温度点上完成的。
在凝固过程中,随着某个纯固体组分的析出,溶液的组成会不断发生变化,所以它的凝固点(即二相平衡温度)也会发生不断变化。
与此同时,由于凝固过程是放热的,即系统在对外放热的同时也会得到部分热量的补充,所以其温度降低速度会明显放慢,其步冷曲线上会出现一个拐点。
步冷曲线上的拐点与相图中的点有一一对应的关系。
在实验过程中需要注意以下几点:(1)因为待绘制的相图是平衡状态图,故实验过程中被测系统需时时处于或接近于平衡状态。
所以在系统冷却时,冷却速度应足够缓慢。
冷却过程中应尽量保持环境状况前后一致,不要搅拌,也不要晃动温度探头或样品管。
(2)实验过程中,待测样品的实际组成应与标签一致。
如果实验过程中样品未混合均匀或部分样品发生了氧化,则实验结果就误差越大。
(3)测得的温度值必须能真正反映系统的温度。
物理化学实验报告班级:姓名:学号:实验日期:2019年5月18日实验名称:二元合金相图的绘制一、实验目的(一)学习热分析法绘制相图的基本原理(二)加深对相变过程的认识和理解二、实验原理热分析法是一种常用的绘制相图方法。
由于一切相变过程都伴随着热的吸收或放出,因此将系统均匀加热或冷却时,若不发生相变,则温度T随时间t变化的T-t 曲线是光滑的,即温度随时间的变化率是连续的;当系统发生相变化时,其T-t曲线就会出现转折点或平台,其温度随时间的变化率会发生突跃。
把这种温度随时间变化的T-t曲线称为步冷曲线。
步冷曲线上的转折点或平台对应的温度就是开始发生相变化的温度。
根据多个组成不同的二组分系统的步冷曲线即可绘制出相图。
图2.9.1(b)就是一种常见的二组分简单低共熔物系的相图。
所谓简单低共熔物系是指两种不同物质在固态互不相溶(即彼此不生成固溶体),这两种物质也不生成化合物。
Pb-Sn二元凝聚物系相图就属于简单低共熔混合物系相图。
对于纯物质而言,当把它冷却到凝固点时,其步冷曲线上会出现一个水平段。
二组分液态混合物系的凝固过程并不是在一个温度点上完成的。
在凝固过程中,随着某个纯固体组分的析出,溶液的组成会不断发生变化,所以它的凝固点(即二相平衡温度)也会发生不断变化。
与此同时,由于凝固过程是放热的,即系统在对外放热的同时也会得到部分热量的补充,所以其温度降低速度会明显放慢,其步冷曲线上会出现一个拐点。
步冷曲线上的拐点与相图中的点有一一对应的关系。
在实验过程中需要注意以下几点:(1)因为待绘制的相图是平衡状态图,故实验过程中被测系统需时时处于或接近于平衡状态。
所以在系统冷却时,冷却速度应足够缓慢。
冷却过程中应尽量保持环境状况前后一致,不要搅拌,也不要晃动温度探头或样品管。
(2)实验过程中,待测样品的实际组成应与标签一致。
如果实验过程中样品未混合均匀或部分样品发生了氧化,则实验结果就误差越大。
(3)测得的温度值必须能真正反映系统的温度。
二元液系相图实验目的:1.采用回流冷凝法测定不同浓度的乙醇-环己烷系统的沸点组成图(T-x图),并确定其恒沸点及恒沸组成。
2.掌握阿贝折光仪及超级恒温槽的使用方法。
实验原理:1. 一个完全互溶双液体系的沸点-组成图,表明在气液两相平衡时,沸点与气液两相组成的关系;它对于了解这一体系的性质及精馏过程都有很大的实用价值。
2. 在恒压下完全互溶的双液体系T~X 有下列三种情况:(1)所有组成溶液沸点介于二纯组分沸点之间,如苯与甲苯(图1-A)。
(2)有最高恒沸点,如卤化氢和水(图1-B)。
(3)有最低恒沸点,如苯和乙醇(图1-C)。
图1 二元液系相图在图1-C 中,绘制沸点~组成图的原理说明如下:当总组成为X 的溶液加热时,体系的温度沿着虚线上升,当温度达到T 时(即和液相线相交时)溶液开始沸腾,此时平衡的气相组成为y,液相组成为X.温度升至Ti,气相组成为yi,液相组成为xi,在此相区f=C - P + 2,式中:f 为自由度;P 为相数;C 为组分数。
3.在本实验中C=2,在二相区(气、液二相),P =2,所以f=2,由于压力指定(实验在恒压下进行)所以在二相区内f=l,因此,若指定温度则气液相浓度就不可改变,此时气、液两相的相对量亦不可变(服从杠杆原理);反之,若指定了气液相的相对量从而气液相组成一定则沸点也确定了。
4.本实验采用气液沸点仪(见图2)在一定压力下(常在大气压力下),测定不同总组成(即加入平衡沸点仪溶液的组成)的环己烷和乙醇构成的溶液达到气液平衡时的温度及气、液组成。
再根据测得数据作出该系统在此压力下的沸点-组成图。
相图与压力有关,作图时必须注明平衡压力值。
1-温度计;2-电热丝;3-冷凝管;4-液相取样冷凝口;5气相取样冷凝口;6-空气排出口;7-变压器接头两种纯液体构成理想混合物时,其中各组分的气相平衡分压在所有浓度范围内都符合拉乌尔定律:p1=p1*x1p2=p2*x2(1)式中:p1、p2为两组分气液平衡时气相分压;x1、x2为平衡时两组分的液相物质的摩尔分数;p1*、p2*为两组分纯液体在平衡温度下的饱和蒸汽压。
实验一 简单二元系统相图的绘制一、目的与要求:1.用热分析法测绘P b -S n 二元金属相图。
2.了解热分析法的测量技术与热电偶测量温度的方法。
二、原理:相图是多相体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡的情况(相对数目及性质等),故称为相图。
二元或多元体系的相图常以组成为自变量其物理性质则大多取温度。
由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系的性质以及多相体系相平衡情况的变化,都要用到相图。
图1-1是一种类型的二元简单低共熔物相图,图中A 、B 表示二个组分的名称,纵轴是物理量温度T ,横轴是组分B 的百分含量B%,在acb 线的上方,体系只有一个相(液相)存在,在ecf 以下,体系有二个相(晶体A 和B )存在,在ace 包围的面积中,一个固相(A )和一个液相(A 在B 中的饱和熔化物)共存,在bef 所包围的面积中,也是一个固相(B )和一个液相(B 和A 中的饱和熔化物)共存。
图中C 是ace 与bef 两个相区的交点,有三相(晶相A 、晶相B 、饱和熔化物)共存。
所以测绘相图就是要将相图中这些分隔相区的线画出来。
常用的方法就是热分析实验法。
热分析法所观察的物理性质是被研究体系的温度,将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间读体系温度一次,所以得历次温度值对时间作图,得一曲线,一般称为步冷曲线或冷却曲线。
在冷却过程中,若体系发生相变,就伴随着一定热效应,因此步冷曲线的斜率发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点子,若图1-2是图1-1中组成为P 的体系步冷曲线,则点2、3就分别相当于相图中的点G 、H 。
因此,取一系列组成不同的体系,作出它们的步冷曲线,求出各转折点,即能画出二元体系的最简单相图(对复杂的相图,还必须配合其它方法,方能画出)。
二元合金相图实验
组别:第七组
班级:材料物理121
实验原理:
实验是以热分析法为原理,进行测绘。
实验样品为Pb-Sn,Pb在Sn中的比例,为0%,20%,40%,60%,80%,100%分别进行熔融,然后将体系冷却,并用电脑绘出不同比例的步冷曲线,然后找出各个拐点,做出二元相图。
实验步骤:
1.将可控温度加热炉,进行温度设置,加热速率50/min,加热最高温度450。
2.设置好温度后,将加热炉的开关调带1档位,进行加热。
3.当温度加热到450时停止加热,此时打开电脑程序,记录降温曲线,即步冷曲线。
4.记录好不冷曲线后,找到拐点,进行二元相图绘制。
实验过程:
1.记录的步冷曲线:
2.绘制的二元相图:。
实验三、⼆元相图的测定-实验报告样例湖南⼯业⼤学实验报告实验三步冷曲线法绘制⼆元合⾦相图学⽣姓名预习实验报告内容⼀、实验⽬的1.⽤热分析法测熔融体步冷曲线,再绘制绘Pb-Sn⼆元合⾦相图。
2.了解热分析法的实验技术及热电偶测量温度的⽅法。
⼆、实验仪器和试剂KWL-10可控升降温电炉、SWKY-Ⅱ数字测控温巡检仪,特制样品管6个,台秤,分析纯⾦属铅、⾦属锡、⽯墨。
三、实验原理图4-1(a)体系是单组分体系。
在冷却过程中,在a~a1段是单相区,只有液相,没有相变发⽣,温度下降速度较均匀,曲线平滑。
冷却到a1时,达到物质的凝固点,有固相开始析出,两相共存,⾃由度为零,温度保持不变,冷却曲线出现平台(温度不随时间⽽改变)。
当到达a1′点液相完全消失,系统成为单⼀固相,⾃由度为1,此后随着冷却,温度不断下降。
图4-1(b)体系是⼀般⼆元混合物。
在冷却过程中,在b~b1段是单相区,只有液相,没有相变发⽣,温度下降速度较均匀,曲线平滑。
冷却到b1时,开始析出A(s),体系发⽣部分相变,相变潜热部分补偿环境吸收的热量,从⽽减慢了体系温度下降速度,步冷曲线出现转折点(拐点),即b1-b2段。
继续冷却,固体A不断析出,与之平衡的液相中B 的含量不断增加,温度不断下降。
达到b2点时,液相不仅对固体A⽽且对固相B也达到饱和,所以两固相开始同时析出,三相共存,⾃由度为0,温度保持不变,冷却曲线出现平台。
当到达b2′点液相完全消失,系统成为两固相,⾃由度为1,此后随着冷却,温度不断下降。
图4-1(c)体系是低共融体系。
在冷却过程中,在c~c1段是液相区,没有相变发⽣,温度下降速度较均匀,曲线平滑。
达到c1点时,液相对固相A和固相B同时达到饱和,所以两固相同时析出,三相共存,⾃由度为零,温度保持不变,冷却曲线出现平台。
c1′后⾯和图4-1(b)体系b2′点以后的过程相同整理实验数据时,我们会发现冷却曲线的拐点处为⼀回沟形状(见图4-4),即温度下降到相变点以下,⽽后⼜回升上来,这种现象叫过冷现象。
二元合金相图试题及答案一、选择题(每题5分,共20分)1. 二元合金相图通常用来描述:A. 合金的微观结构B. 合金的宏观性能C. 合金的成分与温度之间的关系D. 合金的加工工艺答案:C2. 在二元合金相图中,共晶点表示:A. 合金的熔点最低B. 合金的硬度最高C. 合金的脆性最大D. 合金的韧性最好答案:A3. 二元合金相图中的固液线表示:A. 合金的凝固过程B. 合金的熔化过程C. 合金的相变过程D. 合金的冷却过程答案:B4. 在二元合金相图中,共晶合金的特点是:A. 只含有一种相B. 含有两种或两种以上相C. 只有固相D. 只有液相答案:B二、填空题(每空3分,共30分)1. 在二元合金相图中,______线表示合金的凝固温度与成分的关系。
答案:固液2. 合金的相图可以预测合金的______和______。
答案:微观结构;宏观性能3. 在二元合金相图中,______点表示合金的熔点最低。
答案:共晶4. 二元合金相图中的______线表示合金的相变温度与成分的关系。
答案:固液5. 合金的相图可以用来指导合金的______和______。
答案:设计;加工三、简答题(每题10分,共20分)1. 请简要描述二元合金相图中的共晶反应。
答案:共晶反应是指在特定的温度和成分下,液相合金在冷却过程中同时凝固成两种不同的固相,这两种固相通常以特定的比例和结构共存。
2. 什么是二元合金相图中的包晶反应?答案:包晶反应是指在特定的温度和成分下,液相合金在冷却过程中首先凝固出一种固相,然后剩余的液相在达到另一个特定的成分和温度时,与先前凝固的固相反应,形成另一种固相。
四、计算题(每题15分,共30分)1. 已知某二元合金相图的共晶成分为50%A和50%B,共晶温度为1000℃。
若合金成分为40%A和60%B,试计算其凝固温度。
答案:根据相图,合金成分为40%A和60%B时,其凝固温度会低于共晶温度,具体温度需要通过查阅相图或使用相图计算软件确定。
实验二异丙醇——环己烷体系的气——液平衡相图一、目的1. 在常压下测定一完全互溶双液系在不同组成时的沸点和气液两相平衡时的组成并作出沸点——组成相图。
2. 了解沸点的测定方法。
3. 用阿贝折光仪测量液相和气相的组成,了解液体折光率的测定原理和方法。
二、原理两种在常温时为液体的物质混合起来而成的二组分体系称为双液系,两液体若能按任意比例互相溶解,称完全互溶双液系;若只能在一定比例范围内互溶,则称为部分互溶双液系。
例如异丙醇、环己烷双液系;丙酮、氯仿双液系;乙醇、水双液系都是完全互溶双液系,苯、水双液系是部分互溶双液系。
液体的沸点是指液体的蒸气压和外压相等时的温度。
在一定的外压下,纯液体的沸点有确定的值。
但对双液系,沸点不仅是与外压有关,而且还和双液系的组成有关,即和双液系中两种液体的相对含量有关。
由两种挥发性液体所构成的溶液与气相呈平衡时,气相组成与液相组成经常不同,亦即在恒压下将该溶液蒸馏,馏出液和母液组成不同。
对理想溶液,每一组分在气相中所占的分压P B等于该纯组分的饱和蒸发压P B与液相中该组分之摩尔分数的乘积,此即拉乌尔定律的数学表达式:P B=P B X B。
对大多数实际溶液由于两种液体分子的相互影响,与拉乌尔定律发生很大的偏差,原因是在两种组分之间存在着化学反应的趋势或者发生缔合,致使溶液的挥发性变小,另外有些物质组成溶液后使缔合度变小,溶液的挥发度增大,在这些实际溶液沸点组成曲线上便出现了最高或最低点,其液相曲线与气相曲线相交于一点,即两相组分相同,再继续蒸馏,只是使气相的总量增加而溶液的组成及沸点均不改变,这溶液称为恒沸混合物。
本实验研究由异丙醇——环己烷按不同比例组成的溶液,在蒸馏过程中,当达到一定沸点时,分别取出馏出液和母液试样,用物理方法,测其折光率分析其组成,尔后t-x相图。
折光率是一个物质的特征数值,溶液的折光率与组成有关,因此在一定温度下测定一系列已知浓度溶液的折光率,作出该溶液折光率——组成工作曲线,就可按内插法得到这种未知溶液的组成。
《材料科学基础》作业十一:二元相图1. 填空1) 固溶体合金,在铸造条件下,容易产生_______ 偏析,用__________ 方法处理可以消除 。
2) AL -CuAL 2共晶属于__ 型共晶,AL-Si 共晶属于__型共晶, Pb -Sn 共晶属于__型共晶 。
3) 固溶体合金凝固时有效分配系数k e 的定义是__。
当凝固速率无限缓慢时,k e 趋于__;当凝固速率很大时,则k e 趋于__ 。
K 0<1的固溶体合金非平衡凝固的过程中,K 0越小,成分偏析越____ , 提纯效果越_____;而K 0>1的固溶体合金非平衡凝固的过程中,K 0越大,成分偏析越____ , 提纯效果越_____。
4) 固溶体合金_____ 凝固时成分最均匀,液相完全混合时固溶体成分偏析(宏观偏析)最___ ,液相完全无混合时固溶体成分偏析最____ ,液相部分混合时固溶体成分偏析_________。
2. 已知A-B 二元相图,液、固相线近似为直线且K o >1合金成分为C o ,固相无扩散,液相完全无混合凝固。
试画出:1) A-B 二元合金相图及液相实际温度分布线。
2) 边界层液相溶质分布曲线3) 由液相溶质分布而引起的液相温度分布曲线并对照相图加以说明(理论温度分布曲线) 。
4) 画出由液相实际温度与理论温度分布曲线组成的成分过冷区并定义何谓成分过冷。
3.固溶体合金液相完全无混合凝固时,产生成分过冷的临界条件为: R G =D m C 0 .001K K ( m 为液相线斜率,G 为液相实际温度梯度, R 为液-固界面移动速度且K O <1 )1) 说明能否产生成分过冷的条件。
2) 如果外界条件不变,图中C 0和C 1两合金相比哪个合金产生成分过冷的倾向大?为什么?3)成分过冷对固溶体生成形态有何影响?对于一定成分的合金C O,如何控制外界条件来避免出现粗大的树枝状组织?4.试说明晶体生长形态与固相界面形貌、前沿液相温度梯度的关系。
湖南工业大学实验报告实验三步冷曲线法绘制二元合金相图学生姓名预习实验报告内容一、实验目的1.用热分析法测熔融体步冷曲线,再绘制绘Pb-Sn二元合金相图。
2.了解热分析法的实验技术及热电偶测量温度的方法。
二、实验仪器和试剂KWL-10可控升降温电炉、SWKY-Ⅱ数字测控温巡检仪,特制样品管6个,台秤,分析纯金属铅、金属锡、石墨。
三、实验原理图4-1(a)体系是单组分体系。
在冷却过程中,在a~a1段是单相区,只有液相,没有相变发生,温度下降速度较均匀,曲线平滑。
冷却到a1时,达到物质的凝固点,有固相开始析出,两相共存,自由度为零,温度保持不变,冷却曲线出现平台(温度不随时间而改变)。
当到达a1′点液相完全消失,系统成为单一固相,自由度为1,此后随着冷却,温度不断下降。
图4-1(b)体系是一般二元混合物。
在冷却过程中,在b~b1段是单相区,只有液相,没有相变发生,温度下降速度较均匀,曲线平滑。
冷却到b1时,开始析出A(s),体系发生部分相变,相变潜热部分补偿环境吸收的热量,从而减慢了体系温度下降速度,步冷曲线出现转折点(拐点),即b1-b2段。
继续冷却,固体A不断析出,与之平衡的液相中B 的含量不断增加,温度不断下降。
达到b2点时,液相不仅对固体A而且对固相B也达到饱和,所以两固相开始同时析出,三相共存,自由度为0,温度保持不变,冷却曲线出现平台。
当到达b2′点液相完全消失,系统成为两固相,自由度为1,此后随着冷却,温度不断下降。
图4-1(c)体系是低共融体系。
在冷却过程中,在c~c1段是液相区,没有相变发生,温度下降速度较均匀,曲线平滑。
达到c1点时,液相对固相A和固相B同时达到饱和,所以两固相同时析出,三相共存,自由度为零,温度保持不变,冷却曲线出现平台。
c1′后面和图4-1(b)体系b2′点以后的过程相同整理实验数据时,我们会发现冷却曲线的拐点处为一回沟形状(见图4-4),即温度下降到相变点以下,而后又回升上来,这种现象叫过冷现象。