数字图像
- 格式:doc
- 大小:37.50 KB
- 文档页数:1
什么是数字图像随着数字技术的不断发展和应用,现实生活中的许多信息都可以用数字形式的数据进行处理和存储,数字图像就是这种以数字形式进行存储和处理的图像。
利用计算机可以对它进行常现图像处理技术所不能实现的加工处理,还可以将它在网上传输,可以多次拷贝而不失真。
一、获得图像的方法许多带有图像的文件都使用模拟图像如35mm幻灯片、透射片或反射片。
要获得一个数字图像必须将图像中的像素转换成数字信息,以便在计算机上进行处理和加工。
将模拟图像转换成数字图像的工作,通常可由扫描仪来完成。
扫描仪测量从图片发出或反射的光,依次记录光点的数值并产生一个彩色或黑白的数字拷贝。
这个图像被翻译成一系列的数字后存储在计算机的硬盘上或者其他的电子介质上,如可移动式硬盘,图形CD或记录磁带等。
一旦图像被转换成数字文件,它就能够被电子化地从一台计算机传输到另一台计算机上。
需了解的术语模拟图像——一个以连续形式存储的数据。
如在海边用传统相机拍摄的照片就是模拟图像。
数字图像——用二进制数字处理的数据(如通和断),如用数码相机拍摄的数字照片。
扫描仪——一个数字化的输入设备,产生比特图的拷贝,用以电子化地加工处理。
二、设计规划数字化的方法一个应用范围广泛的软件可以支持数字化的图像处理,如产生数字图形,修改数字图片,进行一些诸如页面设计之类的技术加工,并将一些图素组合在一个图像中。
通过应用这些软件所产生的图像被分成为两大类,即矢量图形和位图图像。
矢量图形经常用于线段绘图,标识语句作图和任何需要平滑过渡边缘清晰的图像。
矢量图形的一个优点就是它们能够被任意放大、缩小而不损失细节和清晰度,也不会扭曲。
位图图像通常是图片或照片一类的图像,如用扫描仪得到的图像。
位图图像利用扫描仪中的软件将图片的信息“映射”到虚拟的图形栅格中对应的空间,彩色像素填充每一个小格中,由此组成整个图像。
与矢量图形不同的是,如果没有非常好的图像质量,位图图像是不能被任意放大的。
数字图像1 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。
2 图像种类:二值图像(Binary Image): 图像中每个像素的亮度值(Intensity)仅可以取自0到1的图像。
灰度图像(Gray Scale Image),也称为灰阶图像: 图像中每个像素可以由0(黑)到255(白)的亮度值表示。
0-255之间表示不同的灰度级。
彩色图像(Color Image):每幅彩色图像是由三幅不同颜色的灰度图像组合而成,一个为红色,一个为绿色,另一个为蓝色。
伪彩色图像(false-color)multi-spectral thematic 立体图像(Stereo Image):立体图像是一物体由不同角度拍摄的一对图像,通常情况下我们可以用立体像计算出图像的深度信息。
三维图像(3D Image):三维图像是由一组堆栈的二位图像组成。
每一幅图像表示该物体的一个横截面。
数字图像也用于表示在一个三维空间分布点的数据,例如计算机断层扫描(:en:tomographic,CT)设备生成的图像,在这种情况下,每个数据都称作一个体素。
3 图像显示目前比较流行的图像格式包括光栅图像格式BMP、GIF、JPEG、PNG等,以及矢量图像格式WMF、SVG等。
大多数浏览器都支持GIF、JPG以及PNG图像的直接显示。
SVG格式作为W3C的标准格式在网络上的应用越来越广。
4 图像校准:数字图像与看到的现象之间关系的知识,也就是几何和光度学或者传感器校准。
图像的基本属性亮度:也称为灰度,它是颜色的明暗变化,常用0 %~100 %( 由黑到白) 表示。
对比度:是画面黑与白的比值,也就是从黑到白的渐变层次。
比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。
直方图:表示图像中具有每种灰度级的象素的个数,反映图像中每种灰度出现的频率。
图像在计算机中的存储形式,就像是有很多点组成一个矩阵,这些点按照行列整齐排列,每个点上的值就是图像的灰度值,直方图就是每种灰度在这个点矩阵中出现的次数。
数字图像的基本概念:分辨率:指单位区域内包含的像素数目。
常见的分辨率:1.图像分辨率2.显示分辨率3.输出分辨率4.位分辨率分辨率单位:1.像素/英寸(通用),简写为ppi2.像素/厘米常接触到的分辨率:网页图像分辨率:72 ppi 96 ppi报纸图像分辨率:120 ppi 150ppi打印图像分辨率:150 ppi彩板印刷分辨率:300 ppi常用的显示器分辨率:1024*768 (水平方向上1024个像素,垂直方向上分布了768个像素) 800*600,640*480常用打印机分辨率:24针针式打印机180 ppi喷墨打印机:300ppi激光打印机:600ppi色彩学基础知识:图形的动态显示:指在显视器上的图像图形以不同位置,不同大小,不同灰度的动态显示,多幅不同的图形图像序列的连续显示。
色彩的产生可见光的种类:(1)直射光:发光物体产生的光(照明光,日光,)(2)透射光:直射光到透明或半透明物体上,通过物体投射的光(3)反射光:直射光射到别的物体上产生的光色彩属性:(1)色相:红,橙,黄,绿,靛,蓝,紫(色彩成分)(2)亮度:色彩的纯度(彩色光越大,亮度越大)(3)彩度:色彩的饱和度(饱和度越高,颜色越深)色光三原色(色光三原色,三基色):红,绿,蓝色料三原色:黄,品红,青颜色模式Rgb模式:红,绿,蓝,组成,显示器采用Cmyk模式:青,洋红,黄,黑组成,彩色印刷利用Hsb模式:色相,饱和度,亮度组成索引颜色模式:像素8位,256颜色位图模式:黑白组成Lab模式:ps标准模式,双色调模式:八位的灰度模式彩色与位数彩色及其基本参数:(1)亮度:彩色光引起的视觉强度(明暗程度)(2)色相:光谱在不同波长的辐射在视觉上的表现(颜色类别)(3)饱和度:同色的饱和度越高,颜色越深(颜色深浅)彩色显示器分类:(1)crt显示器(2)液晶显示器彩色的位数色彩深度:一幅图像的颜色数量常用色彩深度:1位(2种颜色),8位(256种颜色)16位(65536种颜色)还有24位和32位。
什么是数字图像?数字图像从诞生以来,一直为我们提供了无止境的创意和思维空间,给人们更多可能性。
那么,什么是数字图像呢?本文将详细解释:1、数字图像是指由电脑程序捕捉到的,用0和1等计算机可理解的指令代码来创建的图片。
它采用计算机程序来存储和捕捉图像的元数据,这种图像可以被重新用于数字媒体,诸如数字照片,绘画,图库等等,这是一种更为形象的表示方式。
2、数字图像的优势(1)可以有效控制图像的曝光度,使图像变得更清晰,明亮,逼真。
(2)可以增强图像的色彩,从而提升图像效果。
(3)可以进行图像处理,比如裁剪和抠图等,从而达到您想要的效果。
(4)可以随时保存电脑中的图像,可以无限次重复使用。
(5)可以实时显示图像,更适合电脑上的编辑、分析、浏览等操作。
3、数字图像的应用(1)在印刷行业中,可以使用以数字图像格式存储的图像,进行印刷图像的编辑、设计和制作。
(2)在摄影领域,数字图像可以被用于照片处理、拍摄照片、拍摄视频及后期制作等。
(3)在视觉造型艺术领域,数字图像可以用于设计图形、动画制作等。
(4)在场景中,数字图像可以使用于特效的制作,也可以拍摄、编辑虚拟世界的影像,表现出各种艺术性的场景。
(5)在社交媒体和网站上,数字图像可以被用来展示社交媒体活动和图片,以提升网站和社交媒体平台的表现力。
以上就是有关数字图像的介绍,总的来说,数字图像可以把原本模糊不清的图像还原成精确、逼真的形态,也可以进行各种复杂和有趣的实验。
它的许多特性和优势都体现出了它所能实现的强大功能,从而给摄影师和设计者们提供了无限的想象空间,让他们更进一步发挥想象力去创造出令人惊叹的艺术作品。
数字图像处理技术数字图像处理技术是一门探讨如何利用计算机对数字图像进行处理、分析、存储、传输和显示等的学科。
由于其在各个领域中的广泛应用,数字图像处理技术已经成为一个独立的学科。
本文将从数字图像处理技术的基础知识、常见应用以及未来趋势三个方面来探讨这门技术的深度和广度。
一、基础知识数字图像的基本概念图像是人类感知现实的一种方式,而数字图像是指通过数字化技术将图像转换成数字表示形式的图像。
数字图像的特点是可以被存储、传输、处理和复制等,因此具有很高的应用价值。
数字图像由像素组成,每个像素包括亮度和颜色信息。
数字图像的获取与处理数字图像的获取是通过数字相机、扫描仪等设备实现的,并通过数字化技术将图像转换成数字信号。
数字图像的处理可以通过计算机进行,处理过程包括图像增强、滤波、分割、特征提取、识别等。
其应用领域包括影像处理、医学影像、遥感图像、安防监控等。
二、常见应用数字图像处理技术的应用范围非常广泛,下面将介绍一些常见的应用领域。
医学影像数字图像处理技术在医学影像领域起着重要作用。
医学影像的处理包括去噪、增强、分割、配准等,这些处理方法可以提高医生对病情的诊断。
数字图像处理技术广泛应用于X光透视、CT、MRI、PET等医学影像的处理。
遥感图像遥感图像处理是指利用计算机处理卫星、飞机或直升机等遥感平台获取的图像数据。
数字图像处理技术可以处理海量的遥感数据,包括遥感图像的增强、滤波、特征提取、分类等等。
其应用领域包括农业、林业、城市规划等。
安防监控数字图像处理技术在安防监控领域的应用越来越广泛。
数字图像处理技术通过视频分析、图像匹配、车牌识别等手段,可以提高监控系统的检测准确率和处理能力,增强监控系统的实时性和可靠性。
三、未来趋势随着技术的不断发展,数字图像处理技术也面临着新的挑战和机遇。
人工智能数字图像处理技术与人工智能的结合将成为未来的发展趋势。
人工智能可以通过强大的计算能力和算法优势,提高数字图像处理技术的处理效率和准确性。
数字化:对连续图像函数进行空间和幅值数字化
数字化过程:扫描、采样、量化
采样:对图像空间坐标的离散化,它决定了图像的空间分辨率
量化:把采样后所得的各像素灰度值从模拟量到离散量的转换称为图像灰度的量化 分辨率 -空间分辨率和灰度分辨率
数字图像的表示:灰度图像 彩色图像 二值图像
图像数字化过程中的失真有那些原因:采样频率太低 外部和内部的噪声的影响 用有限个灰度值表示自然界无穷多个连续的灰度值
灰度插值)
0,0()]0,1()1,0()0,0()1,1([)]0,0()1,0([)]0,0()0,1([),(f xy f f f f y f f x f f y x f +--++-+-= 平移 x ' = x+Tx y ' = y+Ty 缩放 x’=xa+(x -xa)Sx ; y’=ya+(y -ya)Sy 旋转 x ' = xr+(x -xr)cos -θ(y -yr)sin θ y ' = yr+(y -yr)cos θ +(x -xr)sin θ
图像复原是将图像退化的过程加以估计,并补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或原始图像的最优估值,从而改善图像质量的一种方法。
图像复原是图像退化的逆过程。
压缩率:描述压缩算法性能 CR = n1 / n2 相对数据冗余:RD = 1 – 1/CR
常见的数据冗余:编码冗余 像素冗余 视觉心理冗余
∑=-=K k k k p p H 12log ∑==K k k k p B R 1
%100⨯=R H ηηυ-=1t R N M bps ∆⨯⨯=R d r =。