空间与几何(新)
- 格式:ppt
- 大小:377.00 KB
- 文档页数:21
专题37 空间几何体(知识梳理)一、空间几何体1、空间几何体的基本定义如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。
围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。
几何体不是实实在在的物体。
平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。
例1-1.下列是几何体的是( )。
A 、方砖B 、足球C 、圆锥D 、魔方【答案】C【解析】几何体不是实实在在的物体,故选C 。
例1-2.判断下列说法是否正确:(1)平静的湖面是一个平面。
(×)(2)一个平面长3cm ,宽4cm 。
(×)(3)三个平面重叠在一起,比一个平面厚。
(×)(4)书桌面是平面。
(×)(5)通过改变直线的位置,可以把直线放在某个平面内。
(√)【解析】平面可以看成是直线平行移动形成的,所以直线通过改变其位置,可以放在某个平面内。
(6)平行四边形是一个平面。
(×)(7)长方体是由六个平面围成的几何体。
(×)(8)任何一个平面图形都是一个平面。
(×)(9)长方体一个面上任一点到对面的距离相等。
(√)(10)空间图形中先画的线是实线,后画的线是虚线。
(×)(11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。
(√) 例1-3.下列说法正确的是 。
①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。
【答案】②③【解析】①错,因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别;②正确;③正确。
[多选]例1-4.下列说法正确的是( )。
A 、任何一个几何体都必须有顶点、棱和面B 、一个几何体可以没有顶点C 、一个几何体可以没有棱D 、一个几何体可以没有面【答案】BC【解析】球只有一个曲面围成,故A 错、B 对、C 对,由于几何体是空间图形,故一定有面,D 错,故选BC 。
第3课时用空间向量争辩面面角必备学问基础练进阶训练第一层1.[2023·江苏淮安高二检测]已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为( )A.45° B.135°C.45°或135° D.90°2.二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为( )A.45° B.60°C.90° D.120°3.[2023·福建南平高二检测]在如图所示的六面体中,四边形ADEH和BCFG均为直角梯形,A,D,C,B为直角顶点,其他四个面均为矩形,AB=BG=3,FC=4,BC=1,则平面EFGH与平面ABCD所成的角为( )A.30° B.45°C.135° D.45°或135°4.[2023·广东深圳南头中学高二检测]如图所示,点A、B、C分别在空间直角坐标系Oxyz的三条坐标轴上,OC→=(0,0,2),平面ABC的一个法向量为n=(2,1,2),平面ABC 与平面ABO的夹角为θ,则cos θ=________.5.[2023·江苏常州高二检测]如图,四棱锥P ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=3,2BM→=MC→,且PB⊥AM.(1)求AD的长;(2)求二面角P AM D的正弦值.6.如图,在三棱柱ABC A1B1C1中,四边形AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求平面A1C1B与平面B1C1B夹角的余弦值.关键力量综合练进阶训练其次层1.在四棱锥P ABCD中,PA⊥平面ABCD,ABCD是矩形,且AB=3,AD=4,PA=435,则平面ABD与平面PBD的夹角为( )A.30° B.45°C.60° D.75°2.[2023·湖南武冈高二检测]已知在菱形ABCD中,∠ABC=60°,沿对角线AC折叠之后,使得平面BAC ⊥平面DAC ,则二面角B CD A 的余弦值为( )A.2 B .12C.33 D .553.如图所示的多面体是由底面为ABCD 的正方体被截面EFGH 所截而得到的,其中AB =BC =4,AE =1,CG =4,BF =2.则二面角H BC A 的余弦值为( )A.255 B .45C.35 D .554.已知正三棱柱ABC A 1B 1C 1的棱长均为a ,D 是侧棱CC 1的中点,则平面ABC 与平面AB 1D 的夹角的余弦值为( )A.12 B .22 C .32D .0 5.[2023·福建漳州八中高二检测]已知正方形的边长为4,E ,F 分别为AD ,BC 的中点,以EF 为棱将正方形ABCD 折成如图所示的60°的二面角,点M 在线段AB 上.直线DE 与平面EMC 所成的角为60°,则平面MCE 与平面CEF 夹角的余弦值为________.6.[2023·江苏常州高二检测]把边长为2的正方形ABCD 沿对角线BD 折成两个垂直平面,O ,E 分别为BD ,DC 中点,以O 为原点,OC →方向,OD →方向,OA →方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系.(1)求证:AE ⊥DC ;(2)求二面角A DC B 的余弦值.7.[2023·广东深圳高二测试]如图,直三棱柱ABC A 1B 1C 1中,底面是边长为2的等边三角形,D 为棱AC 中点.(1)证明:AB 1∥平面BC 1D ;(2)若面B 1BC 1与面BC 1D 的夹角余弦值为34,求CC 1.8.[2023·山东省试验中学高二检测]如图,在四棱锥P ABCD 中,四边形ABCD 为矩形,PD ⊥平面ABCD ,PD =CD =1,PA 与平面ABCD 所成角为30°,M 为PB 上一点且CM ⊥PA .(1)证明:PA ⊥DM ;(2)设平面PAD 与平面PBC 的交线为l ,在l 上取点N 使PN →=DA →,Q 为线段PN 上一动点,求平面ACQ 与平面PDC 夹角的正弦值的最小值.核心素养升级练进阶训练第三层1.[2023·广东广州高二检测]“堑堵”“阳马”和“鳖臑”是我国古代对一些特殊几何体的称谓.《九章算术·商功》中描述:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑.”一个长方体ABCD A 1B 1C 1D 1沿对角面斜解(图1),得到两个一模一样的堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得到一个四棱锥,称为阳马(图3),一个三棱锥称为鳖臑(图4).若鳖臑的体积为4,AB =4,BC =3,则在鳖臑中,平面BCD 1与平面BC 1D 1夹角的余弦值为( )A.6565 B .66565 C.6513 D .265652.[2023·山东青岛高二检测]如图,在四棱锥P ABCD 中,底面ABCD 为直角梯形,CD ∥AB ,∠ABC =90°,AB =2BC =2CD =4,侧面PAD ⊥面ABCD ,PA =PD =2.(1)求证:PA ⊥BD ;(2)设平面PAD 与平面PBC 的交线为l ,在l 上是否存在点N ,使得平面PCD 和平面NCD 的夹角的余弦值为539?若存在,请确定N 点的位置;若不存在,请说明理由.第3课时 用空间向量争辩面面角必备学问基础练1.答案:C解析:cos 〈m ,n 〉=m ·n |m |·|n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.故选C.2.答案:B 解析:由条件,知AC →·AB →=0,AB →·BD →=0,CD →=-AC →+AB →+BD →.∴|CD →|2=|AC →|2+|AB →|2+|BD →|2-2AC →·AB →+2AB →·BD →-2AC →·BD →,即62+42+82-2×6×8cos 〈AC →,BD →〉=(217)2,∴cos 〈AC →,BD →〉=12,即〈AC →,BD →〉=60°,所以二面角的大小为60°.故选B.3.答案:B 解析:由于四边形ADEH 和BCFG 均为直角梯形,A ,D ,C ,B 为直角顶点,其他四个面均为矩形,所以这个六面体是四棱柱,由题意可知DA ,DC ,DE 两两垂直,以点D 为原点建系如图,则E (0,0,4),G (1,3,3),C (0,3,0),H (1,0,3),则EH →=(1,0,-1),HG →=(0,3,0),依据题意可知DE ⊥平面ABCD ,所以DE →=(0,0,4),即为平面ABCD 的一个法向量,设n =(x ,y ,z )为平面EFGH 的法向量,则⎩⎪⎨⎪⎧n ·EH →=x -z =0,n ·HG →=3y =0取x =1,则z =1,y =0,则n=(1,0,1)为平面EFGH 的一个法向量,则cos 〈n ,DE →〉=n ·DE →|n ||DE →|=42×4=22,所以平面EFGH 与平面ABCD 所成的角为45°.故选B.4.答案:23解析:由题意可知,平面ABO 的一个法向量为OC →=(0,0,2),所以cos θ=|OC →·n ||OC →|·|n |=42×3=23. 5.解析:(1)∵PD ⊥平面ABCD ,四边形ABCD 为矩形,∴不妨以{DA →,DC →,DP →}为一组基底,建立如图所示的空间直角坐标系D xyz . 设BC =3a ,则B (3a ,3,0),P (0,0,3),M (2a ,3,0),A (3a ,0,0), 则PB →=(3a ,3,-3),AM →=(-a ,3,0), ∵PB ⊥AM ,则PB →·AM →=-3a 2+9=0,解得a =3, 故AD =3a =3 3.(2)AM →=(-3,3,0),AP →=(-33,0,3), 设平面PAM 的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·AM →=-3x 1+3y 1=0m ·AP →=-33x 1+3z 1=0,取x 1=3,可得m =(3,1,3),∵PD ⊥平面AMD ,∴可设平面AMD 的法向量为n =(0,0,1),cos 〈m ,n 〉=m ·n |m |·|n |=313×1=31313,因此二面角P AM D 的正弦值为1-⎝ ⎛⎭⎪⎫313132=21313.6.解析:(1)证明:∵四边形AA 1C 1C 是正方形, ∴AA 1⊥AC .又∵平面ABC ⊥平面AA 1C 1C ,平面ABC ∩平面AA 1C 1C =AC , 且AA 1⊂平面AA 1C 1C , ∴AA 1⊥平面ABC .(2)由AC =4,BC =5,AB =3,得AC 2+AB 2=BC 2, ∴AB ⊥AC .建立如图所示的空间直角坐标系,则A 1(0,0,4),B (0,3,0),B 1(0,3,4),C 1(4,0,4), ∴=(4,-3,4),=(0,-3,4),=(0,0,4).设平面A 1C 1B 的一个法向量为n 1=(x 1,y 1,z 1),平面B 1C 1B 的一个法向量为n 2=(x 2,y 2,z 2).令x 2=3,则y 2=4,∴n 2=(3,4,0), ∴|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=165×5=1625.∴平面A 1C 1B 与平面B 1C 1B 夹角的余弦值为1625.关键力量综合练1.答案:A解析:由于PA ⊥平面ABCD ,ABCD 是矩形,所以AB ,AD ,AP 两两垂直,故以A 为坐标原点,AB ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系, 又AB =3,AD =4,PA =435,所以A (0,0,0),B (3,0,0),D (0,4,0),P (0,0,435),由于PA ⊥平面ABCD ,所以平面ABD 的一个法向量为n =(0,0,1), 而PB →=(3,0,-435),BD →=(-3,4,0),设平面PBD 的法向量为m =(x ,y ,z ), 则⎩⎨⎧m ·PB →=3x -435z =0m ·BD →=-3x +4y =0,取x =4,则平面PBD 的法向量为m =(4,3,53),cos 〈n ,m 〉=n ·m |n |·|m |=0×4+0×3+1×531×42+32+(53)2=32,所以〈n ,m 〉=30°,由图可知平面ABD 与平面PBD 的夹角为锐角,所以平面ABD 与平面PBD 的夹角为30°,故选A.2.答案:D 解析:由于平面BAC ⊥平面DAC ,设AC 的中点为O ,BO ⊥AC ,则BO ⊥平面DAC ,DO ⊥AC ,故以OC 方向为x 轴,OD 方向为y 轴,OB 方向为z 轴,建立空间直角坐标系,设菱形边长为2,则C (1,0,0),D (0,3,0),B (0,0,3),CD →=(-1,3,0),CB →=(-1,0,3),OB →=(0,0,3),明显OB →=(0,0,3)是平面DAC 的一个法向量,设平面BCD 的法向量为n =(x ,y ,z ),则满足⎩⎪⎨⎪⎧n ·CD →=0n ·CB →=0,即⎩⎨⎧x -3y =0x -3z =0,令x =3,可得y =z =1,故n =(3,1,1),则cos 〈OB →,n 〉=33·5=55,即二面角B CD A 的余弦值为55.故选D. 3.答案:B解析:由题可得以D 为原点,以DA ,DC ,DH 为x ,y ,z 轴建立空间直角坐标系,如图:则D (0,0,0),B (4,4,0),C (0,4,0),E (4,0,1),F (4,4,2),G (0,4,4), 设H (0,0,h ),由E ,F ,G ,H 共面可得存在实数λ,μ使得GH →=λEF →+μFG →, 所以(0,-4,h -4)=λ(0,4,1)+μ(-4,0,2)=(-4μ,4λ,λ+2μ), 则⎩⎪⎨⎪⎧0=-4μ-4=4λh -4=λ+2μ,解得h =3,所以H (0,0,3). 又DH ⊥平面ABCD ,所以DH →=(0,0,3)是平面ABCD 的一个法向量.设平面HBC 的法向量为n =(x ,y ,z ),又BC →=(-4,0,0),HC →=(0,4,-3), 所以⎩⎪⎨⎪⎧BC →·n =0HC →·n =0⇒⎩⎪⎨⎪⎧-4x =04y -3z =0,令z =4,则n =(0,3,4),所以cos 〈DH →,n 〉=DH →·n |DH →|·|n |=123×32+42=45,由图可知二面角H BC A 为锐角,所以二面角H BC A 的余弦值为45.故选B.4.答案:B 解析:以点A 为坐标原点,以垂直于AC 的直线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系如图所示,由于ABC A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,所以A (0,0,0),B 1(32a ,a 2,a ),D (0,a ,a2),C 1(0,a ,a ),故=(32a ,a 2,a ),AD →=(0,a ,a 2),=(0,0,a2),设平面AB 1D 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·AB 1=0n ·AD →=0,即⎩⎪⎨⎪⎧3a 2x +a 2y +az =0ay +a 2z =0,令y =1,则z =-2,x =3,故n =(3,1,-2),又平面ABC 的一个法向量为m =(0,0,1), 所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=23+1+4×1=22,所以平面ABC 与平面AB 1D 所成的锐二面角的余弦值为22.故选B. 5.答案:14解析:由已知得,EF ⊥AE ,EF ⊥DE , ∴EF ⊥平面ADE ,又EF ⊂平面ABFE , ∴平面ABFE ⊥平面ADE .取AE 的中点H 为坐标原点,建立如图所示的空间直角坐标系,∴E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0),则ED →=(1,0,3),EC →=(1,4,3),设M (1,t ,0)(0≤t ≤4),则EM →=(2,t ,0),若平面EMC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·EM →=0m ·EC →=0,即⎩⎨⎧2x +ty =0x +4y +3z =0,取y =-2,则m =(t ,-2,8-t3).由DE 与平面EMC 所成的角为60°,则82t 2+4+(8-t )23=32, ∴t 2-4t +3=0,解得t =1或t =3,均有直线DE 与平面EMC 所成的角为60°.取ED 的中点Q ,则Q ⎝ ⎛⎭⎪⎫-12,0,32,QA →=⎝ ⎛⎭⎪⎫32,0,-32, 又EC →=(1,4,3),EF →=(0,4,0), QA →·EC →=32-32=0,QA →·EF →=0,则QA →为平面CEF 的法向量, 设平面MCE 与平面CEF 夹角为θ. ∴|cos θ|=|QA →·m ||QA→|×|m |=|2t -4|3×t 2+4+(8-t 3)2=|t -2|t 2-4t +19.当t =1时,cos θ=14;当t =3时,cos θ=14.∴平面MCE 与平面CEF 夹角的余弦值为14.6.解析:(1)证明:由于正方形ABCD 的边长为2, 所以可得A (0,0,2),E (22,22,0),D (0,2,0),C (2,0,0),B (0,-2,0),AE →=(22,22,-2),DC →=(2,-2,0), 由于AE →·DC →=22×2-22×2=0,所以AE →⊥DC →⇒AE ⊥DC .(2)设平面ADC 的法向量为n =(x ,y ,z ), AD →=(0,2,-2),AC →=(2,0,-2),所以有⎩⎪⎨⎪⎧n ·AD →=0n ·AC →=0⇒⎩⎨⎧2y -2z =02x -2z =0⇒n =(1,1,1),由于ABCD 是正方形,所以AB =AD ,由于O 为BD 的中点,所以AO ⊥BD ,由于平面ABD ⊥平面BDC ,平面ABD ∩平面BDC =BD ,AO ⊂平面ABD , 所以AO ⊥平面BDC ,因此向量OA →=(0,0,2)是平面BDC 的法向量,所以二面角A DC B 的余弦值为OA →·n |OA →|·|n |=1×22×3=33.7.解析:(1)证明:如图,连接B 1C ,使B 1C ∩BC 1=E ,连接DE ,由直三棱柱知四边形B 1BCC 1为矩形,所以E 为B 1C 的中点, ∵在△AB 1C 中,D 、E 分别为AC 和B 1C 的中点,∴DE ∥AB 1, 又因平面AB 1C ∩平面BDC 1=DE ,DE ⊂平面BDC 1,AB 1⊄平面BDC 1, ∴AB 1∥平面BDC 1.(2)设CC 1=a ,以D 为坐标原点建系,则B 1(3,0,a ),B (3,0,0),C 1(0,1,a ),D (0,0,0),所以=(0,0,a ),=(-3,1,a ),DB →=(3,0,0),设平面BB 1C 1的法向量为m =(x 1,y 1,z 1),故可取n =(0,a ,-1),由于平面B 1BC 1与平面BC 1D 的夹角的余弦值为34,所以|m ·n ||m |·|n |=34,即34=3a 2×a 2+1,解得a =3,∴CC 1= 3.8.解析:(1)∵四边形ABCD 为矩形,则AD ⊥CD , 又∵PD ⊥平面ABCD ,CD ⊂平面ABCD ,∴PD ⊥CD ,AD ∩PD =D ,AD ,PD ⊂平面PAD , ∴CD ⊥平面PAD ,PA ⊂平面PAD ,则PA ⊥CD , ∵CM ⊥PA ,且CM ∩CD =C ,CM ,CD ⊂平面CMD , ∴PA ⊥平面CMD ,DM ⊂平面CMD ,则PA ⊥DM .(2)∵PD ⊥平面ABCD ,则∠PAD 为PA 与平面ABCD 所成的角,∴∠PAD =30°,又∵PD =1,则AD =3,以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,则D (0,0,0),A (3,0,0),C (0,1,0), ∵AD =3,且PN →=DA →,∴PN =3,令PQ =λ(0≤λ≤3),则Q (λ,0,1), ∴AC →=(-3,1,0),CQ →=(λ,-1,1),设n =(x ,y ,z )是平面ACQ 的一个法向量,则⎩⎪⎨⎪⎧n ·AC →=-3x +y =0n ·CQ →=λx -y +z =0,取x =1,则y =3,z =3-λ,即n =(1,3,3-λ),平面PDC 的一个法向量为m =(1,0,0), ∴cos 〈m ,n 〉=m ·n |m |·|n |=14+(3-λ)2, ∵0≤λ≤3,则当λ=3时,cos 〈m ,n 〉的最大值为12,即平面ACQ 与平面PDC 夹角的余弦值的最大值为12,∴平面ACQ 与平面PDC 夹角的正弦值的最小值为32.核心素养升级练1.答案:B解析:由切割过程可知:BC ⊥平面CC 1D 1,∵VB CC 1D 1=13S △CC 1D 1·BC =13×12×CC 1×4×3=4,∴CC 1=2;在长方体ABCD A 1B 1C 1D 1中,以D 为坐标原点,DA →,DC →,正方向为x ,y ,z 轴建立如图所示空间直角坐标系,则B (3,4,0),C (0,4,0),D 1(0,0,2),C 1(0,4,2), ∴BC →=(-3,0,0),=(-3,-4,2),=(0,4,0),设平面BCD 1的法向量为n =(x ,y ,z ),令a =2,解得b =0,c =3,∴m =(2,0,3); ∴|cos 〈m ,n 〉|=|m ·n ||m |·|n |=65×13=66565,即平面BCD 1和平面BC 1D 1夹角的余弦值为66565.故选B.2.解析:(1)证明:由于CD ∥AB ,∠ABC =90°, 所以∠BCD =90°,由于BC =CD =2,所以BD =BC 2+CD 2=22,∠CBD =45°,从而∠ABD =45°,由于AB =4,所以AD 2=AB 2+BD 2-2AB ·BD cos ∠ABD =8,所以AD 2+BD 2=AB 2,从而BD ⊥AD ,由于侧面PAD ⊥平面ABCD ,侧面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,所以BD ⊥平面PAD ,又由于PA ⊂平面PAD ,所以PA ⊥BD .(2)延长AD 和BC 交于点M ,连接PM ,则l 就是直线PM ,CD 为△ABM 的中位线, 以B 为原点,建立空间直角坐标系B xyz ,如图所示,则P (1,3,2),D (2,2,0),M (4,0,0),C (2,0,0), 所以CD →=(0,2,0),PD →=(1,-1,-2), 设平面PCD 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CD →=0n 1·PD →=0,即⎩⎨⎧2y 1=0x 1-y 1-2z 1=0,令z 1=1,则x 1=2,y 1=0,取n 1=(2,0,1), 设在l 上存在点N ,满足PN →=λPM →(λ∈R ),则CN →=CP →+PN →=CP →+λPM →=(-1,3,2)+λ(3,-3,-2)=(3λ-1,3(1-λ),2(1-λ)).设平面NCD 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·CD →=0n 2·CN →=0,即⎩⎨⎧2y 2=0(3λ-1)x 2+3(1-λ)y 2+2(1-λ)z 2=0, 令z 2=3λ-1,则x 2=-2(1-λ),y 2=0,取n 2=(-2(1-λ),0,3λ-1), 设平面PCD 和平面NCD 的夹角为θ, 则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=|5λ-3|3×11λ2-10λ+3=539,解得λ=15或λ=-35, 所以在l 上存在点N ,N 在线段PM 上,PN =15PM ,或者N 在线段PM 的反向延长线上,PN=35PM .。
7.2 空间几何的体积与表面积(提升版)思维导图考点一柱锥台表面积【例1-1】(2022·青海)以边长为4的正方形的一边所在直线为旋转轴,将该正方形旋转一周,所得圆柱的侧面积为()A.32πB.16πC.32D.16【答案】A【解析】以边长为4的正方形的一边所在直线为旋转轴,旋转一周得到的旋转体为圆柱,其底面半径4r=,高4h=,故其侧面积224432S r hπππ=⋅=⨯⨯=.故选:A【例1-2】(2022·天津·南开中学模拟预测)已知圆锥PO的母线长与底面直径都等于2,一个圆柱内接于这个圆锥,即圆柱的上底面是圆锥的一个截面,下底面在圆锥的底面内,则圆柱侧面积的最大值为()A.3π2B.3πC.()633π-D.3【答案】A【解析】如图,1AB=,2BE=,3AE=,则30AEB∠=,设DC r=,01r<<,则2EC r=,3DE r=,则33AD AE DE r=-=-,考点呈现例题剖析∴圆柱侧面积为:)()221132π2π3323π23π22S r AD r r r r ⎡⎤⎛⎫=⋅=⋅=-+≤-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当12r =时取等号.故选:A . 【一隅三反】1.(2023·全国·高三专题练习)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥,若某直角圆锥内接于一球(圆锥的顶点和底面上各点均在该球面上),求此圆锥侧面积和球表面积之比( ) A .24B 22C 2D .24π【答案】A【解析】设直角圆锥底面半径为r 2r , ()222rr r -=,所以底面圆的圆心即为外接球的球心,所以外接球半径为r , 所以22224S rl r S r πππ==圆锥侧球故选:A. 2.(2022·福建三明·模拟预测)如图所示的建筑物是号称“神州第一圆楼”的福建土楼——二宜楼,其外形是圆柱形,圆楼直径为73.4m ,忽略二宜楼顶部的屋檐,若二宜楼的外层圆柱墙面的侧面积略小于底面直径为40m ,高为77的圆锥的侧面积的23,则二宜楼外层圆柱墙面的高度可能为( )A .16mB .17mC .18mD .19m【答案】A【解析】底面直径为40m ,高为77m ()2210772090m +=,所以该圆锥的侧面积为220901800cm ππ⋅⋅=,设二宜楼外层圆柱墙面的高度为h ,则由36.72h π⨯1200π=,解得16.3h ≈因为二宜楼的外层圆柱墙面的侧面积略小于底面直径为40m ,高为77的圆锥的侧面积的23, 所以二宜楼外层圆柱墙面的高度可能为16m , 故选:A3.(2022·江苏·阜宁县东沟中学模拟预测)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知.底面圆的直径16cm AB =,圆柱体部分的高8cm BC =,圆锥体部分的高6cm CD =,则这个陀螺的表面积是( )A .2192m c πB .2252m c πC .2272m c πD .2336m c π【答案】C【解析】由题意可得圆锥体的母线长为226810l =+=, 所以圆锥体的侧面积为10880ππ⨯=,圆柱体的侧面积为168128ππ⨯=,圆柱的底面面积为2864ππ⨯=, 所以此陀螺的表面积为8012864272ππππ++=(2cm ),故选:C考点二 柱锥台的体积【例2-1】(2022·全国·高三专题练习)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC 是边长为2的正三角形,SC 为球O 的直径,且4SC =,则此棱锥的体积为( )A 42B 43C 82D .42【答案】A【解析】解:因为ABC 是边长为2的正三角形,所以ABC 外接圆的半径12232sin 60r =⋅=︒所以点O 到平面ABC 的距离2226d R r -SC 为球O 的直径,点S 到平面ABC 的距离为462d =此棱锥的体积为2111464222sin 60332ABCV S d =⨯=⨯⨯,故选:A .【例2-2】(2022·天津·高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图, 因为3,120CH BH CHB ==∠=,所以3332CM BM HM ==, 因为重叠后的底面为正方形,所以33AB BC ==, 在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥, 由AB BC B ⋂=可得HM ⊥平面ADCB , 设重叠后的EG 与FH 交点为,I则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D. 【例2-3】(2022·湖北·高三阶段练习)已知四面体D ABC -中,1AC BC AD BD ====,则D ABC -体积的最大值为( ) A 42B 32C 23D 3【答案】C【解析】设M 为CD 的中点,连接AM,BM , 设四面体A -BCD 的高为h ,则h AM ≤,由于1AC BC AD BD ====,故ACD BCD ≌ , 则ACD BCD ∠=∠,设π,(0,)2BCD ACD αα∈∠=∠=,则sin sin ,22cos 2cos AM BM BC CD CM BC αααα======, 所以1136D ABC A DBC BCDV V Sh CD BM AM --==⋅≤⋅⋅222222231112cos sin sin cos sin 2cos sin sin ()333232αααααααα++==⋅⋅23, 当且仅当平面ACD 与平面BCD 垂直且sin 2αα=即arctan 2α=时取等号,故选:C 【一隅三反】1.(2022·江苏)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( ) A 5B .22C 10D 510【答案】C【解析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l +=,所以1221,33r l r l ==,所以甲圆锥的高221459h l l =-=,乙圆锥的高2221229h l l =-=,所以221122221453931011223r h l V V r h l l ππ==⨯甲乙故选:C. 2.(2022·广西桂林)一个三棱锥S -ABC 的侧棱上各有一个小洞D ,E ,F ,且SD :DA =SE :EB =CF :FS =3:1,则这个容器最多可盛放原来容器的( ) A .89B .49C .5564D .23【答案】C【解析】由题意,这个容器最多可盛放原来容器的比例为DEF ABC S ABC S DEFS ABC S ABC V V V V V ------=,设C 到平面SAB 的距离为h ,则13S ABC C ABS SAB V V Sh --==.又91991646464S DEF F SDE SABSAB C ABS V V S h S h V ---==⨯=⨯=,故915564164DEF ABC S ABC S DEFS ABC S ABCV V V V V -------=== 故选:C3.(2023·全国·高三专题练习)足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,如图所示.已知某“鞠”的表面上有四个点,,,P A B C,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为( )A .256π B .9πC .92πD .98π【答案】C【解析】取AB 中点为D ,过D 作//OD PA ,且11==22OD PA ,因为PA ⊥平面ABC,所以OD ⊥平面ABC .由于AC BC ⊥,故DA DB DC ==,进而可知OA OB OC OP ===,所以O 是球心,OA 为球的半径.由112==4323P ABC V AC CB PA AC CB -=⨯⋅⋅⇒⋅,又2222=8AB AC BC AC BC =+≥⋅,当且仅当2AC BC ==,等号成立,故此时22AB =所以球半径()2222113+2222R OA OD AB ⎛⎫⎛⎫==+≥ ⎪ ⎪⎝⎭⎝⎭,故min 3=2R ,体积最小值为334439πππ3322R ⎛⎫== ⎪⎝⎭故选:C4.(2023·全国·高三专题练习)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C【解析】∴ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当326l ≤≤0V '>,当2633l ≤0V '<, 所以当26l =时,正四棱锥的体积V 取最大值,最大值为643, 又3l =时,274V =,33l =814V =,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.考点三 球的体积与表面积【例3】(2022·甘肃省武威第一中学)如图,半径为4的球O 中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与圆柱的表面积之差为( )A .64πB .48πC .32πD .16π【答案】D 【解析】如图.设圆柱底面半径为r ,球的半径与圆柱底面夹角为OMN α∠=,则cos 4cos MN r R αα==⋅=,sin 4sin ON R αα=⋅=,∴圆柱的高8sin h α=,∴圆柱的侧面积为232sin2S r h ππα=⋅⋅=⋅,当且仅当4πα=时,sin21α=,圆柱的侧面积最大,为32π, 球的表面积与圆柱的表面积之差为22422(22)64321616R rh πππππππ--⨯=--=.故选:D . 【一隅三反】1.(2022·全国·赣州市第三中学)已知某正三棱锥S ABC -的内切球与外接球的球心恰好重合,如果其内切球的半径为1,其外接球的体积为36π,那么这个三棱锥的表面积为( ) A .24 B .243C .48D .483【答案】B【解析】由题意可知,点S 在底面ABC 内的射影点D 为等边ABC 的中心,取线段BC 的中点E ,连接AE ,则2AD DE =,易知三棱锥S ABC -的外接球球心O 在线段SD 上,设正三棱锥S ABC -的外接球半径为R ,则34363R ππ=,解得3R =,设正三棱锥S ABC -的内切球的半径为r ,则1r =,故314SD R r =+=+=,SD ⊥平面ABC ,AD ⊂平面ABC ,SD AD ∴⊥,易知3OA R ==,则222222AD OA OD R r --=所以,122DE AD ==32AE =26sin 3AEAB π== 由勾股定理可得2226SA SD AD =+=所以,正三棱锥S ABC -是边长为6 因此,正三棱锥S ABC -的表面积为(23426=243故选:B.2.(2022·天津·耀华中学二模)一个圆锥的侧面展开图是一个半圆,则该圆锥的内切球的表面积和圆锥的侧面积的比为( ) A .2:3 B .3:2 C .1:2 D .3:4【答案】A【解析】设圆锥的底面半径为r ,母线长为l ,圆锥的高为h ,内切球的半径为R ,其轴截面如图所示,设O 为内切球球心,因为圆锥的侧面展开图是一个半圆, 所以2l r ππ=,得2l r =,即2PA PB r ==, 所以222243PD PB BD r r r =--, 所以3PO PD OD r R =-=-, 因为POE △∴PBD △,所以PO OEPB BD=, 3r R Rr -=,得3R =, 所以圆锥的内切球的表面积和圆锥的侧面积的比为 22214:4:22:33R rl r r ππππ=⋅=,故选:A3.(2022·山东青岛·二模)《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,EF ∥平面ABCD ,2EF =,其余棱长都为1,则这个几何体的外接球的体积为( )A 2B .4π3C 82D .4π【答案】B【解析】连接AC ,BD 交于点M ,取EF 的中点O ,则OM ⊥平面ABCD ,,取BC 的中点G ,连接FG ,作GH EF ⊥,垂足为H ,如图所示由题意可知,13,2HF FG ==222HG FG HF =- 所以2OM HG ==2AM =所以221OA OM AM +=,又1OE =, 所以1OA OB OC OD OE OF ======,即这个几何体的外接球的球心为O ,半径为1, 所以这个几何体的外接球的体积为33444ππ1π333V R ==⨯⨯=.故选:B.考点四 空间几何的截面【例4-1】(2022·全国·高三专题练习)已知圆锥的母线长为2,侧面积为23π,则过顶点的截面面积的最大值等于( ) A 3B 2C .3 D .2【答案】D【解析】由圆锥的母线长为2,侧面积为3π,假设底面圆周长为l ,因此12232l π⨯⨯=,故底面圆周长为23π3由于轴截面为腰长为2,底边长为底面圆直径32π3.故当截面为顶角是π2的等腰三角形时面积最大,此时1π22sin 222S =⋅⋅⋅=.故选:D【例4-2】.(2022·湖南·长沙一中模拟预测)(多选)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为22543⎡+⎣,【答案】BCD【解析】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积 为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得125225OG ==设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S=⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确;由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ',则2222222,2,2,16PP PE P E PF P F P E P F '''''==+++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,222216PE PF t t +++-所以()222222216241680PE PF t tt t +=++-=+-++()224281442485,48t ⎡⎤=+--++⎣⎦,所以225,43PE PF ⎡+∈+⎣,故D 正确.故选:BCD.【一隅三反】1.(2022·江西鹰潭·二模)《算数术》竹简于上世纪八十年代出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也,叉以高乘之,三十六成一."该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈.它实际上是将圆锥体积公式中的圆周率π近似取为3.现有一圆锥底面周长为563,侧面面积为1123,其体积的近似公式为23112V L h ≈,用此π的近似取值(用分数表示)计算过该圆锥顶点的截面面积的最大值为( ) A .15 B .37C .8821D .8【答案】D【解析】若圆锥母线长为l ,底面半径为r ,则156112233l ⨯=,故4l,又5623r π=,故283r π=, 而22133112V r h L h π=≈,则2228356()()31123ππ⨯≈⨯,可得289π=, 所以3r =,若截面顶角θ,当截面为轴截面时2221cos 108r l θ=-=-<,此时2πθπ<<,又截面面积为21sin 8sin 2l θθ=,故当2πθ=时截面面积的最大值为8.故选:D2.(2022·河南·方城第一高级中学)某中学开展劳动实习,学生对圆台体木块进行平面切割,已知圆台的上底面半径为1,下底面半径为2,要求切割面经过圆台的两条母线且使得切割面的面积最大.3则切割面的面积为______3______. 【答案】 2 33【解析】解法一:如图,将圆台1O O 补成圆锥PO ,设圆台1O O 的上、下底面半径分别为r ,R ,高和母线长分别为h ,l ,则()222l h R r =+-.因为等腰梯形ABCD 为过两条母线的截面,设PC x =.APB θ∠=,则r x R x l=+,得rl x R r=-,则()()2221sin sin 22PAB PCD ABCD R r S S S x l x l R r θθ+⎡⎤=-=+-=⎣⎦-△△梯形.∴若33h ,则23l =,0120θ︒<≤︒,当90θ=︒时,切割面的面积最大,最大面积2S =;∴若3h =2l =,060θ︒<︒≤,当60θ=︒时,切割面的面积最大,最大面积33S =解法二:如图,设圆台上底面圆心为1O ,下底面圆心为O ,过两条母线的截面为四边形11ABB A ,可得四边形11ABB A 为等腰梯形.设111AO B AOB θ∠=∠=,圆台的高1O O h =,取11A B ,AB 的中点分别为1C ,D ,连接11O C ,1C D ,OD ,则四边形11O C DO 为直角梯形,过1C 作11C C O O ∥交OD 于点C.因为111O B =,2OB =,所以11cos2O C θ=,111122sin2A B B C θ==,2cos2OD θ=,24sin 2AB BD θ==,所以11cos 2CD OD O C θ=-=,所以221cos 2DC h θ=+则()11221111cos 222ABB A S S AB A B DC h θθ==+⋅=+梯形令sin 2t θ=,因为(]0,θπ∈,所以(]0,1t ∈,则2231S t h =-+(]0,1t ∈.∴当3h 时,2222244333232t t S t t ⎛⎫+- ⎪⎛⎫=-≤= ⎪ ⎪⎝⎭ ⎪⎝⎭,当且仅当2243t t =-,即6t =max 2S =.∴当3h =()22423434S t t t t =--+令2t x =,则(]0,1x ∈,()24224424t t x x x -+=-+=--+,当1x =时,取最大值3.此时max 33S =故答案为:2;333.(2022·青海·海东市第一中学)已知圆锥的底面直径为2323则该圆锥的体积为________. 5π【解析】由题意知:圆锥的底面半径3r =设圆锥的母线长为l ,则2213sin 2323l π⋅==22l =∴圆锥的高22835h l r =--=∴圆锥的体积2153V r h ππ=⋅=.5π.。
一、计算题与证明题1.已知, , , 并且. 计算.1||=a 4||=b 5||=c 0=++c b a a c c b b a ⨯+⨯+⨯解:因为, , , 并且1||=a 4||=b 5||=c 0=++c b a 所以与同向,且与反向a b b a +c 因此,,0=⨯b a 0=⨯c b 0=⨯a c 所以0=⨯+⨯+⨯a c c b b a 2.已知, , 求.3||=⋅b a 4||=⨯b a ||||b a ⋅解:(1)3cos ||=⋅=⋅θb a b a(2)4sin ||=⋅=⨯θb a b a 得()222)1(+()252=⋅b a 所以5=⋅b a 4.已知向量与共线, 且满足, 求向量的坐标.x )2,5,1(,-a 3=⋅x ax 解:设的坐标为,又x ()z y x ,,()2,5,1-=a 则 (1)325=-+=⋅z y x x a 又与共线,则x a 0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i 所以()()()05252222=-+++--y x x z z y 即 (2)010*********22=-++++xy xz yz z y x 又与共线,与夹角为或x a x a 0π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax 整理得(3)103222=++z y x 联立解出向量的坐标为()()()321、、x ⎪⎭⎫⎝⎛-51,21,1016.已知点, 求线段的中垂面的方程.)7,8,3(A )3,2,1(--B AB 解:因为,()7,8,3A )3,2,1(--B 中垂面上的点到的距离相等,设动点坐标为,则由得AB B A 、()z y x M ,,MB MA =()()()()()()222222321783++-++=-+-+-z y x z y x 化简得027532=-++z y x 这就是线段的中垂面的方程。
空间向量及其运算考点一概念的辨析【例1】(2020·全国高二课时练习)下列命题中,假命题是()A.同平面向量一样,任意两个空间向量都不能比较大小B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.共线的单位向量都相等【答案】D【解析】A.向量是有向线段,不能比较大小.真命题.B.两向量相等:方向相同,模长相等.起点相同,则终点也相同.真命题.C.零向量:模长为0的向量.真命题.D.共线的单位向量是相等向量或相反向量. 假命题.故选:D.【一隅三反】1.(2020·全国高二课时练习)在下列命题中:①若向量,a b共线,则,a b所在的直线平行;②若向量,a b所在的直线是异面直线,则,a b一定不共面;③若三个向量,a b c ,两两共面,则,a b c ,三个向量一定也共面;④已知三个向量,a b c ,,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++. 其中正确命题的个数为( ) A .0 B .1C .2D .3【答案】A【解析】此题考查向量的知识点;对于①:根据两向量共线定义知道,两向量共线有可能两向量所在的直线重合,所以此命题错误;对于②:两个向量可以平移到一个平面内,所以此命题错误;对于③:若三个向量,,a b c 两两共面,这三个向量有可能不共面,所以此命题错误;对于④:根据空间向量的基本定理知道,这三个向量要不共面才可以,所以此命题错误,所以选A 2.(2020·全国高二课时练习)在下列命题中: ①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++. 其中正确命题的个数为( ) A .0 B .1C .2D .3【答案】A【解析】①若a 、b 共线,则a 、b 所在的直线平行或重合;所以①错;②因为向量是可以自由移动的量,因此即使a 、b 所在的直线是异面直线,a 、b 也可以共面;所以②错; ③若a 、b 、c 三向量两两共面,因为两平面的关系不确定,因此a 、b 、c 三向量不一定共面;所以③错; ④若三向量a 、b 、c 共面,若向量p 不在该平面内,则向量p 不能表示为p xa yb zc =++,所以④错. 故选:A.考法二 空间向量的线性运算【例2】2020·江西赣州.高二期中(理))在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )A .1223EF AC AB AD →→→→=+-B .112223EF AC AB AD →→→→=--+C .112223EF AC AB AD →→→→=-+D .112223EF AC AB AD →→→→=-+-【答案】B【解析】在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,所以EF EB BA AF →→→→=++1223AB AC AB AD →→→→⎛⎫=--+ ⎪⎝⎭112223AC AB AD →→→=--+,即112223EF AC AB AD →→→→=--+. 故选:B.【一隅三反】1.(2020·南昌市八一中学)如图,空间四边形OABC 中,,,OA a OB b OC c ===,且2OM MA =,BN NC =,则MN =( )A .221332a b c ++ B .111222a b c +- C .211322a b c -++ D .121232a b c -+ 【答案】C【解析】因为MN ON OM =-,又因为()()2211,3322a OM OA ON OB OC cb =+===+,所以211322MN a b c =-++.故选:C 2.(2020·宝山.上海交大附中高二期末)在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++ B .1122a b c --+ C .1122a b c -+ D .1122-++a b c 【答案】D【解析】根据空间向量的线性运算可知11BM BB B M =+11112AA B D =+()1111112AA B A A D =++()112AA AB AD =+-+因为,AB a AD b ==,1AA c =,则()112AA AB AD +-+1122a b c =-++即1122BM a b c =-++, 故选:D.3.(2019·张家口市宣化第一中学高二月考)如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD +12(BC -BD )等于( )A .ADB .FAC .AFD .EF 【答案】C【解析】BC -BD =DC ,11()22BC BD DC DF -==,∴AD +12(BC -BD )AD DF AF =+=.故选C .考点三 空间向量的共面问题【例3】(2020·全国高二)在下列条件中,使M 与A ,B ,C 一定共面的是( ) A .OM OA OB OC =-- B .111532OM OA OB OC =++C .0MA MB MC ++=D .0OM OA OB OC +++=【答案】C【解析】对于A 选项,由于11111--=-≠,所以不能得出,,,M A B C 共面. 对于B 选项,由于1111532++≠,所以不能得出,,,M A B C 共面. 对于C 选项,由于MA MB MC =--,则,,MA MB MC 为共面向量,所以,,,M A B C 共面.对于D 选项,由0OM OA OB OC +++=得OM OA OB OC =---,而11131---=-≠,所以不能得出,,,M A B C 共面.故选:C【一隅三反】1.(2020·全国高二)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =______. 【答案】18【解析】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++,31148t ++=,解得18t =.故答案为: 182.(2020·全国高二)已知点M 在平面ABC 内,并且对空间任意一点O ,有1133OM xOA OB OC =++,则x=________. 【答案】13【解析】已知1133OM xOA OB OC =++且M,A,B,C 四点共面, 则11133x ++= ,解得x=133.(2019·随州市第一中学高二期中)空间A B C D 、、、四点共面,但任意三点不共线,若P 为该平面外一点且5133PA PB xPC PD =--,则实数x 的值为( ) A .13B .13-C .23D .23-【答案】A【解析】因为空间A B C D 、、、四点共面,但任意三点不共线,对于该平面外一点P 都有5133PA PB xPC PD =--,所以51133x --=,解得13x =.故选A 4.(2020·全国高二课时练习)已知平行四边形ABCD 从平面AC 外一点O 引向量.,OE k OA OF k OB →→→→==,,OG k OC OH k OD →→→→==.求证:四点E ,F ,G ,H 共面【答案】证明见解析 【解析】∵,OE k OA OF k OB →→→→==;∴||OE OFk OA OB==; EF //AB ,且EF =|k |AB ;同理HG //DC ,且HG =|k |DC ,AB =DC ; ∴EF //HG ,且EF =HG ; ∴四边形EFGH 为平行四边形; ∴四点E ,F ,G ,H 共面.考点四 空间向量的数量积【例4】(2020·全国高二课时练习)已知平行六面体ABCD ﹣A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.(1)求AC ′的长;(如图所示) (2)求AC '与AC 的夹角的余弦值. 【答案】(1(2)10【解析】(1)可得AC '='AC CC +='AB AD AA ++,2AC '=2AB AD AA '++=22AB AD AA '+++2(AB AD AB AA AD AA ''⋅+⋅+⋅)=42+32+52+2(4×3×0+4×1153522⨯+⨯⨯)=85 故AC ′的长等于AC'=(2)由(1)可知AC '=AB AD AA '++,AC'=故AC AC '⋅=(AB AD AA '++)⋅(AB AD +) =222AB AB AD AD AA AB AA AD ''+⋅++⋅+⋅ =2211424303545322+⨯⨯⨯++⨯⨯+⨯⨯=852又AC =()AB AD +=222AB AB ADAD +⋅+= 5故AC '与AC 的夹角的余弦值=AC ACAC AC'⋅'⋅=85=10【一隅三反】1.(2019·宁夏贺兰县景博中学高二月考(理))平行六面体ABCD-A 1B 1C 1D 1中,向量1AB,AD,AA 两两的夹角均为60°,且|AB |=1,|AD |=2,|1AA |=3,则|1AC |等于( ) A .5 B .6 C .4 D .8【答案】A【解析】在平行六面体ABCD-A 1B 1C 1D 1中有,11AC AB AD CC =++=1AB AD AA ++ 所以有1AC =1AB AD AA ++,于是有21AC =21AB AD AA ++21AC =2220001112cos602cos602cos60AB AD AA AB AD AB AA AD AA +++⋅⋅+⋅⋅+⋅⋅=25所以15AC =,答案选A2.(2020·延安市第一中学高二月考(理))四棱柱1111ABCD A B C D -的底面ABCD 为矩形,2AB =,4=AD ,16AA =,1160A AB A AD ∠=∠=,则1AC 的长为( )A .B .46C .D .32【答案】C【解析】由11AC AC CC =+,2222211111()2AC AC AC CC AC AC CC CC ==+=+⋅+.由底面ABCD 为矩形得;241620AC =+=,2136CC =,另;1160A AB A AD ∠=∠=,1122()AC CC AB BC CC ⋅=+⋅,01126cos606,12AB CC BC CC ⋅=⨯⨯=⋅=21120363692,223AC AC =++==3.(2020·四川雨城�雅安中学高二月考(理))若空间四边形OABC 的四个面均为等边三角形,则cos ,OABC 的值为( )A .12B .2C .12-D .0【答案】D【解析】依题意空间四边形OABC 的四个面均为等边三角形,设棱长均为a . 而BC OC OB =-,则()22cos cos033OA OC OB OA OC OA OB a a ππ⋅-=⋅-⋅=⋅-⋅=所以()cos ,0OA OC OB OA BC OA BC OA BCOA BC⋅-⋅===⋅⋅.故选:D4.(2020·全国高二课时练习).1BB ⊥平面ABC ,且△ABC 是∠B =90°的等腰直角三角形,▱A 11B A B 、▱B 11B C C 的对角线都分别相互垂直且相等,若AB =a ,求异面直线1BA 与AC 所成的角.【答案】60° 【解析】如图所示.因为11,BA BA BB AC AB BC =+=+故()()1111BA AC BA BB AB BC BA AB BA BC BB AB BB BC ⋅=+⋅+=⋅+⋅+⋅+⋅ 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC ,故2110,0,0,AB BC BB AB BB BC BA AB a ⋅=⋅=⋅=⋅=-11 故21BA AC a ⋅=- 又111,BA AC BA AC cos BA AC ⋅=⋅⋅故211,2cos BA AC ==-. 而[]1,0,BA AC π∈,故可得1,120BA AC =︒<>, 又∵异面直线所成的角是锐角或直角, ∴异面直线BA 1与AC 成60°角.。
空间向量基本定理基础过关练题组一 空间向量基本定理及相关概念的理解1.设x=a+b ,y=b+c ,z=c+a ,且{a ,b ,c}是空间的一个基底,给出下列向量组:①{a ,b ,x};②{x ,y ,z};③{b ,c ,z};④{x ,y ,a+b+c},则其中可以作为空间的基底的向量组有(深度解析) A.1个 B.2个 C.3个 D.4个2.若p:a ,b ,c 是三个非零向量;q:{a ,b ,c}为空间的一个基底,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.已知{e 1,e 2,e 3}为空间的一个基底,若a=e 1+e 2+e 3,b=e 1+e 2-e 3,c=e 1-e 2+e 3,d=e 1+2e 2+3e 3,且d=αa+βb+γc,则α,β,γ分别为 . 题组二 用空间的基底表示空间向量4.在三棱柱A 1B 1C 1-ABC 中,D 是四边形BB 1C 1C 的中心,且AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(深度解析)A.12a+12b+12c B.12a-12b+12c C.12a+12b-12cD.-12a+12b+12c5.(2020广东汕头金山中学高二上期中)已知正方体ABCD-A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x ,y 的值分别为( )A.1,1B.1,12 C.12,12 D.12,16.已知PA⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC 的重心,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =j ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =k ,试用基底{i ,j ,k}表示AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .题组三利用空间向量基本定理解决几何问题7.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,平行六面体的各棱长均相等.给出下列结论:①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.其中正确结论的个数为( )A.1B.2C.3D.48.(2020黑龙江省实验中学高二上期中) 如图,在三棱柱ABC-A1B1C1中,底面ABC为正三角形,侧棱垂直于底面,AB=4,AA1=6.若E是棱BB1的中点,则异面直线A1E与AC1所成角的余弦值为( )A.√1313B.2√1313C.3√1313D.√13269.如图所示,在正方体ABCD-A1B1C1D1中,O为AC与BD的交点,G为CC1的中点,求证:A1O⊥平面GBD.10.如图所示,在平行四边形ABCD 中,AD=4,CD=3,∠ADC=60°,PA⊥平面ABCD ,PA=6,求线段PC 的长.能力提升练题组一 利用基底表示空间向量 1.(2020安徽淮北一中高二上期中,)已知M 、N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN上,且MP=2PN ,设向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.16a+16b+16c B.13a+13b+13c C.16a+13b+13cD.13a+16b+16c2.(2019北京第八十中学高二下月考,)已知空间的一个基底{a ,b ,c},m=a-b+c ,n=xa+yb+c ,若m ,n共线,则x= ,y= . 3.(2020广东深圳实验学校高二上期中,)如图,在三棱锥O-ABC 中,G 是△ABC 的重心(三条中线的交点),P 是空间任意一点.(1)用向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 表示向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,并证明你的结论;(2)设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,x ,y ,z∈R,请写出点P 在△ABC 的内部(不包括边界)的充分必要条件(不必给出证明).题组二证明平行和垂直4.(多选)()在三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,且PA=PB=PC=3,G是△PAB的重心,E,F分别为BC,PB上的点,且BE∶EC=PF∶FB=1∶2,则下列说法正确的是(深度解析)A.EG⊥PGB.EG⊥BCC.FG∥BCD.FG⊥EF5.(2020海南五指山农垦实验中学高二上期中,)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=√2AD,若E、F分别为PC、BD的中点.求证:2(1)EF∥平面PAD;(2)EF⊥平面PDC.(用向量方法证明)深度解析6.(2020陕西西北大学附属中学高二上期中,)如图所示,已知四面体ABCD的棱长为1,点E,F,G分别⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c,{a,b,c}为空间向量的一个基底,计算:⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,AA是AB,AD,CD的中点,设AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;(2)|AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ |.⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA(1)AA7.(2020浙江余姚中学高二上期中,)在所有棱长均为2的三棱柱ABC-A 1B 1C 1中,∠B 1BC=60°,求证:(1)AB 1⊥BC; (2)A 1C⊥平面AB 1C 1.题组三 求线段长度和两条异面直线所成角 8.(多选)()如图,一个结晶体的形状为平行六面体ABCD-A 1B 1C 1D 1,其中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中正确的是( )A.AC 1=6√6B.AC 1⊥DBC.向量A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是60°D.BD 1与AC 所成角的余弦值为√63 9.(2020浙江杭州学军中学高二上期中,)棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与AB 所成角的大小是 ,线段EF 的长度为 . 10.(2020天津一中高二期末,)如图,在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°,棱AA 1=2,点N为AA 1的中点. (1)求AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的模;(2)求cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >的值.答案全解全析 基础过关练1.C 结合长方体,如图,可知向量a ,b ,x 共面,x ,y ,z 不共面,b ,c ,z 不共面,x ,y ,a+b+c 也不共面,故选C.方法归纳 判断给出的某一个向量组中的三个向量能否作为基底,关键是要判断它们是否共面,如果从正面难以入手,常用反证法或借助一些常见的几何图形帮助我们进行判断.2.B 空间不共面的三个向量可以作为空间的一个基底,若a ,b ,c 是三个共面的非零向量,则{a ,b ,c}不能作为空间的一个基底;但若{a ,b ,c}为空间的一个基底,则a ,b ,c 不共面,所以a ,b ,c 是三个非零向量,所以p 是q 的必要不充分条件,故选B.3.答案 52,-1,-12解析 由题意得,a 、b 、c 为三个不共面的向量,∴由空间向量基本定理可知必然存在唯一的有序实数组(α,β,γ),使d=αa+βb+γc.∴d=α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+γ(e 1-e 2+e 3)=(α+β+γ)e 1+(α+β-γ)e 2+(α-β+γ)e 3. 又∵d=e 1+2e 2+3e 3,∴{A +A +A =1,A +A -A =2,A -A +A =3⇒{A =52,A =-1,A =-12.4.D A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =12(A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-12a+12b+12c ,故选D. 方法归纳 用基底表示向量的策略:(1)若基底确定,则充分利用向量加法、减法的三角形法则和平行四边形法则以及数乘向量的运算律表示向量;(2)若没有设定基底,首先选择基底,选择基底时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.5.C AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以x=12,y=12,故选C. 6.解析 如图所示,延长PG 交CD 于E ,则E 为CD 的中点.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =13(-k+i+j-k+j)=13i+23j-23k.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=-i+k+13i+23j-23k =-23i+23j+13k.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i+(-23A +23A +13A )=13i+23j+13k.7.C ∵A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M∥D 1P ,∵D 1P ⊂平面DCC 1D 1,A 1M ⊄平面DCC 1D 1,∴A 1M∥平面DCC 1D 1,同理A 1M∥平面D 1PQB 1,故①③④正确.又B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行,故②不正确.故选C.8.A 设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}构成空间的一个基底, A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =a-12c ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b+c ,cos<A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=A 1E ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗|A 1E ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗| =(A -12A )·(A +A )|A -12A ||A +A |=5×2√13=-√1313, 所以异面直线A 1E 与AC 1所成角的余弦值为√1313.9.证明 AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 是三个不共面的向量,它们构成空间的一个基底{AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ },A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ , AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =[12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ]·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ ·AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =[12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ]·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=0, 所以A 1O⊥DG,A 1O⊥BG,又DG ,BG ⊂平面GBD ,BG∩DG=G,所以A 1O⊥平面GBD.10.解析 因为在平行四边形ABCD 中,∠ADC=60°,所以∠BAD=120°,又PA⊥平面ABCD ,所以PA⊥AB,PA⊥AD.因为AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=√AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=√9+16+36+2×3×4×(-12)-0-0=7,即线段PC 的长为7.能力提升练1.C AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+13×12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13b+13c+16a ,故选C. 2.答案 1;-1解析 ∵m ,n 共线,∴∃λ∈R,使m=λn, ∴a-b+c=λ(xa+yb+c),得{1=AA ,-1=AA ,1=A ,解得{A =1,A =1,A =-1.3.解析 (1)AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ). 证明如下:AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13[(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )] =13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ).(2)若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,x ,y ,z∈R,则点P 在△ABC 的内部(不包括边界)的充分必要条件是: x+y+z=1,且0<x<1,0<y<1,0<z<1.4.ABD 如图,设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}是空间的一个正交基底, 则a·b=a·c=b·c=0,取AB 的中点H ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(a+b)=13a+13b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13a+13b-23b-13c=13a-13b-13c ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c-b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13a+13b-13b=13a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13b-(13A +23A )=-13c-13b ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,A 正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,B 正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ≠λAA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ∈R),C 不正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,D 正确.故选ABD.解题反思 本题在解决过程中,重点应用了以下知识点.如图,△ABC 中,若BD ∶DC=λ∶μ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA +A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA +A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .在分线段成比例的图形中,要注意这个公式的应用.5.证明 (1)AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ,DA ,PD ⊂平面PAD , 所以EF∥平面PAD.(2)因为侧面PAD⊥底面ABCD ,侧面PAD∩底面ABCD=AD ,底面ABCD 是正方形,所以CD⊥平面PAD ,CD⊥PA. 设AD=1,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2-2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,即1=12+12-2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 所以AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,所以AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0, 所以EF⊥PD,EF⊥CD,由PD ,CD ⊂平面PCD ,PD∩CD=D,可得EF⊥平面PCD.解题反思 用向量方法证明线面平行或垂直,理论依据是线面平行的判定定理和线面垂直的判定定理,其中涉及的线线平行用共线向量证明,涉及的线线垂直用数量积为0证明.6.解析 (1)由题意得|a|=|b|=|c|=1,a·b=a·c=b·c=12,∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12c-12a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-a , ∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(12A -12A )·(-a)=-14+12=14.(2)∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(b+c)-12a ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(12A +12A -12A )2=14a 2+14b 2+14c 2+12b·c -12b·a -12a·c=12, ∴|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√22.7.证明 (1)易知<AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=120°,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2×(-12)+2×2×12=0.所以AB 1⊥BC.(2)易知四边形AA 1C 1C 为菱形,所以A 1C⊥AC 1.因为AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2×12-4-2×2×12+4 =0,所以AB 1⊥A 1C ,又AC 1∩AB 1=A ,所以A 1C⊥平面AB 1C 1.8.AB 因为以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°, 所以AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6×6×cos60°=18,(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+2AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +2AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=36+36+36+3×2×18=216,则|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=6√6, 所以A 正确;AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2-AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=0,所以B 正确; 显然△AA 1D 为等边三角形,则∠AA 1D=60°.因为A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,且向量A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是120°,所以A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是120°,所以C 不正确; 因为AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=6√2,|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=6√3,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=36,所以cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=6√2×6√3=√66,所以D 不正确.故选AB. 9.答案π4;√22a 解析 设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}是空间的一个基底,∴|a|=|b|=|c|=a ,a·b=a·c=b·c=12a 2.∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(a+b)-12c ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12a 2+12a·b -12a·c=12a 2,|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(12A +12A -12A )2=√22a ,∴cos<AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=12A 2√22a ×a =√22,∴异面直线EF 与AB 所成的角为π4.10.解析 (1)∵在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°, ∴AB=√2,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 1,故AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +14AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=2+14×4=3, ∴|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√3.(2)∵CA=CB=1,∠BCA=90°, ∴∠ABC=45°,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |cos(180°-∠ABC)=√2×1×cos135°=-1, 又AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =4, ∴AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+0+0+4=3,又|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6×√5=√30, ∴cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=√30=√3010.。
第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱的结构特征(1)在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?提示:圆柱的任意两条母线平行,过两条母线的截面是矩形.(2)在圆柱中,过轴的截面是轴截面,圆柱的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆柱的轴截面是矩形,轴截面中含有圆柱的底面圆的直径与圆柱的母线.2.圆锥的结构特征在圆锥中,过轴的截面是轴截面,圆锥的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆锥的轴截面是等腰三角形,轴截面中含有圆锥的底面圆的直径与圆锥的母线.3.圆台的结构特征经过圆台的任意两条母线作截面,截面是什么图形?提示:因为圆台的任意两条母线长度均相等,且延长后相交,故经过任意两条母线的截面是以这两条母线为腰的等腰梯形.4.球的结构特征球体与球面的区别和联系是什么?提示:区别联系球面球的表面是球面,球面是旋转形成的曲面球面是球体的表面球体球体是几何体,包括球面及其所围成的空间部分5.简单组合体定义由简单几何体组合而成的几何体构成的基本形式由简单几何体拼接而成由简单几何体截去或挖去一部分而成1.辨析记忆(对的打“√”,错的打“×”)(1)圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线.( ×)提示:圆柱的母线与轴是平行的.(2)圆台有无数条母线,它们相等,延长后相交于一点. ( √)提示:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台,由此可知此说法正确.(3) 用一个平面去截圆锥,得到一个圆锥和一个圆台.( ×)提示:用与底面平行的平面去截圆锥,才能得到一个圆锥和一个圆台.(4) 用任意一个平面去截球,得到的是一个圆面.( √)提示:因为球是一个几何体,包括表面及其内部,所以用一个平面去截球,得到的是一个圆面.2.如图所示的图形中有( )A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球【解析】选B.根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台.3.(教材习题改编)若一个圆锥的轴截面是等边三角形,其面积为 3 ,则这个圆锥的母线长为________.【解析】如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC =34AB2,所以 3 =34AB2,所以AB=2.答案:2类型一圆柱、圆锥、圆台、球的结构特征(直观想象)1.下列说法中错误的是( )A.以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥B.以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥C.经过圆锥任意两条侧面的母线的截面是等腰三角形D.圆锥侧面的母线长有可能大于圆锥底面圆的直径2.下列说法中正确的是( )①用不过球心的截面截球,球心和截面圆心的连线垂直于截面;②球面上任意三点可能在一条直线上;③球的半径是连接球面上任意一点和球心的线段.A.①B.①②C.①③D.②③3.下列几种说法:①圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;②圆锥的顶点与底面圆周上任意一点的连线是圆锥侧面的母线;③圆柱的轴截面是过侧面的母线的截面中最大的一个;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.【解析】1.选A.A错误.如图(1)所示旋转轴是直角三角形的斜边所在直线时,得到的旋转体不是圆锥;B正确.由圆锥的定义可知此说法正确;C正确.如图(2),由圆锥侧面的母线相等可知,所得截面是等腰三角形;D正确.圆锥侧面的母线和底面圆的直径构成等腰三角形,当圆锥侧面母线和底面的直径所成的夹角大于60°时,圆锥侧面的母线长大于圆锥底面圆的直径.2.选C.由球的结构特征可知①③正确.3.由圆锥的定义及母线的性质知①②正确,圆柱的轴截面过上下底的直径,所以是过母线的截面中最大的一个.④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②③1.判断旋转体形状的步骤(1)明确旋转轴l.(2)确定平面图形中各边(通常是线段)与l的位置关系.(3)依据圆柱、圆锥、圆台、球的定义和一些结论来确定形状.2.与简单旋转体的截面有关的结论(1)圆柱、圆锥、圆台平行于底面的截面都是圆面.(2) 圆柱、圆锥、圆台的轴截面(即过旋转轴的截面)分别是矩形、等腰三角形、等腰梯形.【补偿训练】下列说法正确的是________.(填序号)①一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;②圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;③到定点的距离等于定长的点的集合是球.【解析】①错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.②正确.③错,应为球面.答案:②类型二简单组合体的结构特征(直观想象)【典例】如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?【思路导引】依据简单旋转体的结构特征从上到下逐一分析.【解析】旋转后的图形如图所示.其中图(1)是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图(2)是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.由旋转体组成的简单几何体的确定(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形状.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是_______.【解析】由圆锥的定义知是两个同底的圆锥形成的组合体.类型三旋转体中的计算问题(直观想象、数学运算)角度1 有关圆柱、圆锥、圆台和球的计算问题【典例】(2021·新高考I卷)已知圆锥的底面半径为 2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 2 C.4 D.4 2【解析】选B.设母线长为l,则底面周长为2 2 π,其侧面展开图半周长为πl,故πl=2 2 π,所以l=2 2 .角度2 旋转体表面的两点间的距离最大(小)值【典例】如图,圆台侧面的母线AB的长为20 cm,上、下底面的半径分别为5 cm,10 cm,从母线AB的中点M处拉一条绳子绕圆台侧面转到B点,求这条绳子长度的最小值.【思路导引】转化为在圆台的侧面展开图中,求两个点距离最小值的问题.【解析】作出圆台的侧面展开图,如图所示,由Rt△OPA与Rt△OQB相似,得OAOA+AB=PAQB,即OAOA+20=510,解得OA =20,所以OB =40.设∠BOB ′=α,由弧BB ′的长与底面圆Q 的周长相等, 得2×10×π=π·OB ·α180°, 解得α=90°.所以在Rt △B ′OM 中, B ′M 2=OB ′2+OM 2=402+302=502,所以B ′M =50.即所求绳长的最小值为50 cm.1.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量. (2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想. 2.与圆锥有关的截面问题的解决策略 (1)画出圆锥的轴截面.(2)在轴截面中借助直角三角形或三角形的相似关系建立高、母线长、底面圆的半径长的等量关系,求解便可.1.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6【解析】选D.圆台的母线长l 、高h 和上、下两底面圆的半径r ,R 满足关系式l 2=h 2+(R -r)2,求得h =2 6 ,即两底面之间的距离为2 6 .2.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M. (1)若OA =1,求圆M 的面积;(2)若圆M 的面积为3π,求OA. 【解析】(1)若OA =1,则OM =12 ,故圆M 的半径r =OA 2-OM 2 =12-⎝ ⎛⎭⎪⎫122=32 ,所以圆M 的面积S =πr 2=34π.(2)因为圆M 的面积为3π,所以圆M 的半径r = 3 , 则OA 2=⎝ ⎛⎭⎪⎫OA 2 2+3,所以34 OA 2=3,所以OA 2=4,所以OA =2.。
新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。
人教A 版选择性必修第一册:空间向量与立体几何一.选择题(共9小题)1.在下列条件中,使M 与A ,B ,C 一定共面的是( ) A .OM OA OB OC =-- B .111532OM OA OB OC =++C .0MA MB MC ++=D .0OM OA OB OC +++=2.若向量a ,b ,c 不共面,则下列选项中三个向量不共面的是( )A .,,b c b b c -+B .,,a b c a b c +++C .,,a b a b c +-D .,,a b a b a -+3.已知空间三点(0A ,1,2),(1B ,3,5),(2C ,5,4)k -在一条直线上,则实数k 的值是( ) A .2B .4C .4-D .2-4.空间点(A x ,y ,)z ,(0O ,0,0),B ,若||1AO =,则||AB 的最小值为()A .1B .2C .3D .45.在空间直角坐标系Oxyz 中,若点2(4M a a -,3b +,21)c +关于y 轴的一个对称点M '的坐标为(4,2-,15),则a b c ++的值( ) A .等于10B .等于0C .等于11-D .不确定6.已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN 的取值范围为( ) A .[0,4] B .[0,2]C .[1,4]D .[1,2]7.如图,已知正方体1111ABCD A B C D -中,点E 为上底面11A C 的中心,若1AE AA xAB y AD =++则(x y += )A .12B .1C .32D .28.已知直线l 的一个方向向量(2m =,1-,3),且直线l 过(0A ,y ,3)和(1B -,2,)z 两点,则(y z -= ) A .0B .1C .32D .39.已知正四面体D ABC -的各棱长为1,点E 是AB 的中点,则EC AD 的值为( ) A .14 B .14-C .3 D .3-二.多选题(共3小题)10.在棱长为1的正方体1111ABCD A B C D -中,下列结论正确的是( )A .异面直线1BD 与1BC 所成的角大小为90︒ B .四面体1D DBC 的每个面都是直角三角形C .二面角11D BC B --的大小为30︒D .正方体1111ABCD A B C D -31-11.如图,在长方体1111ABCD A B C D -中,5AB =,4AD =,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B 对称的点为(5,8,3)- C .点A 关于直线1BD 对称的点为(0,5,3) D .点C 关于平面11ABB A 对称的点为(8,5,0)12.定义空间两个向量的一种运算||||sin a b a b a =<⊗,b >,则关于空间向量上述运算的以下结论中恒成立的有( ) A .a b b a =⊗⊗ B .()()a b a b λλ=⊗⊗C .()()()a b c a c b c +=+⊗⊗⊗D .若1(a x =,1)y ,2(b x =,2)y ,则1221||a b x y x y =-⊗ 三.填空题(共2小题)13.如图,四棱锥S ABCD -的底面为正方形,SD ⊥面ABCD ,SD AB =,则异面直线SB 与AC 所成角的大小为 ,二面角S AB D --的大小为 .14.如图,正三棱柱111ABC A B C -的底面边长为2,侧棱长为22,则1AC 与面11ABB A 所成的角为 .四.解答题(共7小题)15.如图,在正三棱柱111ABC A B C -中,12AB AA ==,E ,F ,G 分别为1AA ,11A C ,AB 的中点.(1)求异面直线1BC 与EF 所成角的余弦值; (2)求二面角1B EG F --的余弦值.16.如图,已知四棱锥P ABCD -中,PA PD =,底面ABCD 为棱形,60BAD ∠=︒,点E 为AD 的中点.(1)证明:平面PBC ⊥平面PBE ;(2)若PE AB ⊥,二面角D PA B --的余弦值为5,且4BC =,求PE 的长.17.如图,在正三棱柱111ABC A B C -中,D 为AB 的中点,E 为棱1BB 上一点,且1AE AC ⊥. (1)在下列两个问题中任选一个作答,如果两个都作答,则按第一个解答计分. ①证明:AE ⊥平面1ACD . ②证明:1//BC 平面1ACD . (2)若2AB =,13AA =,求二面角11A BC C --的余弦值.18.如图,在三棱柱111ABC A B C -中,11AA C C 是边长为4的正方形.平面ABC ⊥平面11AA C C ,3AB =,5BC =.(1)求证:1AA ⊥平面ABC ; (2)求二面角111A BC B --的余弦值; (3)求点C 到平面11A BC 的距离.19.如图,在长方体1111ABCD A B C D -中,14AD AA ==,2AB =,E 、M 、N 分别是BC 、1BB 、1A D 的中点.(1)证明://MN 平面CDE ; (2)求点C 到平面1C DE 的距离;(3)设P 为边AB 上的一点,当直线PN 与平面11A ADD 所成角的正切值为24时,求二面角1N A P M --的余弦值.20.四棱锥P ABCD-中,侧面PAB为正三角形,底面ABCD是正方形,且平面PAB⊥平面ABCD,E,F分别为PB,BC中点,2AB=.(Ⅰ)求证:平面AEF⊥平面PBC;(Ⅱ)棱AD上是否存在点M,使得BM与平面PAD所成角为45︒?若存在,求AM的长度;若不存在,说明理由.21.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (Ⅰ)求证://DF 平面ABE ;(Ⅱ)求平面ABE 与平面EFB 所成锐二面角的余弦值.(Ⅲ)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为3,若存在,求出线段BP 的长,若不存在,请说明理由.人教A 版选择性必修第一册:空间向量与立体几何参考答案与试题解析一.选择题(共9小题)1.在下列条件中,使M 与A ,B ,C 一定共面的是( ) A .OM OA OB OC =-- B .111532OM OA OB OC =++C .0MA MB MC ++=D .0OM OA OB OC +++=【解答】解:在C 中,由0MA MB MC ++=,得MA MB MC =--,则MA 、MB 、MC 为共面向量,即M 、A 、B 、C 四点共面;对于A ,由OM OA OB OC =--,得11111--=-≠,不能得出M 、A 、B 、C 四点共面;对于B ,由111532OM OA OB OC =++,得1111532++≠,所以M 、A 、B 、C 四点不共面;对于D ,由0OM OA OB OC +++=,得()OM OA OB OC =-++,其系数和不为1,所以M 、A 、B 、C 四点不共面.故选:C .【点评】本题考查了空间向量基本定理,也考查了分析问题、解决问题的能力,是基础题. 2.若向量a ,b ,c 不共面,则下列选项中三个向量不共面的是( ) A .,,b c b b c -+ B .,,a b c a b c +++C .,,a b a b c +-D .,,a b a b a -+【解答】解:向量a ,b ,c 不共面,则下列选项中三个向量A ,b c -与b c +共面,进而得出三个向量共面..()B a b c a b c ++=++,因此三个向量共面. C .三个向量不共面;D .不含有c ,三个向量一定共面.故选:C .【点评】本题考查了向量共面定理、向量的基,考查了推理能力与计算能力,属于基础题. 3.已知空间三点(0A ,1,2),(1B ,3,5),(2C ,5,4)k -在一条直线上,则实数k 的值是( ) A .2B .4C .4-D .2-【解答】解:(1AB =,2,3),(2AC =,4,2)k -,空间三点(0A ,1,2),(1B ,3,5),(2C ,5,4)k -在一条直线上, 则存在实数m ,使得AC mAB =, ∴24223m m k m =⎧⎪=⎨⎪-=⎩,解得2m =,4k =-. 故选:C .【点评】本题考查了向量共线定理,考查了推理能力与计算能力,基础中档题.4.空间点(A x ,y ,)z ,(0O ,0,0),B ,若||1AO =,则||AB 的最小值为()A .1B .2C .3D .4【解答】解:空间点(A x ,y ,)z ,(0O ,0,0),B ,||1AO =,A ∴是以O 为球心,1为半径的球上的点,B,||3OB ∴=.||AB ∴的最小值为:|||||312OB OA -=-=.故选:B .【点评】本题考查线段长的最小值的求法,考查两点间距离公式等基础知识,考查运算求解能力,是基础题.5.在空间直角坐标系Oxyz 中,若点2(4M a a -,3b +,21)c +关于y 轴的一个对称点M '的坐标为(4,2-,15),则a b c ++的值( ) A .等于10B .等于0C .等于11-D .不确定【解答】解:在空间直角坐标系Oxyz 中,点2(4M a a -,3b +,21)c +关于y 轴的一个对称点M '的坐标为(4,2-,15),∴244322115a a b c ⎧-=-⎪+=-⎨⎪+=-⎩,解得2a =,5b =-,8c =-,25811a b c ∴++=--=-.故选:C .【点评】本题考查代数式的值的求法,考查空间直角坐标系中点的对称的性质等基础知识,考查运算求解能力,是基础题.6.已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN 的取值范围为( ) A .[0,4]B .[0,2]C .[1,4]D .[1,2]【解答】解:以1D 为坐标原点,以11D A ,11D C ,1D D 所在直线为x 轴,y 轴,z 轴, 建立空间直角坐标系,如图所示;设正方体内切球球心为S ,MN 是该内切球的任意一条直径, 则内切球的半径为1,所以2()()()()1[0PM PN PS SM PS SN PS SM PS SM PS =++=+-=-∈,2]. 所以PM PN 的取值范围是[0,2]. 故选:B .【点评】本题以正方体为载体,考查了线面、面面位置关系,以及空间向量的数量积应用问题,是中档题.7.如图,已知正方体1111ABCD A B C D -中,点E 为上底面11A C 的中心,若1AE AA xAB y AD =++则(x y += )A .12B .1C .32D .2【解答】解:正方体1111ABCD A B C D -中,点E 为上底面11A C 的中心,111111111()222AE AA A E A B A D AB AD =+=+=+,1AE AA xAB y AD =++,11122x y ∴+=+=. 故选:B .【点评】本题考查代数式求值,考查空间向量加法法则等基础知识,考查运算求解能力,是基础题.8.已知直线l 的一个方向向量(2m =,1-,3),且直线l 过(0A ,y ,3)和(1B -,2,)z 两点,则(y z -= ) A .0B .1C .32D .3【解答】解:(1AB =-,2y -,3)z -. ∴AB km =.12k ∴-=,2y k -=-,33z k -=.解得12k =-,32y z ==.0y z ∴-=.故选:A .【点评】本题考查了直线的方向向量、方程的解法,考查了推理能力与计算能力,属于基础题.9.已知正四面体D ABC -的各棱长为1,点E 是AB 的中点,则EC AD 的值为( ) A .14 B .14-C .3 D .3-【解答】解:如图所示,正四面体ABCD 的棱长是a ,E 是AB 的中点;∴111()11cos6011cos60224EC AD EA AC AD AB AD AC AD =+=-+=-⨯⨯⨯︒+⨯⨯︒=;故选:A .【点评】本题考查了向量的线性表示与数量积运算问题,是基础题. 二.多选题(共3小题)10.在棱长为1的正方体1111ABCD A B C D -中,下列结论正确的是( )A .异面直线1BD 与1BC 所成的角大小为90︒ B .四面体1D DBC 的每个面都是直角三角形C .二面角11D BC B --的大小为30︒D .正方体1111ABCD A B C D -31-【解答】解:如图,在棱长为1的正方体1111ABCD A B C D -中, 11D C ⊥平面11BB C C ,则111D C B C ⊥,又11B C BC ⊥, 1111D C BC C =,1B C ∴⊥平面11BC D ,则11B C BD ⊥,即异面直线1BD 与1B C 所成的角大小为90︒,故A 正确;1DD ⊥底面ABCD ,1DD DB ∴⊥,1DD DC ⊥,再由BC ⊥平面11DD C C ,可得BC DC ⊥,1BC D C ⊥,得四面体1D DBC 的每个面都是直角三角形,故B 正确; 由BC ⊥平面11DD C C ,可得1BC D C ⊥,1BC CC ⊥,即11D CC ∠为 二面角11D BC B --的平面角,大小为45︒,故C 错误; 正方体1111ABCD A B C D -的内切球的半径为12,外接球的半径为3,则正方体1111ABCD A B C D -的内切球上一点与外接球上一点的距离的最小值为31-,故D 正确. 故选:ABD .【点评】本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,考查运算求解能力,是中档题.11.如图,在长方体1111ABCD A B C D -中,5AB =,4AD =,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B 对称的点为(5,8,3)- C .点A 关于直线1BD 对称的点为(0,5,3) D .点C 关于平面11ABB A 对称的点为(8,5,0)【解答】解:由图形及其已知可得:点1B 的坐标为(4,5,3),点1(0C ,5,3)关于点B 对称的点为(8,5,3)-,点A 关于直线1BD 对称的点为1(0C ,5,3),点(0C ,5,0)关于平面11ABB A 对称的点为(8,5,0). 因此ACD 正确. 故选:ACD .【点评】本题考查了空间点的对称性、中点坐标公式,考查了推理能力与计算能力,属于基础题.12.定义空间两个向量的一种运算||||sin a b a b a =<⊗,b >,则关于空间向量上述运算的以下结论中恒成立的有( ) A .a b b a =⊗⊗ B .()()a b a b λλ=⊗⊗C .()()()a b c a c b c +=+⊗⊗⊗D .若1(a x =,1)y ,2(b x =,2)y ,则1221||a b x y x y =-⊗【解答】解:对于A ,||||sin a b a b a =<⊗,b >,||||sin b a b a b ==<⊗,a >,故a b b a =⊗⊗恒成立;对于:()(||||sin B a b a b a λλ=<⊗,)b >,()||||||sin a b a b a λλλ=<⊗,b >, 故()()a b a b λλ=⊗⊗不会恒成立;对于C ,若a b λ=,且0λ>,()(1)||||sin a b c b c b λ+=+<⊗,c >,()()||||sin a c b c b c b λ+=<⊗⊗,||||sin c b c b >+<,(1)||||sin c b c b λ>=+<,c >,显然()()()a b c a c b c +=+⊗⊗⊗不会恒成立;对于D ,cos a <,1212||||x x y y b a b +>=,sin a <,212121()||||x x y y b a b +>=-, 即有22212121212||||1()||||()||||||x x y y x x y y a b a b a b a a b ++=-=-⊗22222121211222211()x x y y x y x y x y +=++-+22222222211221212122112121221()()()2||x y x y x x y y x y x y x x y y x y x y =++-+=+-=-.则1221||a b x y x y =-⊗恒成立. 故选:AD .【点评】本题考查了向量的数量积和向量的模的公式,利用给出的定义进行证明结论,计算量很大.三.填空题(共2小题)13.如图,四棱锥S ABCD -的底面为正方形,SD ⊥面ABCD ,SD AB =,则异面直线SB 与AC 所成角的大小为 90︒ ,二面角S AB D --的大小为 .【解答】解:连接BD ,交AC 于点O ,取SD 的中点M ,连接OM 、AM 、CM ,则//OM SB , AOM ∴∠即为异面直线SB 与AC 所成角.SD ⊥面ABCD ,90ADS CDS ∴∠=∠=︒,正方形ABCD ,AD CD ∴=,又DM DM =,ADM CDM ∴∆≅∆,AM CM ∴=, O 为AC 的中点,OM AC ∴⊥,90AOM ∠=︒,故异面直线SB 与AC 所成角的大小为90︒.SD ⊥面ABCD ,SAD ∴∠即为二面角S AB D --的平面角. SD AB AD ==,Rt ADS ∴∆为等腰直角三角形,45SAD ∴∠=︒.故二面角S AB D --的大小为45︒. 故答案为:90︒;45︒.【点评】本题考查空间中角的求法,通过平移的思想找出异面直线的平面角,以及理解二面角的定义是解题的关键,考查学生的空间立体感、逻辑推理能力,属于基础题.14.如图,正三棱柱111ABC A B C -的底面边长为2,侧棱长为22,则1AC 与面11ABB A 所成的角为6π.【解答】解:取11A B 中点D ,连结1C D ,AD ,正三棱柱111ABC A B C -的底面边长为2,侧棱长为22 111C D A B ∴⊥,11C D AA ⊥,1111A B AA A =,1C D ∴⊥平面11ABB A ,1AC ∴与面11ABB A 所成的角为1DAC ∠, 221213C D =-=,22(22)13AD =+=,113tan C D DAC AD ∴∠==,16DAC π∴∠=. 1AC ∴与面11ABB A 所成的角为6π. 故答案为:6π.【点评】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 四.解答题(共7小题)15.如图,在正三棱柱111ABC A B C -中,12AB AA ==,E ,F ,G 分别为1AA ,11A C ,AB 的中点.(1)求异面直线1BC 与EF 所成角的余弦值; (2)求二面角1B EG F --的余弦值.【解答】解:(1)连接1AC ,E ,F 分别为1AA ,11A C 的中点,1//EF AC ∴,1AC B ∴∠即为异面直线1BC 与EF 所成角.由正三棱柱的性质可知,221114422AC BC CC BC ==+=+=,在1ABC ∆中,由余弦定理知,222111113cos 2422222AC BC AB AC B AC BC +-∠===⨯⨯. 故异面直线1BC 与EF 所成角的余弦值为34.(2)以C 为原点,CA 、1CC 分别为x 和z 轴,作Cy ⊥面11ACC A ,建立如图所示的空间直角坐标系,则(0C ,0,0),(2E ,0,1),(1F ,0,2),3(2G 3,0),∴1(2EG =-3,1)-,(1EF =-,0,1),设平面EFG 的法向量为(m x =,y ,)z ,则00m EG m EF ⎧=⎪⎨=⎪⎩,即13020x y z x z ⎧--=⎪⎨⎪-+=⎩, 令1x =,则1z =,3y =,∴(1m =31). 由正三棱柱的性质可知,1AA ⊥面ABC , CG ⊂面ABC ,1AA CG ∴⊥,ABC ∆为正三角形,且G 为AB 的中点,CG AB ∴⊥, 1AA AB A =,1AA 、AB ⊂面1B EG ,CG ∴⊥面1B EG ,即平面1B EG 的法向量n 与CG 平行,∴(3n =,1,0).cos m ∴<,3315||||1312m n n m n +>===++⨯,由图可知,二面角1B EG F --为锐二面角, 故二面角1B EG F --的余弦值为15. 【点评】本题考查空间中异面直线夹角和二面角的求法,通过平移的思想找到异面直线的平面角,以及掌握利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.16.如图,已知四棱锥P ABCD -中,PA PD =,底面ABCD 为棱形,60BAD ∠=︒,点E 为AD 的中点.(1)证明:平面PBC ⊥平面PBE ;(2)若PE AB ⊥,二面角D PA B --的余弦值为5,且4BC =,求PE 的长.【解答】(1)证明:连接BD ,四边形ABCD 是菱形,且60BAD ∠=︒,ABD ∴∆是等边三角形, E 为AD 的中点,BE AD ∴⊥,又PA PD =,PE AD ∴⊥,BE 、PE ⊂面PBE ,BE PE E =,AD ∴⊥面PBE ,//AD BC ,BC ∴⊥面PBE ,BC ⊂面PBC ,∴平面PBC ⊥平面PBE .(2)解:由(1)知,PE AD ⊥,BE AD ⊥,PE AB ⊥,AB 、AD ⊂面ABCD ,ABAD A =,PE ∴⊥面ABCD ,PE BE ∴⊥,故PE 、AD 、BE 两两相垂.以E 为原点,EB 、ED 、EP 分别为x 、y 、z 轴建立如图所示的空间直角坐标系,设(0)PE x x =>,则(0P ,0,)x ,(0A ,2-,0),(0D ,2,0),(23B ,0,0), ∴(0AP =,2,)x ,(0AD =,4,0),(23AB =,2,0),设平面PAD 的法向量为(m a =,b ,)c ,则0m AP m AD ⎧=⎪⎨=⎪⎩,即2040b cx b +=⎧⎨=⎩,令1a =,则(1m =,0,0).同理可得,平面PAB 的法向量(n x =,3x -,23),|cos m ∴<,225|||||||||1312m n n m n x x >===⨯++23x =±,23PE ∴=【点评】本题考查空间中线与面的垂直关系、二面角的求法,熟练运用空间中线面、面面垂直的判定定理与性质定理,以及掌握利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.17.如图,在正三棱柱111ABC A B C -中,D 为AB 的中点,E 为棱1BB 上一点,且1AE AC ⊥. (1)在下列两个问题中任选一个作答,如果两个都作答,则按第一个解答计分. ①证明:AE ⊥平面1ACD .②证明:1//BC 平面1ACD . (2)若2AB =,13AA =,求二面角11A BC C --的余弦值.【解答】(1)选择① 证明:D 为AB 的中点,AC BC =,CD AB ∴⊥,在正三棱柱111ABC A B C -中,1AA ⊥底面ABC ,则1AA CD ⊥, 1ABAA A =,AB 、1AA ⊂平面11ABB A ,CD ∴⊥平面11ABB A ,AE ⊂平面11ABB A ,CD AE ∴⊥,又1AE AC ⊥,1CD A C C =,CD 、1A C ⊂平面1ACD ,AE ∴⊥平面1ACD . 选择②证明:连接1AC ,交1A C 于点O ,连接OD ,侧面11ACC A 为平行四边形,O ∴为线段1AC 的中点,D 为AB 的中点,1//OD BC ∴,OD ⊂平面1ACD ,1BC ⊂/平面1ACD ,1//BC ∴平面1ACD .(2)解:以D 为原点,DB 、DC 分别为x 和y 轴,作Dz ⊥面ABC ,建立如图所示的空间直角坐标系,则(1B ,0,0),(0C ,3,0),1(0C,3,3),1(1A -,0,3), ∴11(1A C =,3,0),1(1BC =-,3,3),(1BC =-,3,0),设平面11A BC 的法向量为(m x =,y ,)z ,则11100m AC m BC ⎧=⎪⎨=⎪⎩,即30330x y x y z ⎧+=⎪⎨-++=⎪⎩,令3x =,则3y =-,2z =,∴(3m =,3-,2). 同理可得,平面1BC C 的法向量(3n =,1,0). cos m ∴<,3333||||9342m n n m n ->===++⨯.由图可知,二面角11A BC C --为钝角, 故二面角11A BC C --的余弦值为3-. 【点评】本题考查空间中线与面的位置关系、二面角的求法,熟练运用空间中线面、面面平行或垂直的判定定理与性质定理,以及掌握利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.18.如图,在三棱柱111ABC A B C -中,11AA C C 是边长为4的正方形.平面ABC ⊥平面11AA C C ,3AB =,5BC =.(1)求证:1AA ⊥平面ABC ; (2)求二面角111A BC B --的余弦值; (3)求点C 到平面11A BC 的距离.【解答】证明:(1)因为11AA C C 为正方形,所以1AA AC ⊥. 因为平面ABC ⊥平面11AA C C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(3分)解:(2)由(1)知,1AA AC ⊥,1AA AB ⊥. 由题意知3AB =,5BC =,4AC =, 所以AB AC ⊥.如图,以A 为原点建立空间直角坐标系A xyz -,则(0B ,3,0),1(0A ,0,4),1(0B ,3,4),1(4C ,0,4). 设平面11A BC 的法向量为(n x =,y ,)z , 则11100n A B n A C ⎧=⎪⎨=⎪⎩,即34040y z x -=⎧⎨=⎩.令3z =,则0x =,4y =, 所以(0,4,3)n =.同理可得,平面11BC B 的法向量为(3,4,0)m =. 所以16cos ,||||25m n m n m n <>==.由题知二面角111A BC B --为锐角,所以二面角111A BC B --的余弦值为1625.(3)由(2)知平面11A BC 的法向量为以(0,4,3)n =,1(0,0,4)CC = 所以点C 到平面11A BC 距离112||5C C n d n ==.【点评】本题考查了平面与平面垂直的性质定理,直线和平面垂直的判定定理,考查了法向量、空间向量在立体几何中的应用和二面角的求法,考查了空间想象能力和推理论证能力.19.如图,在长方体1111ABCD A B C D -中,14AD AA ==,2AB =,E 、M 、N 分别是BC 、1BB 、1A D 的中点.(1)证明://MN 平面CDE ; (2)求点C 到平面1C DE 的距离;(3)设P 为边AB 上的一点,当直线PN 与平面11A ADD 所成角的正切值为2时,求二面角1N A P M --的余弦值.【解答】解:(1)证明:连结1B C ,M ,E 分别为1BB ,BC 的中点,1//ME BC ∴,且112ME B C =, N 为1A D 的中点,112ND A D ∴=, 由题设知11//A B DC ,且11A B DC =,可得11//B C A D ,且11B C A D =, //ME ND ∴,且ME ND =,又MN ⊂/平面1EDC ,//MN ∴平面1C DE .(2)解:在Rt △1C CE 中,221125C E C C CE =+ 在Rt △11C D D 中,22111125C D D C D D =+=, 在Rt ECD ∆中,2222DE DC CE =+= 可得等腰三角形1C DE 中,底边上的高为32∴11223262C DES=⨯⨯=, 设点C 到平面1C DE 的距离为h , 1C C ⊥平面DEC ,∴由11C DEC C C ED V V --=,得122462h ⨯⨯⨯=,解得43h =.∴点C 到平面1C DE 的距离43h =. (3)解:AP ⊥平面11A ADD ,ANP ∴∠为直线PN 与平面11A ADD 所成角,∴222AP NA ==,解得1AP =, 取1AA 中点Q ,连结NQ ,过点Q 作1QH A P ⊥,交1A P 于点H ,连结NH , 由题意得NQ ⊥平面11A ABB ,NHQ ∴∠是二面角1N A P A --的平面角, 由题意得△1A AD ∽△1A NQ ,∴11AQ A P QH AD=,∴217QH =, 在Rt NQH ∆中,6217NH =,解得2cos NHQ ∠=, 二面角1N A P A --与二面角1N A P M --互补, ∴二面角1N A P M --的余弦值为26-.【点评】本题考查线面平行的证明,点到平面的距离、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.四棱锥P ABCD -中,侧面PAB 为正三角形,底面ABCD 是正方形,且平面PAB ⊥平面ABCD ,E ,F 分别为PB ,BC 中点,2AB =. (Ⅰ)求证:平面AEF ⊥平面PBC ;(Ⅱ)棱AD 上是否存在点M ,使得BM 与平面PAD 所成角为45︒?若存在,求AM 的长度;若不存在,说明理由.【解答】解:(Ⅰ)证明:PAB ∆为等边三角形,E 为PB 的中点,AE PB ∴⊥. 底面ABCD 是正方形,BC AB ∴⊥,又平面PAB ⊥平面ABCD ,且平面PAB ⋂平面ABCD AB =, BC ∴⊥平面PAB ,则BC AE ⊥,又AE PB ⊥,PB BC B =,AE ∴⊥平面PBC ,而AE ⊂平面AEF ,∴平面AEF ⊥平面PBC ;(Ⅱ)取PA 中点G ,连接BG ,同(Ⅰ)可证BG ⊥平面PAD .假设棱AD 上存在点M ,使得BM 与平面PAD 所成角为45︒,连接BM ,GM , 则BGM ∠为BM 与平面PAD 所成角为45︒,则GM BG =, 在等边三角形PAB 中,由2AB =,得3BG GM ==, 在Rt GAM ∆中,由3GM =,1GA =,得2AM =.故棱AD 上存在点M ,使得BM 与平面PAD 所成角为45︒,AM 的长度为2.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了存在性问题的求解方法,是中档题.21.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF EDCF ⊥平面ABCD .(Ⅰ)求证://DF 平面ABE ;(Ⅱ)求平面ABE 与平面EFB 所成锐二面角的余弦值.(Ⅲ)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为3,若存在,求出线段BP 的长,若不存在,请说明理由.【解答】解:(Ⅰ)证明:取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立空间直角坐标系, 如图所示;则(1A ,0,0),(1B ,2,0),(0E ,03),(1F -,23), (1BE =-,2-3),(0AB =,2,0),设平面ABE 的法向量为(n x =,y ,)z , ∴23020x y z y ⎧--+=⎪⎨=⎪⎩,不妨设(3n =,0,1), 又(1DF =-,23), ∴3030DF n =-+=, ∴DF n ⊥;又DF ⊂/平面ABE ,//DF ∴平面ABE ;(Ⅱ)(1BE =-,2-3),(2BF =-,03),设平面BEF 的法向量为(m x =,y ,)z , ∴230230x y z x z ⎧--+=⎪⎨-=⎪⎩,则(23m =,3,4),531|cos ||||||231m n m n θ∴===⨯⨯, ∴平面ABE 与平面EFB 所成锐二面角的余弦值是531; (Ⅲ)设(1DP DF λλ==-,2,3)(λ=-,2λ,3)λ,[0λ∈,1]; (P λ∴-,2λ,3)λ,(1BP λ=--,22λ-,3)λ, 又平面ABE 的法向量为(3n =,0,1), sin |cos BP θ∴=<,|n > ||||||BP n BP n =⨯ 222|3(1)3|(1)(22)(3)2λλλλλ--+=--+-+⨯ 3=, 化简得28610λλ-+=, 解得12λ=或14λ=; 当12λ=时,3(2BP =-,1-,3),||2BP ∴=; 当14λ=时,5(4BP =-,32-,3),||2BP ∴=; 综上,||2BP =.。