五年级奥数(数论问题)题及答案-最大公因数
- 格式:docx
- 大小:15.30 KB
- 文档页数:1
小学数学学习材料金戈铁骑整理制作《最大公因数》习题一、填空1、甲=2×3×5,乙=2×3×7,甲和乙的最大公约数是().2、36和60相同的质因数有(),它们的积是(),也就是36和60的().3、()的两个数,叫做互质数.4、自然数a除以自然数b,商是15,那么a和b的最大公约数是().二、判断(对的打“√”,错的打“×”).1、互质数是没有公约数的两个数.()2、成为互质数的两个数,一定是质数.()3、只要两个数是合数,那么这两个数就不能成为互质数.()4、两个自然数分别除以它们的最大公约数,商是互质数.()三、选择题1、成为互质数的两个数().①没有公约数②只有公约数1③两个数都是质数④都是质因数2、下列各数中与18互质的数是().①21 ②40 ③25 ④183、下列各组数中,两个数互质的是().①17和51 ②52和91 ③24和25 ④ 11和22四、直接说出下列各组数的最大公约数.1、8与9的最大公约数是().2、48、12和16的最大公约数是().3、6、30和45的最大公约数是().4、150和25的最大公约数是().习题精选(二)一、填空1、按要求,使填出的两个数成为互质数.①质数()和合数(),②质数()和质数(),③合数()和合数(),④奇数()和奇数(),⑤奇数()和偶数().2、两个数为互质数,这两个数的最大公约数是().3、所有自然数的公约数为().4、18和24的公约数有(),18和24的最大公约数是().二、判断(对的打“√”,错的打“×”).1、因为 15÷3=5,所以15和3的最大公约数是5.()2、30 、15和5的最大公约数是30.()3、最小的合数和最小的质数这两个数不是互质数.()4、相邻的两个自然数一定是互质数.()三、选择题1、甲数的质因数里有1个7,乙数的质因数里没有7,它们的最大公约数的质因数里应该().①有五个7 ②没有7 ③不能确定2、甲、乙两数的最大公约数是7,甲数的3倍与乙数的5倍的最大公约数()①肯定是7 ②肯定不是7 ③不能肯定四、用短除法求下列各组数的最大公约数.1、 56和422、 225和153、 84和1054、 54、72和905、 60、90和120五、应用题用96朵红花和72朵白花做花束,如果每个花束里的红花朵数都相等,每个花束里的白花的朵数也都相等.每个花束里最少有几朵花?习题精选(三)1、填一填:(1)9的因数:18的因数:9和18的公因数:(2)15的因数:50的因数:15和50的公因数:15和50个最大公因数:(3)13的因数:11的因数:13和11的公因数:11和13的最大公因数:2、出示集合圈,请学生将15和18的公因数分别填入集合圈内,并说一说它们的最大公因数。
五年级奥数专题第四讲 最大公因数【一】 在每个分数后面的括号中写出分子和分母的最大公因数。
147( ) 3612( ) 14412( )练习1、24和36的最大公因数是 。
2、分数51264中分子和分母的最大公因数是 。
【二】 有两根铁丝,一根长27米,一根长18米,要把它们截成同样长的小段,不许剩余,每段最长有几米?练习1、有两根钢管,一根长42分米,另一根长63分米,现在要把它们锯成同样长的小段,每根钢管尽可能长,且没有剩余,每段钢管长多少米?一共能锯成几段?2、把一张长15厘米,宽10厘米的长方形纸剪成同样大小,面积尽可能大的正方形纸,且没有剩余,可以剪多少个?剪出正方形的边长是多少?【三】 一张长方形的纸,长7分米5厘米、宽6分米。
现在要把它裁成一块块正方形,而且正方形长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?练习1、把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,无剩余,至少能裁多少块?2、一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长是多少厘米?【四】一个长方形木块,长2.7米,宽1.8米、高1.5米。
要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?练习1、一个长方体木块的长是4分米5厘米、宽3分米6厘米、高2分米4厘米。
要把它切成大小相等的正方体木块,不许有剩余,求所切正方体木块的棱长最长是多少厘米?2、有50个梨,75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?【五】一个数除200余4;除300余6;除500余10。
求这个数最大是多少?练习1、一个数除150余6,除250余10,除350余14,这个数最大是多少?2、如果把110块糖果平均分给五(1)班的同学,则多5块;如果把210块糖果平均分给这个班同学正好分完;如果把240块糖果平均分给这班同学,还少5块。
五年级奥数-最大公因数和最小公倍数大,问最大能剪成多大的正方形?基本概念公约数和最大公约数是数学中常见的概念。
几个数公有的约数称为这几个数的公约数,其中最大的一个称为这几个数的最大公约数。
同样地,几个数公有的倍数称为这几个数的公倍数,其中最小的一个称为这几个数的最小公倍数。
如果两个数的最大公约数是1,那么这两个数就是互质数。
例题分析例1:求能整除30、60、75的最大正整数。
解:30=2×3×5,60=2×2×3×5,75=3×5×5,这三个数的公约数是3和5,所以它们的最大公约数是15.例2:求能被3、4、5整除的最小正整数。
解:3、4、5的最小公倍数是60,所以这个数是60的倍数,且它还要被3、4、5整除,所以这个数是120.例3:将120厘米、180厘米和300厘米的铁丝截成相等的小段,每根铁丝都不能有剩余,每小段最长多少厘米?一共可以截成多少段?解:这三根铁丝的最大公约数是60,所以每小段最长的长度是60厘米。
将每根铁丝都截成长度为60厘米的小段,可以得到2段、3段和5段,一共可以截成10段。
例4:加工某种机器零件需要三道工序,第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个零件,第三道工序每个工人每小时可完成5个零件,要使加工生产均衡,三道工序至少各分配几个工人?解:设第一道工序分配的工人数为x,第二道工序分配的工人数为y,第三道工序分配的工人数为z,则有3x=10y=5z。
因为要使加工生产均衡,所以x、y、z都要是正整数,且它们的比值要尽可能接近,所以x:y:z=10:3:6,所以至少要分配10个工人。
例5:一次会餐供有三种饮料,餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料。
问参加会餐的人数是多少人?解:设A、B、C饮料分别用了a、b、c瓶,则有a+b+c=65.由题意可知,A饮料每2人饮用1瓶,所以a=2x;B饮料每3人饮用1瓶,所以b=3y;C饮料每4人饮用1瓶,所以c=4z。
数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、2、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。
自然数a、b的最大公因数记作(a,b)。
3、4、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。
自然数a、b的最小公倍数记作[a,b]。
5、(6、7、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。
(3)a+b与b的最大公因数,等于a与b的最大公因数。
【典型例题】¥例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。
解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。
(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.]例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1. [2,3,4,5,6,7]=420,最小数是:420+1=421。
最大公因数小学奥数题100道及答案(完整版)题目1:求18 和24 的最大公因数。
答案:6。
通过分解质因数,18 = 2×3×3,24 = 2×2×2×3,所以最大公因数是2×3 = 6。
题目2:求30 和45 的最大公因数。
答案:15。
30 = 2×3×5,45 = 3×3×5,最大公因数是3×5 = 15。
题目3:已知两个数的积是120,它们的最大公因数是6,求这两个数。
答案:12 和10。
因为最大公因数是6,设这两个数分别为6a 和6b(a、b 互质),则6a ×6b = 120,ab = 10,所以a = 2,b = 5 或 a = 5,b = 2,这两个数为12 和10。
题目4:求48 和64 的最大公因数。
答案:16。
48 = 2×2×2×2×3,64 = 2×2×2×2×2×2,最大公因数是2×2×2×2 = 16。
题目5:求25 和35 的最大公因数。
答案:5。
25 = 5×5,35 = 5×7,最大公因数是5。
题目6:两个数的最大公因数是9,最小公倍数是90,其中一个数是18,求另一个数。
答案:45。
因为最小公倍数×最大公因数= 两数之积,所以另一个数= 90×9÷18 = 45。
题目7:求56 和70 的最大公因数。
答案:14。
56 = 2×2×2×7,70 = 2×5×7,最大公因数是2×7 = 14。
题目8:已知两个数的最大公因数是4,它们的和是20,求这两个数。
答案:12 和8 。
设这两个数分别为4a 和4b(a、b 互质),4a + 4b = 20,a + b = 5,所以a = 1,b = 4 或a = 4,b = 1,这两个数为12 和8。
五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。
- 解析:分别列出12和18的因数。
12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。
2. 求24和36的最大公因数。
- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。
共有的因数为1、2、3、4、6、12,最大公因数是12。
3. 求15和25的最大公因数。
- 解析:15的因数是1、3、5、15,25的因数是1、5、25。
它们的公因数有1和5,最大公因数是5。
4. 求8和12的最大公因数。
- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。
共有的因数为1、2、4,最大公因数是4。
5. 求20和30的最大公因数。
- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。
公因数有1、2、5、10,最大公因数是10。
6. 求16和24的最大公因数。
- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。
共有的因数为1、2、4、8,最大公因数是8。
7. 求9和15的最大公因数。
- 解析:9的因数有1、3、9,15的因数有1、3、5、15。
公因数为1和3,最大公因数是3。
8. 求14和21的最大公因数。
- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。
共有的因数为1、7,最大公因数是7。
9. 求28和42的最大公因数。
- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。
公因数有1、2、7、14,最大公因数是14。
10. 求10和15的最大公因数。
- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。
小学数学学习材料金戈铁骑整理制作最大公因数习题一、填空1、甲=2×3×5,乙=2×3×7,甲和乙的最大公约数是().2、36和60相同的质因数有(),它们的积是(),也就是36和60的().3、()的两个数,叫做互质数.4、自然数a除以自然数b,商是15,那么a和b的最大公约数是().二、判断(对的打“√”,错的打“×”).1、互质数是没有公约数的两个数.()2、成为互质数的两个数,一定是质数.()3、只要两个数是合数,那么这两个数就不能成为互质数.()4、两个自然数分别除以它们的最大公约数,商是互质数.()三、选择题1、成为互质数的两个数().①没有公约数②只有公约数1③两个数都是质数④都是质因数2、下列各数中与18互质的数是().①21 ②40 ③25 ④183、下列各组数中,两个数互质的是().①17和51 ②52和91 ③24和25 ④ 11和22四、直接说出下列各组数的最大公约数.1、8与9的最大公约数是().2、48、12和16的最大公约数是().3、6、30和45的最大公约数是().4、150和25的最大公约数是().习题精选(二)一、填空1、按要求,使填出的两个数成为互质数.①质数()和合数(),②质数()和质数(),③合数()和合数(),④奇数()和奇数(),⑤奇数()和偶数().2、两个数为互质数,这两个数的最大公约数是().3、所有自然数的公约数为().4、18和24的公约数有(),18和24的最大公约数是().二、判断(对的打“√”,错的打“×”).1、因为 15÷3=5,所以15和3的最大公约数是5.()2、30 、15和5的最大公约数是30.()3、最小的合数和最小的质数这两个数不是互质数.()4、相邻的两个自然数一定是互质数.()三、选择题1、甲数的质因数里有1个7,乙数的质因数里没有7,它们的最大公约数的质因数里应该().①有五个7 ②没有7 ③不能确定2、甲、乙两数的最大公约数是7,甲数的3倍与乙数的5倍的最大公约数()①肯定是7 ②肯定不是7 ③不能肯定四、用短除法求下列各组数的最大公约数.1、 56和422、 225和153、 84和1054、 54、72和905、 60、90和120五、应用题用96朵红花和72朵白花做花束,如果每个花束里的红花朵数都相等,每个花束里的白花的朵数也都相等.每个花束里最少有几朵花?习题精选(三)1、填一填:(1)9的因数:18的因数:9和18的公因数:(2)15的因数:50的因数:15和50的公因数:15和50个最大公因数:(3)13的因数:11的因数:13和11的公因数:11和13的最大公因数:2、出示集合圈,请学生将15和18的公因数分别填入集合圈内,并说一说它们的最大公因数。
利用最大公因数解题月日姓名[知识要点]1.最大公因数的性质.(1)如果a与b互素,那么a和b的最大公因数是1.(2)如果a是b的整数倍,那么a和b的最大公因数是b.(3)两个数分别除以它们的最大公因数,所得的商是互素数.2.求最大公因数的常用方法.(1)列举法(2)短除法(3)分解素因数法[课前热身]1.用短除法求最大公因数11和31 23和46 32,24和16[典型例题]例1.一个房间长450厘米,宽330厘米.现在计划用方砖铺地.问需要用边长最大为多少厘米的方砖多少块(整块),才能正好把房间的地面铺满?例2.有3根铁丝;长度分别是12厘米,18厘米和24厘米.现在要把它们截成相等的小段,每根都不许有剩余,每小段最长是多少厘米?总共可以截成多少段?例3.有50个梨,75个橘子和100个苹果,要把这些水果平均组成几个小组,并且每个小组得的三种水果的个数也相同,最多可以分给几个小组?例4.文员室给小学数学组的老师发白板笔。
如果发24支,平均发给每位老师差4支;如果发45支,平均发给每位老师后还剩3支;如果发72支,平均发给每位老师还剩2支。
求小学数学组最多有几位老师?随堂小测姓名成绩1.用一个数分别去除30,60,75都能整除,这个数最大是多少?.2.一块长方形的地,长180米,宽160米.现在在这块土地四周种树,要使株距相等,问在这块土地四周最少要种多少棵树?(长方形四个顶点上必须有树)3.有三根钢管,它们的长度分别是24厘米,20厘米,48厘米,如果把它们截成同样长的小段,每小段最长可以是多少厘米?总共可以截成多少段?4.今有香蕉42千克,苹果112千克,桔子70千克.平均分给幼儿园的几个班,每个班分到的这3种水果的数量分别相等,那最多能分给几个班?5.有铅笔433支,橡皮260块,平均分配给若干个小学生分到最后铅笔余13支,橡皮余8块,问:小学生最多有多少人?课后作业姓名家长签名成绩1.用短除法求最大公因数19和38 14和21 25,150和1002.把一块长8分米,宽6分米的铁皮分割为同样大小的若干个小正方形铁皮,如不许剩下正方形的块数又要最少,那么可以割成多少块?3.两根钢筋长分别是42分米,48分米,截尽可能长的小段,不许有剩余,问每小段最长是多少分米?总共可以截成多少段?4.老师将301个笔记本,215支铅笔和86块橡皮全部分给班里的同学,每个同学得到的笔记本、铅笔和橡皮的数量分别相等,那么每个同学各拿到多少?5.幼儿园一个班借阅图书,如果借35本,平均分发给每个小朋友差1本;如果借56本,平均分发给每个小朋友后还剩2本;如果借69本,平均分发给每个小朋友则差3本,求这个班的小朋友最多有多少人?。
最大公因数专题简析:几个数公有的因数叫做这几个数的公因数,其中最大的一个就是这几个数的最大公因数。
课本向我们介绍了用列举法来求几个数的最大公因数。
本讲我们一起来探讨用短除法、辗转相除法等几个方法求几个数的最大公因数。
自然数a、b的最大公因数可以记作(a,b)。
例1用短除法求36和54的最大公因数。
分析与解答:人们常常用短除法求两个数的最大公因数,短除法的形式如下:2 36 54 ……先同时除以公因数2;3 18 27 ……再同时除以公因数3;3 6 9 ……再同时除以公因数3;2 3 ……除到两个商为互质数为止。
把上式中所有的除数相乘所得的积即为36和54的最大公因数,即(36,54)=2×3×3=18.随堂练习:用短除法求40和32的最大公因数。
例2求45、60、90这三个数的最大公因数。
分析与解答:与前面的例1不同的是这道题要求三个数的最大公因数。
方法1:可以用列举法。
45的因数有:1,3,4,5,9,15,45;60的因数有:1,2,3,4,5,6,10,12,15,20,30,60;90的因数有:1,2,3,4,5,6,10,15,18,30,45,90.45,60和90的公因数有:1,3,5,15;所以(45,60,90)=15.方法2:也可以用短除法。
345 60 90 ……先同时除以公因数3;5 15 20 30 ……再同时除以公因数5;3 4 6 ……除到三个商只有公因数1为止。
把上式的除数3和5相乘所得的积即为45,60,和90的最大公因数,即(45,60,90)=3×5=15.随堂练习:用短除法求36、48和60的最大公因数。
例3求319和377的最大公因数。
分析与解答:求这两个数的最大公因数如果用短除法很难找出它们的公因数,我们可以用下面这种新的方法:用较大的数377除以较小的数319;377÷319=1 (58)上面的算式中有余数58,用上式中的除数319除以余数58:319÷58=5 (29)上面的算式中仍有余数,再用上式中的除数58除以余数29:58÷29=2上式中没有余数了,这时算式中的除数29就是想319和377的最大公因数,即(319,377)=29上面这张求最大公因数的方法被古希腊的大数学家欧几里德命名为“辗转相除法”。
五年级数学下册第四单元《最大公因数》练习题附答案
4.4.1 最大公因数
一、填空。
1、
25的因数有:()
40的因数有:()
50的因数有:()
25和40的公因数有:()
25和50的公因数有:()
40和50的公因数有:()
2、在括号里写出下列分数分子和分母的最大公因数。
129( ) 155
( ) 108( ) 204
( )
二、判断。
1. 相邻的两个非0自然数只有公因数1。
()
2. 如果两个数是不同的质数,那么它们一定没有公因数。
()
3. 最小的质数与最小的合数的最大公因数是2。
()
4. 如果两个数的最大公因数是1,这两个数都是奇数。
()
三、解决问题。
1. 一个数减去3和5的最大公因数后,所得的差是1,这个数是多少?
2. 有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?
3. 有36本故事书和43本连环画,将这两种图书分别平均奖给优秀少先队员,结果故事书和连环画各多出1本。
获奖的优秀少先队员有
多少人?
答案:
一、1.1,5,25;1,2,4,5,8,10,20,40 ;1,2,5,
10,25,50 ;1,5 ;1,5,25;1,2,5 ,10
2. 3 5 2 4
二、1. √ 2. × 3. √ 4. ×
三、1. 2
2. 20厘米
3. 7人。
五年级奥数第25讲最大公因数知识要点几个数公有的约数叫做这几个数的公约数,其中最大的一个公约数叫做这几个数的最大公约数。
我们可以把自然数a、b的最大公约数记做(a,b),如果(a,b)=1,则a和b互质。
求几个数的最大公约数可以用分解质因数法和短除法等方法。
例1、一张长方形的纸,长75厘米、宽6分米。
现在要把它裁成一块正方形,而且正方形边长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?练习:1、把一张135厘米长、105厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?2、一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?3、将一块长80米、宽60米的长方形土地划分成面积相等的小正方形。
问小正方形的面积最大是多少?例2、一个长方体木块,长2.7米,宽1.8分米,高1.5分米。
要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?练习:1、一个长方体木块的长是45厘米、宽36厘米、高24厘米。
要把它切成大小相等的正方体木块,不许有剩余,求所切正方体木块的棱长最长是多少厘米?2、有50个梨、75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?3、有3根钢管,它们的长度分别是240厘米、200厘米和480厘米,如果把它们截成同样长的小段,且不许有剩余,每小段最长可以是多少厘米?例3、一个数除200余4,除300余6,除500余10。
求这个数最大是多少?练习:1、一个数除425余5,除500少4,除300余6,这个数最大是多少?2、如果把110本练习本平均分给五(1)班同学,则多5本;如果把210本练习本平均分给这个班同学则正好分完;如果把240多本练习本平均分给这班同学,还少5本,五(1)班最多有多少名同学?3、一个数,除410时余5,除242时少1,除550时余10,这个数最大是多少?例4、一条道路由甲村经过乙村到丙村。
4、最大公因数姓名:几个数公有的因数,叫作这几个数的公因数,其中最大的一个公因数叫作这几个数的最大公因数。
a,b的最大公因数一般用(a,b)表示。
公因数只有1的两个数是互质数。
当两个或两个以上的数是互质数时,我们就说它们互质。
最大公因数的性质如下:①如果a、b互质、那么a和b的最大公因数是1。
②如果a是b的整数倍,那么a和b的最大公因数是b。
③两个数分别除以它们的最大公因数,所得的商互质。
④两个数的最大公因数的因数,一定是这两个数的公因数。
⑤两个数的公因数都是这两个数的最大公因数的因数。
⑥如果a>b,那么a-b与b的最大公因数就等于a与b的最大公因数,即两个数的最大公因数必定能整除这两个数的差。
因此,当两个数很大且比较接近时,不妨把较大的数换成两者的差,替代原来的数求最大公因数。
这也是我们后面要讲到的辗转相除法的理论依据。
⑦a+b与b的最大公因数就等于a与b的最大公因数。
求几个数的最大公因数,可以用分解质因数法和短除法。
最大公因数在数学中的应用十分广泛,最常用的解题方法是先分解质因数,看它可以是哪些数的乘积,然后结合其他条件解决问题。
例1.求36、108、126的最大公因数。
(36,108,126)=随堂练习1.求2520、14850、819的最大公因数。
例2.有一张75厘米,宽6分米的长方形纸片,现在要把它裁成若干正方形,使正方形的边长为整数厘米,且不能有剩余,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少个?随堂练习2.有一块长方形纸片,长80厘米,宽48厘米。
现在,要把它剪成边长都是整数厘米,且面积相等的小方形纸片,恰无剩余。
那么,至少可以剪多少块?例3.有一条街道AC,在AC的一点B处道路拐弯.AB长630米,BC长560米。
现要在条街道的一侧等距安装灯,A,B,C三点必须各安装一盏路灯,那么,这条街道最少装多少盏灯?(提示:先画图再思考,结合植树问题)随堂练习3.有一条街道由A经B到C,已知A,B相距140米,B,C相距105米。