四年级奥数+周期问题
- 格式:docx
- 大小:31.19 KB
- 文档页数:4
四年级奥数星期类型的周期问题类型全带知识点
【例1】有一列数,按5、6、2、4、5、6、2、4…的顺序排列。
(1)第129个数是多少?(2)这129个数相加的和是多少?
1.有一串数,按照4、3、2、9、1、4、3、2、9、1、4、3、2、9、1…的顺序排列,第125个数是多少?这125个数的和是多少?
2.有一串数,按照8、9、2、8、6、8、9、2、8、6…的顺序排列,第304个数是几?前304个数中“8”出现了几次?
【例2】5月4日是星期一,再过19天是星期几?
1.6月2日是星期三,再过21天是星期几?
2.4月9日是星期六,再过15天是星期几?
【例3】1991年元旦是星期二,该月的22日是星期几?1.2016年2月1日是星期一,该月的27日是星期几?
2.2017年的3月5日是星期曰,该月的植树节是星期几?
【例4】今天是11月19日星期四,12月5日是小华的生日,12月5日这一天是星期几?
1.2015年7月25日是星期六,9月13日是星期几?
2.2012年的元旦是星期日,2012年的国庆节是星期几?
【例5】2015年6月5日是星期五,2017年7月1日是星期几?
1.1991年元旦是星期二,1993年的元旦是星期几?
2.2015年元旦是星期四,2018年3月2日是星期几?
课堂总结
(1)解一般周期问题的步骤∶
①找周期②算除法③看余数
(2)日期中的周期问题,求出总天数是关键。
(3)同月的日期计算总天数,算头时∶总天数=尾-头+1 (4)跨月的日期算总天数
(5)跨年的日期算总天数
注意∶一定要判断2月所在年是平年还是间年。
欢迎阅读周期问题教案2015/6/6 授课人:XXX教学目标:1、使学生了解许多事物变化的周期性,掌握事物变化的周期;2、使学生能掌握周期问题中的基本概念,对于较复杂的周期问题,可以通过画图,问生:提示:如一周有七天,一年有12个月,一年有春夏秋冬四季,人的十二生肖,钟表上的时针、分针、秒针:每转一圈都会重复继续等等,都是周期问题。
设置悬念:刚才同学们举的这些现象中,一年当中的12个月的12,12生肖中的12,一个星期7天中的7在我们的周期问题当中是什么意思呢?-----------周期。
归纳定义:在日常生活中,有许多现象都是按照一定的规律、依次不断重复出现的,我们把这种现象叫做周期现象,而重复出现一次的个数叫做周期。
通过归纳的定义让同学们找出刚刚举例的周期。
一周七天:重复体是哪些?说明周期是几?一年四季:春夏秋冬春夏秋冬春夏…重复体是哪些?说明周期是几?例1. 周期:解:例2. 解:共有48 +2=50个△。
讲完可做一个简单的方法总结:总数÷周期数=组······余数引导学生解决以下问题:例3. 小朋把节省下来的硬币先按4个“一分”,再按3个“二分”,后按2个“五分”的顺序往下排问:鼠 虎 兔 龙 蛇 马 羊 猴 鸡 狗 猪⑴他排的第111个是几分硬币?⑵这111个硬币共多少钱?周期为9 111 ÷9=12 · · · · · ·3解:⑴第111个是一分硬币⑵111个硬币:12组有12 ×13=156分,余3分别是3个一分共有3分,则111个硬币有例4、解:⑴1、2012年3月2日是星期五,问:2012年8月18日星期几?解:3月2日到8月18日共30+30+31+30+31+18=170天。
170 ÷7=24 · · · · · ·2则2012年8月18为星期六2、有一列数按“……”排列,那么前100个数字之和是多少?解:周期为6,每组数之和是:4+1+3+9+7+6=30 100 ÷6=16 · · · · · ·430 ×16+4+1+3+9=497.挑战:0),。
周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。
在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。
解答这类题目只有找到规律,才能获得正确的方法。
例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。
第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。
三种颜色的弹子各有多少个?例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。
(2)□○△□○△……第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢?3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。
“72”是谁报的?“190”呢?4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。
黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ),第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几?例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。
四年级奥数综合复习之【周期问题】四年级奥数复习之:周期问题周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。
周期性问题的基本解题思路:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
1、观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,18÷2=9,所以第18个数是2。
2、如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16÷3=5……1,所以第16个数是1。
3、如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。
例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(16-1) ÷2=7……1,所以第16个数是2.4、遇到日期问题,求星期几,如果求的日期 > 已知日期,则使用顺推,如果求的日期 < 已知日期,则倒推。
第一讲:图形中的周期问题1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【黑/26】2、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.第10颗黄珠子是从头起第几颗?第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【47/14】3、如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们, B”……第62组是什么?如果“爱,C”代表1991年,“科,D”代表1992年……问2008年对应怎样的组?【们,F/学,F】4、如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。
周期问题
1、小旭把折的100朵纸花按2多红花,再4朵黄花,3朵紫花这样的顺序一直往下排。
问:①第100朵是什么颜色的花?三种颜色的纸花各有多少朵?
2、2011年1月1日是星期六,,那么几年的8月1日星期几?
3、有a、b、c三条直线,从a开始,到5依次再一条直线上写数(如图),60、200、1000各再哪一条直线上?
4、用1、2、3、4折四张卡片可以组成不同的四位数,如把它们从小到大依次排列出来,第1个是1234,第二个是1243,第20个是多少?
5、500个学生按下列的方法排号成五列,问:最后一个学生应在第几列?
二三四五
1234
8765
9101112
16151413
6、2000年10月1日星期日,2004年10月1日星期几?
7、用1〜5折5个数字可以组成120个不同的五位数,把它们从小到大排列,第数
50个是多少?
160个8、有一个数列,10、5、11、2、10、5、11、2 ..................... ,已知这列数中共有
数,这个数列的和是多少?
9、3888表示888个3相乘,它的乘积的各位数字是几?
10、43个8相乘的个位数字是几?
11、有一个100位的数,各位数字都是1,这个数除以6,商的末位数字是几?
12、同学们排队,按照前面3个六年级学生,中间2个二年级学生,后面跟着年级
3个四学生的顺序一直往后排,小明排在第90位,小明是几年级的学生?。
小学四年级奥数第8 讲周期问题知识方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯我们发现在日常生活和学习中,有许多现象都是按照一定的规律、依次不断重夏出现的,我们把这种现象叫周期现象,而重复出现一次的时间或重复出现一次的个数做周期。
在研究这些筒单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环一次的个数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。
重点点拨⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯【例 1】假设所有的自然数排列起来,如下所示, 49 应该排列在第几个循环及哪个字母下面 ?(1) A B C D E1 2 3 4 56 7 8 9 1011(2) A B C D E1 2 3 4 510 9 8 7 611分析与解从排列情况可以知道,这些自然数是按从小到大5 个数一个循环,我们可以根据这些数除以 5 所得的余数来分析判断 :(1)49÷5=9⋯449 应该排在第 10 个循环第 4 个字母 D 下面。
(2)49÷10=4⋯9 应该在 B的下面。
【例 2】用 1,2, 3,4 这四张卡片可以组成不同的四位数,如把它们从小到大依次排列,第一个是 1234,第二个是1243,第 20 个是多少 ?分析与解每个数字在千位上都出现 6次,一共可以组成24 个不同的四位数,以 6 次为一周期。
20÷6=3⋯⋯ 2应是第四周期中的第 2 个数,千位上是 4 的数从小到大是 4123, 4132,4213等,所以第 20 个数是 4132。
【例 3】下面是一个 11 位数,它的每三个相邻的数字之和都是 24,求它每一位数上的数字分别是多少 ?分析与解我们把从左边算起的第一数记做 a1(a1=8),依次编号位 a1,a2,⋯⋯ a11.每三个相邻数字和都是 24 可知,a1+a2+a3=a2+a+a4=a+a1+a3=24 因为 a1=8,所以 a2+a3=16,而 a2+a3+a1=24,所以 a4=8,同理 a7=8,a10=8,由此可见这个数字的周期是 3。
四年级奥数复习之:周期问题周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。
周期性问题的基本解题思路:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
1、观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,18÷2=9,所以第18个数是2。
2、如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16÷3=5……1,所以第16个数是1。
3、如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。
例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(16-1) ÷2=7……1,所以第16个数是2.4、遇到日期问题,求星期几,如果求的日期> 已知日期,则使用顺推,如果求的日期< 已知日期,则倒推。
第一讲:图形中的周期问题1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【黑/26】2、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.第10颗黄珠子是从头起第几颗?第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【47/14】3、如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们,B”……第62组是什么?如果“爱,C”代表1991年,“科,D”代表1992年……问2008年对应怎样的组?【们,F/学,F】4、如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。
四年级奥数之周期问题1.今天是星期四,在过90天是星期()。
2.一个循环小数0.1428571428571428……,小数点后第1000位的数字是()。
3.把写着1,2,3,4,……,200号的卡片依次分发给A,B,C,D四个人。
已知13号发给A,28号发给()。
105号发给()。
134发给()。
4.有一堆围棋子,如果按“二白三黑”的顺序依次排列起来(如图),第84颗是白色还是黑色?第53颗和第91颗呢?○○●●●○○●●●○○●●●……5.小明观察交通岗处的信号灯变化情况是红、黄、绿、黄、红、黄,……如果从红灯亮开始,当信号灯变化了39次时是()色灯在亮。
6.河岸上种了100棵桃树,第一棵是蟠桃、再后面两棵是水蜜桃,3棵大青桃这样种下去。
问第100棵是什么桃树?三种树各有多少棵?7.有△,□,○共720个,按2个△,3个□,4个○排列,如图。
△△□□□○○○○△△□□□○○○○……请回答:⑴△共有几个?⑵第288个是哪种图形?8.元旦挂彩灯,用六种颜色的灯泡按红黄蓝绿白紫的次序装配,一共装了80个灯泡,每种颜色的灯泡各需要多少个?9.有一盒彩色乒乓球,按三红,二绿的顺序取出,取14次以后,绿色的取光了,还剩6个红色的。
这一盒乒乓球一共有多少个?10.1993年9月1日是星期三,那么1994年元旦是星期()。
11.三种颜色的珠子依次排列如下图:●●○○○◎◎●●○○○◎◎……第83个珠子是什么颜色的?12.将a,b,c按一定规律排列成abacbabacbabacbabacbab……最后一个是c,并且一共出现了32个c。
a,b各有多少个?。
明思教育四年级奥数专题十----周期问题姓名:知识要点:1、周期问题:一些数、图形和事物的变化往往是周而复始循环出现的,我们把具有这种规律的问题称为周期问题。
例如每隔7天是一周,则说周期是7;每隔12个月是一年,则说周期是12;每隔24小时是一昼夜,则说周期是24等。
2、在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。
3、解决周期问题的方法:首先要发现问题的周期性和确定周期长度。
然后用画图、列举、计算等方法解决有关问题。
课前一练1、如图电子跳蚤每跳一步,可以从一个圆圈跳到相邻的圆圈;现在,一只红跳蚤从标有数“1”的圆圈按顺时针方向跳了20步,落在一个圆圈里;一只黑跳蚤也从标有数“1”的圆圈起跳,但它是沿着逆时针方向跳了24步落在另一个圆圈里,那么这两个圆圈里的乘积是多少?2、如下图有一串珠子按2粒白珠、3粒黑珠依次用线串出来,第32粒珠是什么颜色的,几个白球,几个黑球?○○●●●○○●●●○○●●●○○……思维拓展例题1、假设所有的自然数排列起来,如下所示,39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89 10 11 1213 14 15 16………………解析:从排列情况可以知道,这些自然数是按从小到大按照ABCDABCD……循环排列的,即是4个数为一周期,我们可以根据这些数除以4所得的余数来分析、判断。
39÷9=4……3 88÷4=22所以,39应该排在第4行第3个字母C下面,88应排在第22行第1个字母A下面。
小窍门:找周期长度,再用总数除以周期长度,看余数。
练习:1、假设所有自然数排列起来,如下图所示,36、43、78、2000应分别排在哪个字母下面?A B C1 2 34 5 67 8 910 11 12……………2、按表中的顺序排下去,数“1998”在下面两个表中各出现在哪个字母的位置上?A B C D1 2 3 45 6 78 9 10 1112 13 14…………例题2上表是中,每一列两字组成一组,如第一组“过,发”,第二组“大,压”,……问第20个组是什么,几个“大”字,几个“发”字?解析:观察上表,发现有两个独立的排列规律。
小学四年级奥数(周期问题)小学四年级奥数第8讲周期问题知识方法:我们在日常生活和研究中会发现很多现象都是按照一定规律不断重复出现的,这种现象叫周期现象。
周期是指重复出现一次的时间或个数。
在研究这些周期问题时,我们需要仔细审题,找出循环一次的个数和规律。
如果有整数个周期,结果为周期里的最后一个;如果不是从第一个开始循环,可以用除法算式求出余数,最后根据余数的大小得出正确的结果。
重点点拨:例1:所有自然数排列起来,49应该排在第几个循环及哪个字母下面?分析与解:这些自然数是按从小到大5个数一个循环,我们可以根据这些数除以5所得的余数来判断。
49÷5=9…4,因此49应该排在第10个循环第4个字母D下面。
例2:用1,2,3,4这四张卡片可以组成不同的四位数,第20个是多少?分析与解:每个数字在千位上都出现6次,一共可以组成24个不同的四位数,以6次为一周期。
20÷6=3……2,应是第四周期中的第2个数,千位上是4的数从小到大是4123,4132,4213等,所以第20个数是4132.例3:一个11位数,每三个相邻的数字之和都是24,求每一位数上的数字分别是多少?分析与解:我们把从左边算起的第一数记做a1(a1=8),依次编号为a1,a2,……a11.每三个相邻数字和都是24可知,a1+a2+a3=a2+a+a4=a+a1+a3=24.因为a1=8,所以a2+a3=16,而a2+a3+a1=24,所以a4=8,同理a7=8,a10=8,由此可见这个数字的周期是3.因为a11=9,所以a9=7,由此可知这列数是以8,9,7这三个数字为循环周期的,因此这个11位数是xxxxxxxx.例4:有一列数6,5,4,2,6,5,4,2,……(1)第130个数是多少?(2)这130个数相加的和是多少?分析与解:这列数是以4,2,6,5为循环周期的,因此第130个数是5.这130个数可以分成若干个周期,每个周期的和为4+2+6+5=17,共有32个完整周期,剩下的2个数分别是6和5,因此这130个数相加的和为17×32+6+5=549.6.这是一个满足每三个相邻数字之和为18的11位数。
周期性问题学生姓名授课日期教师姓名授课时长知识定位本讲是小升初的热点内容。
通过本讲的学习,主要是锻炼学生观察和总结的能力。
要求学生能够发现问题的周期,并且能够确定周期。
本讲除了讲解一般排序的周期问题外,还将讲解数表、末尾数字和圆周上的周期问题。
在学习这部分内容时应当注意:数字或图形或事物是从什么位置开始循环的,能够确定周期。
并且会处理余数问题,能够准确的根据余数确定问题中的事物所在的位置。
重点难点:1.找准变化的规律2.确定解题的突破口知识梳理【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。
【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。
一、周期问题的一般定义和解题思路周期问题的定义:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.阳历中有闰日的年份叫闰年,相反就是平年,平年为365天,闰年为366天. 在公历纪年中,平年的二月为28天,闰年的二月为29天. 闰年的2月29日为闰日.一般的,能被4整除的年份是闰年,不能被4整除的年份是平年.如:1988年2008年是闰年;2005年2006年2007年是平年.但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年.如:2000年就是闰年,1900年就是平年.解题思路:周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
二、竞赛考点:同余知识的应用 例题精讲【试题来源】【题目】今天是星期_________ ;那么80天后是星期______________ 。
周期问题(一)
我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。
在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。
解答这类题目只有找到规律,才能获得正确的方法。
【例1】●●○●●○●●○……
上面黑、白两色小球探险一定的规律排列着,其中第90个是()
【例2】有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。
第144个珠是什么颜色?
【例3】有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?
【例4】有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。
三种颜色的弹子各有多少个?
【例5】
上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是()
练习与思考:
1.根据图中物体的排列规律,填空。
(2)□○△□○△……
第55个是()
2.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。
“72”是谁报的?
“190”呢?
3.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?
●●●○●●●○●●●○……
4.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色
的花?四种花各有几朵?
5.
第26列的字母和数字各是什么?
周期问题(二)
【例1】10个2连乘的积的个位数是几?
【例2】1998年元旦是星期四,1998年元旦是星期几?
【例3】黑珠、白珠共185个串成一串,排列如图:
○●○○○●○○○●○○○……
【例4】把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。
那么,1998在哪一类?
【例5】有一个1111位的数,各位数字都是1,这个数除以6余数是几?商的末位数字是几?
练习与思考:
A B C D E 1 2 3 4 8 7 6 5
9 10 11 12 16 15 14 13
17 18 19 20 … … … …
1.99个999连乘,所得积的个位数字是几?
2.1988年2月1日是星期日,1992年2月1日是星期几?1998年2月1日呢?
3.如果时钟现在表示的时间是18时整,那么,分针旋转1990圈以后是几时?
4.黑珠、白珠共150个串成一串,排列如图:
○●●○○●●○○●●○○……
最后一个是什么颜色的?这一串共有多少个白珠,多少个黑珠?
5.英文字母A、B、C、D探险BCDABAACDABAACDABAACD…排列,共250个字母,最后一个字母是什么?A、B、C、D各多少个?
6.按表中的顺序排下去,数“1998”在下面两个表中各出现在哪个字母的位置上?
A B C D
1 2 3 4
7 6 5
8 9 10 11
14 13 12
…………
A B C D
2 4 6 8
14 12 10
16 18 20 22
28 26 24
…………
课后练习
用心算一算:共七题,每天一小题喔~
1.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢?
2.如图所示,每列上、下两个字(字母)组成一组,例如,第1组是(我,A),第二组是(们,
3.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。
黑珠共有几个?第68个珠子是什么颜色?
4.42个8连乘以积的个位数是几?
5.一个200位的数,每位上的数字都是3,用它除以7,余数是几?商的末位数字是几?
6.小红数左手的手指,大拇指为1,食指为2,中指为3,无名指为4,小指为5,然后换向,无名指为6,中指为7,食指为8,大拇指为9,再换向,食指为10,…这样,数到2000停在哪个手指上?
7.3×3×3×…×3共85个3相乘,加上4×4×4×…×4共80个4相乘,它们和的个位数是几?。