2018年秋高中数学第三章函数的应用3.1函数与方程3.1.2用二分法求方程的近似解学案新人教A版必修1
- 格式:doc
- 大小:283.00 KB
- 文档页数:6
2018-2019学年高中数学第三章函数的应用3.1 函数与方程3.1.2 用二分法求方程的近似解练习新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第三章函数的应用3.1 函数与方程3.1.2 用二分法求方程的近似解练习新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第三章函数的应用3.1 函数与方程3.1.2 用二分法求方程的近似解练习新人教A版必修1的全部内容。
第三章 3.1 3.1.2 用二分法求方程的近似解1.下列关于函数f(x),x∈[a,b]的命题中,正确的是( )A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点D.用二分法求方程的根时,得到的都是近似解解析:使用“二分法”必须满足“二分法"的使用条件,B不正确;f(x)=0的根也一定是函数f(x)的零点,C不正确;用二分法求方程的根时,得到的也可能是精确解,D不正确,只有A正确.答案:A2.用二分法求函数f(x)=x3+5的零点可以取的初始区间是()A.[-2,1]B.[-1,0]C.[0,1] D.[1,2]解析:∵f(-2)=-3<0,f(1)=6>0,f(-2)·f(1)<0,故可取[-2,1]作为初始区间,用二分法逐次计算.答案:A3.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:( )A.1。
第三章 函数的应用3.1 函数与方程§3.1.2 用二分法求方程的近似解【学习目标】根据具体函数图象,能够借助计时器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.【预习提纲】1. 二分法的定义:对于在区间[a ,b]上 且 的函数y=f (x ),通过不断地把函数y=f (x )的零点所在的区间一分为二, ,进而得到零点近似值的方法叫做二分法。
2.用二分法球函数零点的一般步骤:(1) 确定区间[a ,b],验证 ,给定 ;(2) 求区间(a ,b )的中点c ;(3) 计算f (c );① 若 ,则 就是函数的零点;② 若 ,则令 ;③ 若 ,则令 ;(4)判断是否达到 :即若 ,则得到零点近似值a (或b );否则重复(2)到(4)。
【例题精讲】例1. 借助计算器或计算机,用二分法求方程2x -x 2=0在区间(-1,0)内的实数解(精确到0.01).例2.求函数62ln )(-+=x x x f 在区间)3,2(内的零点.【归纳点拨】二分法的第一步可以结合函数的图象来初步判断根的分布区间;在解题过程中,只有区间端点的函数值异号才能使用二分法算下去.最终视函数值的绝对值的大小尽快逼近满足精确度要求的零点.【课堂反馈】1 下列函数图像与x 轴均有公共点,但不能用二分法求公共点横坐标的是( )2.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )A.(-1,0)B .(0,1)C .(1,2)D .(2,3)3.函数f (x )=2x -log 12x 的零点所在的区间为( )A.⎝⎛⎭⎫0,14 B.⎝⎛⎭⎫14,12 C.⎝⎛⎭⎫12,1 D .(1,2)4.判断方程x 3-x -1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).【总结思考】本节课你都学会了什么?有哪些收获?【巩固延伸】1.若函数)(x f 是奇函数,且有三个零点1x 、2x 、3x ,则321x x x ++的值为( )A .-1B .0C .3D .不确定 2.已知],[,)(3b a x x x x f ∈--=,且0)()(<⋅b f a f ,则0)(=x f 在[a ,b ]内( )A .至少有一实数根B .至多有一实数根C .没有实数根D .有惟一实数根 3.设函数)0(ln 31)(>-=x x x x f )则)(x f y = ( ) A .在区间)1,1(e ,(1,e )内均有零点B .在区间)1,1(e , (1,e )内均无零点C .在区间)1,1(e 内有零点;在区间(1,e )内无零点D .在区间)1,1(e内无零点,在区间(1,e )内有零点4.若方程x 2-3x +mx +m =0的两根均在(0,+∞)内,则m 的取值范围是( )A .m ≤1B .0<m ≤1C .m >1D .0<m <1 5.函数)(x f =(x -1)ln(x -2)x -3的零点有( ) A .0个 B .1个 C .2个 D .3个 6.函数y =3x -1x 2的一个零点是( ) A .-1 B .1 C .(-1,0) D .(1,0)7.函数)(x f =ax 2+bx +c ,若0)2(,0)1(<>f f ,则)(x f 在(1,2)上零点的个数为( )A .至多有一个B .有一个或两个C .有且仅有一个D .一个也没有【挑战自我】1.方程32x x =精确到0.1的一个近似解是________.2.借助计算器或计算机用二分法求方程(x +1)(x -2)(x -3)=1在区间(-1,0)内的近似解.(精确到0.1)【参考答案】预习提纲 略(教材)例题精讲例1.令f (x )=2x -x 2,∵f (-1)=2-1-(-1)2=-12<0,f (0)=1>0, 说明方程f (x )=0在区间(-1,0)内有一个零点.取区间(-1,0)的中点x 1=-0.5,用计算器可算得f (-0.5)≈0.46>0.因为f (-1)·f (-0.5)<0,所以x 0∈(-1,-0.5).再取(-1,-0.5)的中点x 2=-0.75,用计算器可算得f (-0.75)≈-0.03>0.因为f (-1)·f (-0.75)<0,所以x 0∈(-1,-0.75).同理,可得x 0∈(-0.875,-0.75),x 0∈(-0.812 5,-0.75),x 0∈(-0.781 25,-0.75),x 0∈(-0.781 25,-0.765 625),x 0∈(-0.773 437 5,-0.765 625).由于|(-0.765 625)-(0.773 437 5)|<0.01,此时区间(-0.773 437 5,-0.765 625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x -x 2=0精确到0.01的近似解约为-0.77.例2.略(教材)课堂反馈1.B2. C.3. B4.设函数f (x )=x 3-x -1,因为f (1)=-1<0,f (1.5)=0.875>0,且函数f (x )=x 3-x -1的图象是连续的曲线,所以方程x 3-x -1=0在区间[1,1.5]内有实数解.取区间(1,1.5)的中点x 1=1.25,用计算器可算得f (1.25)=-0.30<0.因为f (1.25)·f (1.5)<0,所以x 0∈(1.25,1.5).再取(1.25,1.5)的中点x 2=1.375,用计算器可算得f (1.375)≈0.22>0.因为f (1.25)·f (1.375)<0,所以x 0∈(1.25,1.375).同理,可得x 0∈(1.312 5,1.375),x 0∈(1.312 5,1.343 75).由于|1.343 75-1.312 5|<0.1,此时区间(1.312 5,1.343 75)的两个端点精确到0.1的近似值是1.3,所以方程x 3-x -1=0在区间[1,1.5]精确到0.1的近似解约为1.3.巩固延伸1.B.2. D.3.D.4. B.5.A.6.B.7.C.挑战自我1.1.42.方程在(-1,0)内精确到0.1的近似解为-0.9.。
3.1.2 用二分法求方程的近似解
学习目标:1.通过具体实例理解二分法的概念及其使用条件.(重点)2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.(难点)3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解.(易混点)
[自主预习·探新知]
1.二分法的定义
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考:若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?
[提示]二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧
同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.
2.二分法求函数零点近似值的步骤
[基础自测]
1.思考辨析
(1)二分法所求出的方程的解都是近似解.( )
(2)函数f(x)=|x|可以用二分法求零点.( )
(3)用二分法求函数零点的近似值时,每次等分区间后,零点必定在右侧区间内.( )
[答案](1)×(2)×(3)×
2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是( ) A.|a-b|<0.1 B.|a-b|<0.001
C.|a-b|>0.001 D.|a-b|=0.001
B[据二分法的步骤知当区间长度|b-a|小于精确度ε时,便可结束计算.]
3.已知函数y=f(x)的图象如图311所示,则不能利用二分法求解的零点是________.
图311
x3[∵x3左右两侧的函数值同号,故其不能用二分法求解.]
4.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经过计算得f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.
【导学号:37102358】(0,0.5) f(0.25)[∵f(0)<0,f(0.5)>0,∴x0∈(0,0.5),故第二次应计算f(0.25).]
[合作探究·攻重难]
二分法的概念
已知函数f(x)的图象如图312所示,其中零点的个数与可以用二分法求解的个数分别为( )
图312
A.4,4 B.3,4
C.5,4 D.4,3
D[图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]
且该零点为变号零点因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合
[跟踪训练]
1.下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是( )
【导学号:37102359】
A B C D
B[二分法的理论依据是零点存在性定理,必须满足零点两侧函数值异号才能求解.而选项B图中零点两侧函数值同号,即曲线经过零点时不变号,称这样的零点为不变号零点.另外,选项A,C,D零点两侧函数值异号,称这样的零点为变号零点.]
用二分法求函数零点的近似值
[探究问题]
1.用二分法求方程的近似解,如何决定步骤的结束?
提示:当零点所在区间的两个端点值之差的绝对值小于精确度时,二分法步骤结束. 2.用二分法求方程的近似解时,精确度不同对零点有影响吗? 提示:精确度决定步骤的始终,故精确度不同,零点可能会不同.
求函数f (x )=x 3
-3x 2
-9x +1的一个负零点(精确度0.01).
【导学号:37102360】
思路探究:确定初始区间――→二分法定新的有解区间――→检验精确度ε
得零点近似值 [解] 确定一个包含负数零点的区间(m ,n ), 且f (m )·f (n )<0.因为f (-1)>0,f (-2)<0, 所以可以取区间(-2,-1)作为计算的初始区间,
当然选取在较大的区间也可以.用二分法逐步计算,列表如下:
687 5.
母题探究:1.(变条件)求本例函数f (x )在区间[-2,-1]上精确度为0.1的一个零点近似值. [解] 因为f (-1)>0,f (-2)<0,且函数f (x )=x 3
-3x 2
-9x +1的图象是连续的曲线,根据函数零点的存在性定理可知,它在区间[-2,-1]内有零点,用二分法逐步计算,列表如下:
-1.937 5.
2.若将典例2函数改为“f(x)=x3+2x2-3x-6”,如何求该函数的正数零点?(精确度0.1) [解]确定一个包含正数零点的区间(m,n),
且f(m)·f(n)<0.
因为f(0)=-6<0,f(1)=-6<0,f(2)=4>0,
所以可以取区间(1,2)作为计算的初始区间,
用二分法逐步计算,列表如下:
[当 堂 达 标·固 双 基]
1.关于“二分法”求方程的近似解,说法正确的是( )
A .“二分法”求方程的近似解一定可将y =f (x )在[a ,b ]内的所有零点得到
B .“二分法”求方程的近似解有可能得不到y =f (x )在[a ,b ]内的零点
C .应用“二分法”求方程的近似解,y =f (x )在[a ,b ]内有可能无零点
D .“二分法”求方程的近似解可能得到f (x )=0在[a ,b ]内的精确解
D [二分法求零点,则一定有且能求出,故B ,C 不正确;零点左侧与右侧的函数值符号相同的零点不能用二分法得到,故A 不正确,故选D.]
2.通过下列函数的图象,判断能用“二分法”求其零点的是( )
【导学号:37102361】
A B C D
C [在A 中,函数无零点.在B 和
D 中,函数有零点,但它们在零点左右的函数值符号相同,因此它们都不能用二分法来求零点.而在C 中,函数图象是连续不断的,且图象与x 轴有交点,并且在交点两侧的函数值符号相反,所以C 中的函数能用二分法求其零点.] 3.用二分法求函数f (x )=x 3
+5的零点可以取的初始区间是( ) A .[-2,1] B .[-1,0] C .[0,1] D .[1,2]
A [∵f (-2)=-3<0,f (1)=6>0,f (-2)·f (1)<0,故可取[-2,1]作为初始区间,用二分法
逐次计算.]
4.用二分法求函数y =f (x )在区间[2,4]上零点的近似值,经验证有f (2)·f (4)<0.取区间的中点x 1=2+42
=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间).
【导学号:37102362】
(2,3) [因为f (2)·f (3)<0,所以零点在区间(2,3)内.]
5.用二分法求方程ln(2x +6)+2=3x
的根的近似值时,令f (x )=ln(2x +6)+2-3x
,并用计算
器得到下表:
[解]因为f(1.25)·f(1.375)<0,故根据二分法的思想,知函数f(x)的零点在区间(1.25,1.375)内,但区间(1.25,1.375)的长度为0.125>0.1,因此需要取(1.25,1.375)的中点1.312 5,两个区间(1.25,1.312 5)和(1.312 5,1.375)中必有一个满足区间端点的函数值符号相异,又区间的长度为0.062 5<0.1,因此1.312 5是一个近似解.。