生物化学第十四章-基因重组和基因工程
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
沈同《生物化学》(第三版)精要速览第一章绪论第二章蛋白质的结构与功能第三章核酸的结构与功能第四章酶第五章糖代谢第七章生物氧化第八章氨基酸代谢第九章核苷酸代谢第十章DNA的生物合成第十一章RNA的生物合成第十二章蛋白质的生物合成第十三章基因表达调控第十四章基因重组和基因工程第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
生物化学试题及答案〔14〕第十四章基因重组与基因工程[测试题]一、名词解释:1.基因工程〔geneticengineering〕。
2.接合作用(conjugation)。
3.转化作用(transforation)。
4.转导作用(transduction)。
5.转座(transposition)。
6.转座子(transposons)。
7.同源重组(homologousrecombination)。
8.全然重组(generalrecombination)。
9.DNA克隆〔DNAcloning〕。
10.复制子(replicon)。
11.限制性核酸内切酶(restrictionendonuclease)。
12.回文结构〔palindrome〕。
13.配伍末端〔compatibleend〕。
14.目的DNA〔targetDNA〕。
15.互补DNA(complementaryDNA;cDNA)。
16.克隆载体(cloningvector)。
17.表达载体(expressionvector)。
18.质粒(plasmid)。
19.α—互补(alphacomplementation)。
20.基因组DNA文库(genomicDNAlibrary)。
21.标志补救(markerrescue)。
22.转染〔transfection〕。
23.基因组DNA〔genomicDNA〕。
24.感受态细胞〔competentcell〕。
25.聚合酶链反响(polymerasechainreaction)。
26.cDNA文库(cDNAlibrary)。
27.保守性转座(conservativetransposition)。
28.复制性转座(duplicativetransposition)。
29.溶菌生长途径(lysispathway)。
30.溶源生长途径(lysogenicpathway)。
二、填空题:31.自然界的常见基因转移方式有____、____、____、____。
第七版生物化学名词解释第一章蛋白质的结构与功能(1)肽键:蛋白质中前一氨基酸的α-羧基与后一氨基酸的α-(2)(3)肽键平面:肽键中的C-N键具有部分双键的性质,不能旋转,因此,肽键中的C、O、N、H(4)蛋白质分子的一级结构:蛋白质分子的一级结构是指构成蛋白质分子的氨基酸在多肽链中的排列顺序和连接方式(5)(6)蛋白质的等电点:在某-pH溶液中,蛋白质分子可游离成正电荷和负电荷相等的兼性离子,即蛋白质分子的净电荷等于零,此时溶液的pH⑺蛋白质变性:在某些理化因素作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质改变和生物学活性的丧失的现象。
⑻协同效应:一个亚基与其配体结合后,能影响另一亚基与配体结合的能力。
(正、负)如血红素与氧结合后,铁原子就能进入卟啉环的小孔中,继而引起肽链位置的变动。
⑼变构效应:蛋白质分子因与某种小分子物质(效应剂)相互作用而致构象发生改变,从而改变其活性的现象。
⑽分子伴侣:分子伴侣是细胞中一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠。
细胞至少有两种分子伴侣家族——热休克蛋白和伴侣素。
第二章核酸的化学结构与功能(1)核酸变性:在某些理化因素的作用下,核酸双链间氢键断裂,双螺旋解开,变成无规则的线团,此(2)DNA的复性作用:变性的DNA在适当的条件下,两条彼此分开的多核苷酸链又可重新通过氢键连接,形成原来的双螺旋结构,并恢复其原有的理化性质,此即DNA的复性。
(3)杂交:两条不同来源的单链DNA,或一条单链DNA,一条RNA,只要它们有大部分互补的碱基顺序(4)增色效应:DNA变性时,A260(5)解链温度:在DNA热变性时,通常将DNA变性50%时的温度叫解链温度用Tm表示。
(6)DNA的一级结构:DNA的一级结构是指DNA链中,脱氧核糖核苷酸的组成,排列顺序第三章酶学(1)辅酶:与酶蛋白结合的较松,用透析等方法易于与酶分开。
辅基:与酶蛋白结合的比较(2)酶的活性中心:必需基团在酶分子表面的一定区域形成一定的空间结构,直接参与了将作用物转变为产物的反应过程,这个区域叫酶的活性中心。
生物化学分章重点总结第一章蛋白质的结构与功能蛋白质的四级结构及维持的力(考到问答题)一级:多肽链中AA残基的排列顺序, 维持的力为肽键, 二硫键。
二级:Pr中某段肽链的局部空间结构, 即该段肽链主链骨架原子的相对空间位置, 不涉及AA碱基侧链的构象, 维持的力为氢键。
三级:整条多肽链全部AA残基的相对空间位置, 其形成和稳定主要靠次级键—疏水作用, 离子键(盐键), 氢键, 范德华力。
四级:Pr中各亚基的空间排布及亚基接触部位的布局和相互作用, 维持的力主要为疏水作用, 氢键、离子键(盐键)也参与其中。
第二章核酸的结构与功能DNA一级结构:DNA分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。
RNA的一级结构:RNA分子中核糖核苷酸的种类、数目、排列顺序及连接方式。
hnRNA:核内合成mRNA的初级产物, 比成熟mRNA分子大得多, 这种初级mRNA分子大小不一被称为核内不均一RNA。
基因:DNA分子中具有特定生物学功能的片段。
基因组:一个生物体的全部DNA序列称为基因组。
第三章酶酶抑制剂:使酶催化活性降低但不引起酶蛋白变性的物质。
酶激活剂:使酶从无活性到有活性或使酶活性增加的物质。
酶活性单位:衡量酶活力大小的尺度, 反映在规定条件下酶促反应在单位时间内生成一定量产物或消耗一定底物所需的酶量。
变构酶:体内一些代谢产物可与某些酶分子活性中心以外部位可逆结合, 使酶发生变构并改变其催化活性, 这种调节方式为变构调节, 受变构调节的酶为变构酶。
酶的共价修饰:酶蛋白肽链上一些基团可与某种化学基团发生可逆的共价结合从而改变酶活性的过程。
阻遏作用:转录水平上减少酶生物合成的物质称辅阻遏剂, 辅阻遏剂与无活性的阻遏蛋白结合影响基因的转录的过程第四章糖代谢糖代谢的基本概况葡萄糖在体内的一系列复杂的化学反应, 在不同类型细胞内的代谢途径有所不同, 分解代谢方式还在很大程度上受氧供状况的影响:有氧氧化彻底氧化成CO2和水、糖酵解生成乳酸。
第十四章基因重组和基因工程
一、自然界的基因转移和重组:
基因重组(gene recombination)是指DNA片段在细胞内、细胞间,甚至在不同物种之间进行交换,交换后的片段仍然具有复制和表达的功能。
1.接合作用:当细胞与细胞相互接触时,DNA分子即从一个细胞向另一个细胞转移,这种遗传物质的转移方式称为接合作用(conjugation)。
2.转化和转染:由外来DNA引起生物体遗传性状改变的过程称为转化(transformation)。
噬菌体常常可感染细菌并将其DNA注入细菌体内,也可引起细菌遗传性状的改变。
通过感染方式将外来DNA引入宿主细胞,并导致宿主细胞遗传性状改变的过程称为转染(transfection)。
转染是转化的一种特殊形式。
3.整合和转导:外来DNA侵入宿主细胞,并与宿主细胞DNA进行重组,成为宿主细胞DNA的一部分,这一过程称为整合。
整合在宿主细胞染色体DNA中的外来DNA,可以被切离出来,同时也可带走一部分的宿主DNA,这一过程称为转导(transduction)。
来源于宿主DNA的基因称为转导基因。
4.转座:转座又称为转位(transposition),是指DNA的片段或基因从基因组的一个位置转移到另一个位
置的现象。
这些能够在基因组中自由游动的DNA片段包括插入序列和转座子两种类型。
⑴插入序列:典型的插入序列(insertion sequence,IS)是长750-1500bp的DNA片段,由两个分离的反向重复序列和一个转座酶基因。
当转座酶基因表达时,即可引起该序列的转座。
其转座方式主要有保守性转座和复制性转座。
⑵转座子:转座子(transposons)是可从一个染色体位点转移到另一个位点的分散的重复序列,含两个反向重复序列、一个转座酶基因和其他基因(如抗生素抗性基因)。
免疫球蛋白重链基因由一组可变区基因(VH)和一组恒定区基因(CH)构成,通过这些基因的选择性转座和重组,就可以转录表达出各种各样的免疫球蛋白重链,以对付不同的抗原。
5.基因重组的方式:
⑴位点特异性重组:在整合酶的催化下,两段DNA序列的特异的位点处发生整合并共价连接,称为位点特异性重组。
⑵同源重组:发生在同源DNA序列之间的重组称为同源重组(homologous recombination)。
这种重组方式要求两段DNA序列类似,并在特定的重组蛋白或酶的作用下完成。
二、重组DNA技术:
重组DNA技术又称为基因工程(genetic engineering)或分子克隆(molecular cloning),是指采用人工方法将不同来源的DNA进行重组,并将重组后的DNA引入宿主细胞中进行增殖或表达的过程。
1.载体和目的基因的分离(分):对载体DNA和目的基因分别进行分离纯化,得到其纯品。
⑴载体:常用的载体(vector)主要包括质粒(plasmid)、噬菌体(phage)和病毒(virus)三大类。
这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的标志基因、单一的限制酶切点等。
①质粒:是存在于天然细菌体内的一种独立于细菌染色体之外的双链环状DNA,具有独立复制的能力,通常带有细菌的抗药基因。
②噬菌体:可通过转染方式将其DNA送入细菌体内进行增殖。
常用的为人工构建的λ噬菌体载体,当目的基因与噬菌体DNA进行重组时,可采用插入重组方式,也可采用置换重组方式。
③病毒:常用的为SV40,通过感染方式将其DNA送入哺乳动物细胞中进行增殖。
⑵目的基因:①直接从染色体DNA中分离:仅适用于原核生物基因的分离。
②人工合成:根据已知多肽链的氨基酸顺序,利用遗传密码表推定其核苷酸顺序再进行人工合成。
适应于编码小分子多肽的基因。
③从mRNA合成cDNA:采用一定的方法钓取特定基因的mRNA,再通过逆转录酶催化合成其互补DNA(cDNA),除去RNA链后,再用DNA聚合酶合成其互补DNA链,从而得到双链DNA。
④从基因文库中筛选:将某一种基因DNA用适当的限制酶切断后,与载体DNA重组,再全部转化宿主细胞,得到含全部基因组DNA的种群,称为G文库(genomic DNA library)。
将某种细胞的全部mRNA通过逆转合成cDNA,然后转化宿主细胞,得到含全部表达基因的种群,称为C-文库(cDNA library)。
C-文库具有组织细胞特异性。
⑤利用PCR合成:如已知目的基因两端的序列,则可采用聚合酶链反应
(polymerase chain reaction, PCR)技术,在体外合成目的基因。
2.载体和目的基因的切断(切):通常采用限制性核酸内切酶(restriction endonuclease),简称限制酶,分别对载体DNA和目的基因进行切断,以便于重组。
能够识别特定的碱基顺序并在特定的位点降解核酸的核酸内切酶称为限制酶。
限制酶所识别的顺序往往为4-8个碱基对,且有回文结构。
由限制酶切断后的末端可形成平端、3'-突出粘性末端和5'-突出粘性末端三种情况。
形成粘性末端(cohesive end)者较有利于载体DNA和目的基因的重组。
3.载体和目的基因的重组(接):即将带有切口的载体与所获得的目的基因连接起来,得到重新组合后的DNA分子。
⑴粘性末端连接法:载体与目的基因通过粘性末端进行互补粘合,再加入DNA连接酶,即可封闭其缺口,得到重组体。
⑵人工接尾法:即同聚物加尾连接法。
在末端核苷酸转移酶的催化下,将脱氧核糖核苷酸添加于载体或目的基因的3'-端,如载体上添加一段polyG,则可在目的基因上添加一段polyC,通过碱基互补进行粘合后,再由DNA连接酶连接。
⑶人工接头连接法:将人工连接器(即一段含有多种限制酶切点的DNA片段)连接到载体和目的基因上,即有可能使用同一种限制酶对载体和目的基因进行切断,得到可以互补的粘性末端。
4.重组DNA的转化和扩增(转):将重组DNA导入宿主细胞进行增殖或表达。
重组质粒可通过转化方式导入宿主细胞,λ噬菌体作为载体的重组体,则需通过转染方式将重组噬菌体DNA导入大肠杆菌等宿主细胞。
重组DNA导入宿主细胞后,即可在适当的培养条件下进行培养以扩增宿主细胞。
5.重组DNA的筛选和鉴定(筛):对含有重组体的宿主细胞进行筛选并作鉴定。
⑴根据重组体的表型进行筛选:对于带有抗药基因的质粒重组体,可采用插入灭活法进行筛选。
⑵根据标志互补进行筛选:当宿主细胞存在某种基因及其表达产物的缺陷时,可采用此方法筛选重组体。
即在载体DNA分子中插入相应的缺陷基因,如宿主细胞重新获得缺陷基因的表达产物,则说明该细胞中带有重组体。
⑶根据DNA限制酶谱进行分析:经过粗筛后的含重组体的细菌,还需进行限制酶谱分析进一步鉴定。
⑷用核酸杂交法进行分析鉴定:采用与目的基因部分互补的DNA片段作为探针,与含有重组体的细菌菌落进行杂交,以确定重组体中带目的基因。
获得带目的基因的细菌后,可将其不断进行增殖,从而得到大量的目的基因片段用于分析研究。
如在目的基因的上游带有启动子顺序,则目的基因还可转录表达合成蛋白质。