等差数列前n项和(公开课)
- 格式:ppt
- 大小:1.19 MB
- 文档页数:21
“等差数列的前n项和”教案教学环节活动说明创设情境:首先让学生欣赏一幅美丽的图片——泰姬陵。
泰姬陵是印度著名的旅游景点,传说中陵寝中有一个三角形的图案嵌有大小相同的宝石,共有100层,同时提出第一个问题:你能计算出这个图案一共花了多少颗宝石吗?也即计算1+2+3+…..+100=?问题2:何老师按揭买房,向银行贷款25万元,采取等额本金的还款方式,即每月还款额比上月减少一定的数额。
2007年1月,我第一次向银行还款2348元,以后每月比上月的还款额减少5元,若以2007年1月银行贷款利率为基准利率,那么到2026年12月最后一次还款为止,何老师连本带利一共还款多少万元?现实模型:①图片欣赏②生活实例模型直观用实际生活引入新课。
首先认识一位伟大的数学家——高斯,然后提出问题:高斯是如何快速计算1+2+3+4+ (100)设等差数列{na}前n项和为nS,则问题1老师:利用高斯算法如何求等差数列的前n项和公式?老师:但是否刚好配对成功呢?(1)n为偶数时:(2)n为奇数时:老师:那么该如何解决落单的21+na呢?学生:1+100=101,2+99=101,…..50+51=101,所以原式=50⨯(1+101)=5050学生:将首末两项配对,第二项及倒数第二项配对,以此类推,每一对的和都相等,并且都等于。
学生:不一定,需要对n取值的奇偶进行讨论。
当n为偶数时刚好配对成功。
当n为奇数时,中间的一项21+na落单了。
(可能部分学生在此会遇到困难,老师做适当的引导。
)学生:观察21+na的脚标及脚标的关系,即:高斯求和众所周知,学生能快速解答。
这里用到了等差数列脚标和性质从高斯算法出发,对n进行讨论寻找求和公式思路自然,学生容易想到。
对中间项21+na的解决办法的过程中,进一步让学生体会研究数列就是新课引入探索公式教师活动学生活动nnnaaaaS++++=-121naa+1nnnnaaaaS+++++=+1221)(21nnaanS+=∴nnnnnaaaaaS++++++=+++-+121211211211)(21+++-=nnnaaanS naa+111nnaa+++二、教学反思根据教学经历和学生的反馈信息,笔者对本课有如下五点反思:(1)根据实际教学情况,学生比较容易掌握本课知识。
等差数列的前项和公式教学设计教学目标:1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题.2.通过公式推导的教学使学生体会从特殊到一般,再从一般到特殊的思想方法.教学重点,难点:教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.教学用具:三角板教学方法:讲授、学生自主探究、归纳相结合.教学过程一.新课引入提出问题(1):一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支,最上面一层放100支.这个V形架上共放着多少支铅笔?问题就是(板书)“S=1+2+3+…+100=?”{n}:1,2,3,…,100,…前100项的和教师讲授:先给出1、数列前n项和的概念:S n=a1+a2+a3+…a n教师提问:S100=? S n+1=?(学生统一回答,对给出的概念进行理解)回到问题这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.问题变化:1+2+3+…+99=?(学生分组讨论计算的方法,展示学生成功的典型方法)二.新课推进提出问题(2):1+2+3+…+n=?由学生分组探究,教师注意收集学生得出的不同的典型方法,由学生统一展示讲解。
尽可能展示分类讨论(n 分奇偶)、分组、倒序相加等思想方法。
结论式子:1+2+3+…+n=(1)2n n +. 提出问题(3):设等差数列的首项为 ,公差为 , 由学生探究,研究一般等差数列求和的方法和公式.2、等差数列前 项和公式 (并板书课题)公式推导(板书):思路一: (1)……○2, ∵()m n p q a a a a m n p q +=++=+∴1211n n n a a a a a a -+=+==+○1+○2:,于是有:. 这方法我们形象地称为倒序相加法.思路二:运用基本量思想,用通项公式将各项用 和 表示,得=…教师讲解两个公式的特点及联系.三.公式的理解应用例题1 一个堆放铅笔的梯形架的最下面一层放20支铅笔,往上每一层都比它下面一层多放1支,最上面一层放100支.这个梯形架上共放着多少支铅笔?先引导学生分析,再学生独立完成,点代表回答解题方法.用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.例题2 (课本的例1)练习:教材练习1、3两题三.小结1.推导等差数列前项和公式的思路;2.公式的应用中的数学思想.四.板书设计等差数列前n项和公式1、数列的前n项和三、公式的理解与应用2、等差数列前n项和公式例1*********推导公式一梯形图1 例2*********推导公式二梯形图2。