4-固体物理学习题解答(完整版)
- 格式:doc
- 大小:1.30 MB
- 文档页数:33
《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
固体物理习题解答《固体物理学》习题解答( 仅供参考)参加编辑学⽣柯宏伟(第⼀章),李琴(第⼆章),王雯(第三章),陈志⼼(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范⼤学物理科学与技术学院2003级2006年6⽉第⼀章晶体结构1. 氯化钠与⾦刚⽯型结构是复式格⼦还是布拉维格⼦,各⾃的基元为何?写出这两种结构的原胞与晶胞基⽮,设晶格常数为a 。
解:氯化钠与⾦刚⽯型结构都是复式格⼦。
氯化钠的基元为⼀个Na +和⼀个Cl -组成的正负离⼦对。
⾦刚⽯的基元是⼀个⾯⼼⽴⽅上的C原⼦和⼀个体对⾓线上的C原⼦组成的C原⼦对。
由于NaCl 和⾦刚⽯都由⾯⼼⽴⽅结构套构⽽成,所以,其元胞基⽮都为:123()2()2()2a a a ?=+??=+=+a j k a k i a i j 相应的晶胞基⽮都为:,,.a a a =??=??=?a ib jc k2. 六⾓密集结构可取四个原胞基⽮123,,a a a 与4a ,如图所⽰。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶⾯所属晶⾯族的晶⾯指数()h k l m 。
解:(1).对于13O A A '⾯,其在四个原胞基⽮上的截矩分别为:1,1,12-,1。
所以,其晶⾯指数为()1121。
(2).对于1331A A B B ⾯,其在四个原胞基⽮上的截矩分别为:1,1,12-,∞。
所以,其晶⾯指数为()1120。
(3).对于2255A B B A ⾯,其在四个原胞基⽮上的截矩分别为:1,1-,∞,∞。
所以,其晶⾯指数为()1100。
(4).对于123456A A A A A A ⾯,其在四个原胞基⽮上的截矩分别为:∞,∞,∞,1。
所以,其晶⾯指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最⼤体积与总体积的⽐为:简⽴⽅:6π;六⾓密集:6;⾦刚⽯:。
第四章 晶格结构中的缺陷4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为sB k T s n Ne μ−=其中s μ是形成一个空位所需要的能量。
证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为!()!s !s s N P N n n =− 由于s μ个空位的出现,熵的改变[]!ln lnln ()ln()ln ()!!B s B B s s s s s s N S k P k k N N N n N n n n N n n Δ===−−−−− 晶体的自由能变化为 []ln ()ln()ln s s s s B s s s F n T S n k T N N N n N n n n μμ=−Δ=−−−−−s要使晶体的自由能最小B ()ln 0s s s sT n F u k T n N ⎡⎤⎛⎞∂Δ=+=⎜⎟⎢⎥∂−⎣⎦⎝⎠n 整理得s B k T s s n e N n μ−=− 在实际晶体中,由于,s n N <<s s s n n N N n ≈−,得到 sB k T s n Ne μ−=4.2 铜中形成一个肖托基缺陷的能量为1.2eV ,若形成一个间隙原子的能量为4eV ,试分别计算1300K 时肖托基缺陷和间隙原子数目,并对二者进行比较。
已知,铜的熔点是1360K 。
解:(王矜奉4.2.4)根据《固体物理学》4-8式和4-10式,肖托基缺陷和间隙原子数目分别为 s B k T s n Neμ−= 11B k T n Ne μ−= 得19231.21.61051.38101300 2.2510sB k T s n Ne NeN μ−−××−−−××===× 191231.2410161.381013001 3.2110B k T n Ne Ne N μ−−××−−−××===×4.3 设一个钠晶体中空位附近的一个钠原子迁移时,必须越过0.5eV 的势垒,原子振动频率为1012Hz 。
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,R f R b31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123oo o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()ooa n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为 (001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(28(3)面心立方:6(4)六方密堆积:6(5)金刚石:16。
答:令Z 表示一个立方晶胞中的硬球数,Ni 是位于晶胞内的球数,Nf 是在晶胞面上的球数,Ne 是在晶胞棱上的球数,Nc 是在晶胞角隅上的球数。
于是有:111248i fe c Z N NN N =+++边长为a 的立方晶胞中堆积比率为334*3r F Z aπ=假设硬球的半径都为r ,占据的最大面积与总体积之比为θ,依据题意 (1)对于简立方,晶胞中只含一个原子,简立方边长为2r ,那么: θ=334/3(2)r r π=6π(2)对于体心立方,晶胞中有两个原子,其体对角线的长度为4r,那么:θ=38(3)对于面心立方,晶胞中有四个原子,面对角线的长度为4r ,则其边长为r ,那么:θ= 36(4)对于六方密堆积一个晶胞有两个原子,其坐标为(000)(1/3,2/3,1/2),在理想的密堆积情况下,密排六方结构中点阵常数与原子半径的关系为a=2r ,因此θ342()2r π⨯=6(5)对于金刚石结构Z=8 8r =那么33344*8338r F Z aππ==⨯⨯=16.1.6 有一晶格,每个格点上有一个原子,基失(以nm 为单位)a=3i ,b=3j ,c=1.5(i+j+k ),此处i ,j ,k 为笛卡儿坐标系中x ,y ,z 方向的单位失量.问: (1)这种晶格属于哪种布拉维格子?(2)原胞的体积和晶胞的体积各等于多少? 答:(1)因为a=3i ,b=3j ,而c=1.5(i+j+k )=1/2(3i+3j+3k )=1/2(a+b+c ′)式中c ′=3c 。
显然,a 、b 、c ′构成一个边长为3*10-10m 的立方晶胞,基矢c 正处于此晶胞的体心上。
因此,所述晶体属于体心立方布喇菲格子。
(2)晶胞的体积= c (a b)'⨯ = 3k (3i 3j)⨯ =27*10-30(m 3)原胞的体积=c (a b)⨯ =1(333)(33)2i j k i j +++ =13.5*10-30(m 3) 1.7六方晶胞的基失为:22a a j =+,22a b ai j =-+,c ck =求其倒格子基失,并画出此晶格的第一布里渊区. 答:根据正格矢与倒格矢之间的关系,可得: 正格子的体积Ω=a·(b*c )=22c那么,倒格子的基矢为12()b c b π⨯=Ω2j aπ=+,22()c a b π⨯=Ω2j aπ=-+,32()a b b π⨯=Ω2k cπ=其第一布里渊区如图所示:1.8 若基失a ,b ,c 构成正交晶系,求证:晶面族(hkl )的面间距为hkl d =答:根据晶面指数的定义,平面族(hkl )中距原点最近平面在三个晶轴a 1,a 2,a 3上的截距分别为1a h,2a k,3a l 。
该平面(ABC )法线方向的单位矢量是123dh dk dl n x y z a a a =++这里d 是原点到平面ABC 的垂直距离,即面间距。
由|n|=1得到222123()()()1dh dk dl a a a ++=故12222123[()()()]h k l d a a a -=++1.9 用波长为0.15405nm 的X 射线投射到钽的粉末上,得到前面几条衍射谱线的布拉格角θ(1)各谱线对应的衍射晶面族的面指数; (2)上述各晶面族的面间距;(3)利用上两项结果计算晶格常数.答:对于体心立方结构,衍射光束的相对强度由下式决定:2222|[1cos ()]sin ()hkl I F f n h k l f n h k l ππ∞=++++++考虑一级衍射,n=1。
显然,当衍射面指数之和(h+k+l )为奇数时,衍射条纹消失。
只有当(h+k+l )为偶数时,才能产生相长干涉。
因此,题给的谱线应依次对应于晶面(110)、(200)、(211)、(220)和(310)的散射。
由布喇格公式2sin (1)hkl d n θλ==得 1011011.54052.29510()2sin 2sin 19.611od m λθ-===⨯同法得1020021.633410()2sin d m λθ-==⨯1021131.337710()2sin d m λθ-==⨯1022031.160910()2sin d m λθ-==⨯1031041.040310()2sin d m λθ-==⨯应用立方晶系面间距公式hkl d =可得晶格常数hkl a d =把上面各晶面指数和它们对应的面间距数值代入,依次可得a 的数值*10-10m 为3.2456,3.2668,3.2767,3.2835,3.2897取其平均值则得103.272510()a m -=⨯1.10 平面正三角形,相邻原子的间距为a ,试给出此晶格的正格矢和倒格矢;画出第一和第二布里渊区.答:参看下图,晶体点阵初基矢量为1a ai =2122a ai aj =+用正交关系式{022,i ji j ij i j b a ππδ≠===求出倒易点阵初基矢量b1,b2。
设 111x y b b i b j =+ 222x y b b i b j =+由112b a π= 120b a = 210b a = 222b a π= 得到下面四个方程式11()2x y ai b i b j π+= (1)111()()022x y ai aj b i b j ++= (2)22()0x y ai b i b j += (3)221()()222x y ai aj b i b j π++= (4)由(1)式可得:12x b aπ=由(2)式可得:1y b =-由(3)式可得:20x b = 由(4)式可得:2y b =于是得出倒易点阵基矢12b i j a π=-2b j =第三章 习题答案3.1 试求由5个原子组成的一堆单原子晶格的格波频率,设原子质量m =8.35×10-27kg ,恢复力常数β=15N ·m -1解:一维单原子链的解为)(qna t i nAeX -=ω据周期边界条件 11+=N X X ,此处N=5,代入上式即得 1)5(=-qa i e所以 aq 5=2π ( 为整数) 由于格波波矢取值范围:aq a ππ<<-。
则 2525<<-故 可取-2,-1,0,1,2这五个值相应波矢:a54π-,a52π-,0, a52π,a54π由于2sin4qa mβω=,代入β,m 及q 值则得到五个频率依次为(以rad/sec 为单位)8.06×1013,4.99×1013,0,4.99×1013,8.06×10133.2 求证由N 个相同原子组成的一维单原子晶格格波的频率分布函数可以表示为 ()2122)(2--=ωωπωρmN式中mmβω4=是格波的最高频率,并求证它的振动模总数恰为N解:对一维单原子链,()()dq q qd q d dNρρωωρ2ˆ)(===所以()()dq d q ωρωρ2= (1)由色散关系2sin4qa m βω= 求得2/12)2sin1(2422cos4qa a ma qa mdqd -=∙=ββω2/12])4[(2ωβ-=ma (2)而()ππρ22Na L q ==, 则由(1)式可得()2/1222/12)(2]4[222--=-=ωωπωβπωρm N m a Na由于m mωβ=4 ,则总的振动模数为()ωωωπωωρd Nd Nm w w mm2/1220)(2--==⎰⎰令θωωsin =m,则积分限为0到2/π , 故()N Nd N ===-⎰2122cos cos 2πθπθθθπππ3.3 设晶体由N 个原子组成,试用德拜模型证明格波的频率分布函数为()239ωωωρmN=解:由书上(3-69)式可得 ()()32223vvg ωπωωρ== (1)由(3-71)可得 ()vnm D 3/126πωω==由此可得 nv m 32332ωπ= ,代入(1)式得()239ωωωρmN=3.4 对一堆双原子链,已知原子的质量m =8.35×10-27kg ,另一种原子的质量M =4m ,力常数β=15N ·m -1,试求(1) 光学波的最高频率和最低频率m ax ω和m in ω; (2) 声学波的最高频率Am ax ω; (3) 相应的声子能量(以eV 为单位);(4) 在300K 可以激发频率为m ax ω, m in ω和Am ax ω的声子的数目; (5) 如果用电磁波来激发长光学波振动,电磁波的波长大小。