基于ANSYS的双转子异步电机结构优化设计
- 格式:pdf
- 大小:209.39 KB
- 文档页数:2
现代工业上旋转机械单机容量在不断增大,而转子直径不可能随其容量的增大而按比例增大。
高转速轻结构是近代高速旋转机械的发展和设计趋势。
本文使用ansys研究了电机转子动力学问题,得出ansys可以计算转子动力学问题。
1 引言转子动力学的研究,最早可追溯到十九世纪六十年代。
一个多世纪以来,随着大工业的发展,转子系统被广泛地应用于包括燃气轮机、航空发动机、工业压缩机等机械装置中,在电力、航空、机械、化工、纺织等领域中起着非常重要的作用。
因而,转子动力学有着极强的工程应用背景,其相关的研究工作也越来越受到人们的重视。
由于材质的不均匀,制造、加工及安装误差等,转子系统不可避免的存在着质量偏心,同时转子在工作过程中还可能产生热变形以及磨损和介质的姑附等现象,这些因素或多或少都会导致转子不平衡的增大从而使转子的不平衡振动增大。
由过大的不平衡量引起的转子系统的振动是十分有害的,它使机械的效率降低、载荷增加,使一些零部件易于磨损、疲劳而缩短寿命,较大的振动还会恶化操作人员的劳动环境,甚至会导致发生机毁人亡的严重事故。
消除或者减小转子系统的振动首先考虑是对转子进行平衡。
现代工业上旋转机械单机容量在不断增大,而转子直径不可能随其容量的增大而按比例增大。
高转速轻结构是近代高速旋转机械的发展和设计趋势。
转子设计和发展的这种趋势对转子的质量不平衡提出了严格的限制。
这种情况下,转子的动力学变得更加突出和重要。
本文使用ansys研究了某电机转子的动力学问题,为转子动力学设计找到了一个新的途径。
2 模型的建立及计算如图1所示,为电子转子的有限元模型,使用BEAM188单元模拟转子的轴,使用MASS21单元模拟转子,使用单元COMBI214模拟轴承。
图1 电机转子的有限元模型(不显示单元)图2 电机转子的有限元模型(显示单元)图3给出了Beam188 单元的几何简图。
Beam188单元适合于分析从细长到中等粗短的梁结构,该单元基于铁木辛哥梁结构理论,并考虑了剪切变形的影响。
基于ANSYS Maxwell的电机多目标优化分析1前言电机设计是一个比较复杂的问题,不能仅仅考虑单个指标,而是要考虑一组设计指标,包括效率、成本、转矩、振动、温升、控制等。
这些指标经常相互矛盾、相互掣肘,例如性能与成本、效率与脉动、空载性能与负载性能、电磁性能与振动噪声性能等。
这时候,我们需要用到一些数学上的优化算法来求取最优解,事实上当优化目标比较多的时候,一个绝对的最优解并不存在的,往往是一个指标变好,另一个指标可能会变差。
我们通过优化方法得到的优化解,往往不是一个点,是一组解,也称为Pareto最优解,而这个过程也称为多目标优化。
优化分析是数学方法,必须要基于精确的电机分析技术才有意义,否则优化分析只能是空中楼阁,中看不中用。
而幸运的是随着计算机技术和有限元的发展,电机分析和设计的方法由最初的经验设计、路算法分析,发展到基于有限元的电磁场、温度场和结构场分析,一直到现在的多物理场耦合分析,电机分析的精度和速度都大大提高,这给电机的多目标优化分析提供了基础。
一个完整的有工程意义的电机多目标优化流程,必须具备以下几个条件。
(1)输入模型的参数化,包括几何尺寸、温度、激励等(2)输出变量的参数化,转矩、效率、谐波分量、成本、噪声等(3)分析流程的全自动化,如果优化过程涉及到多个分析模型、甚至是多个不同物理域的模型,他们之间的数据传递必须能够无缝连接,而且能够全自动完成(4)求解器要能够支持多任务并行计算,多目标优化可能需要计算成百上千种方案,多任务并行计算能有效的加快分析进度(5)需要有一个高效的优化工具,支持遗传、粒子群等多目标优化算法2基于ANSYS Maxwell的多目标优化方法介绍以上提及的多目标优化的各种条件,ANSYS都能够很好的满足。
ANSYS提供基于Workbench的多物理场优化平台,计算精度早已得到验证,ANSYS产品也嵌入了多种不同层次的优化器,可以根据需要,便捷的实现多目标优化分析。
ANSYS双转⼦电机的转⼦谐响应分析[转]/s/blog_9e19c10b0102vd5y.html【问题描述】⼀个双转⼦电机如图所⽰该电机含有两个转⼦:内转⼦和外转⼦。
内转⼦是⼀根实⼼轴,较长;它的两端通过轴承与机架相连;在两端距离轴承不远的地⽅装有两个圆盘(图中没有绘制,在有限元分析中圆盘会⽤质量单元表⽰),⽽且右边的圆盘上存在不平衡质量,该不平衡质量产⽣了不平衡的⼒。
外转⼦是⼀根空⼼轴,它套在内转⼦外⾯。
外转⼦的左端与机架通过轴承相连,右端⾯通过轴承与内转⼦连接(图中没有表⽰出来)。
在外转⼦上也有两个圆盘,这两个圆盘不存在偏⼼质量的问题。
内转⼦的转速是14000转每分,⽽外转⼦的转速是21000转每分。
所有的相关⼏何尺⼨,轴承的参数,以及圆盘的质量和惯性量,在下⾯建模的时候给出。
现在要对该双转⼦电机进⾏转⼦动⼒学仿真,具体是做谐响应分析,⽬的是考察:(1)7号节点(内转⼦上)和12号节点(外转⼦上)的幅值与频率的关系图。
也就是要绘制这两个点的幅频关系曲线。
(2)在某⼀个给定频率处的转轴轨迹图。
(3)在某⼀个给定频率处转轴的涡动动画。
《注》该算例来⾃于ANSYS APDL转⼦动⼒学部分的帮助实例。
【范例说明】给出本例⼦的⽬的,是想说明:(1)如何⽤ANSYS经典界⾯做转⼦的谐响应分析。
(2)如何对转⼦系统中的轴承建模。
(3)如何建模不平衡质量。
【问题分析】1. 对于内转⼦⽤梁单元BEAM188建模,对于外转⼦也⽤BEAM188建模。
由于这⾥涉及到圆盘的位置,集中质量的位置,准备⽤直接建模法。
这就是说,先创建节点,然后由节点创建单元。
2. 对于4个轴承,使⽤COMBI214建模,该单元是⼆维的弹簧/阻尼单元,⽀持在两个⽅向上定义刚度和阻尼特性。
3.对于4个圆盘,使⽤MASS21建模。
质点单元创建在相应的转轴上,设置其质量和转动惯量。
4.由于内外转⼦的转速不同,需要分别定义两个组件,并对每个组件给以不同的转速。
基于ANSYS三相异步电机实验平台设计作者:刘杰吴凡夫梅建伟来源:《科技风》2020年第22期摘要:课题利用ANSYS软件建立了三相异步电机仿真模型,对物理环境、定子/转子等模型建立以及单元属性类别等涉及到三相异步电机建模的几个关键要素进行了详细的阐述,利用matlab建立了异步电机转子磁场定向矢量控制系统模型,分析了ANSYS与matlab的协同仿真技术。
实验结果表明,该实验平台使得抽象的概念更加清晰直观,满足了电机实验系统的要求。
关键词:ANSYS;三相异步电机;建模;仿真传统电机的设计中开发和实验周期长成本高,而现代电机由于磁极形状、齿槽分布等复杂多样,使得磁路十分复杂,使得经典的电机设计及其实验方法已经不能满足需要。
针对电机设计和实验中的核心问题,采用ANSYS软件建立异步电机定子/转子等模型,与其他软件协同仿真,准确地计算出电机的磁场分布、电感、力矩等,分析电机的散热、机械特性以及电磁性能[1]。
1 ANSYS三相异步电机实验平台ANSYS电机及控制系统集成化设计方案可解决电机本体及控制系统的快速设计、方案优选和电机精确电磁性能分析等问题。
用户还可根据需要,补充结构、噪声分析等软件,即可实现单向或双向的电机多物理域协同设计、高精度电机及控制系统集成化设计等[2]。
三相异步电机实验系统包括:异步电机本体和控制系统建模、协同仿真技术以及实验结果分析和处理。
基于ANSYS的异步电机建模的实质是在计算机中运行电机,主要分为前处理(建模)、网格划分、加载设置求解以及后处理。
建模可以使用GUI控制流或者命令流,首先建立异步电机的各单元,比如定子铁心、定子绕组、转子等,再对每一部分进行划分网格和单元类型定义,保证电机建模的完整性。
2 异步电机建模步骤2.1 物理環境的创建物理环境的创建主要包括定义工作标题、定义文件工作名、定义分析类型、进入前处理、异步电机定子和转子基本参数设置、参数和单元类型定义以及组件特性定义。