一元一次方程提优练习
- 格式:doc
- 大小:106.50 KB
- 文档页数:4
中考数学复习考点知识专题训练06 一次函数与一元一次方程(提优篇)1.用函数图象求解下列方程.①2x﹣3=x﹣2;②x+3=2x+1.2.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.3.定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{0,5,5}=0.(1)根据题意填空:min{√9,3.14,π}=;(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.4.在同一直角坐标系中,一次函数y=kx+b的图象与正比例函数y=﹣2x的图象平行,且经过直线y =mx+1(m为常数且m≠0)与y轴的交点.(1)请直接写出一次函数y=kx+b的表达式;(2)画出一次函数y=kx+b的图象;(3)根据图象填空:①y的值随着x的值的增大而;②方程kx+b=0的解为;③当x时,y>0.5.已知一次函数y=kx+1与y=−12x+b的图象相交于点(2,5),求关于x的方程kx+b=0的解.6.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=4的解为多少?7.已知一次函数y=kx﹣6的图象如图(1)求k的值;(2)在图中的坐标系中画出一次函数y=﹣3x+3的图象(要求:先列表,再描点,最后连线);(3)根据图象写出关于x的方程kx﹣6=﹣3x+3的解.8.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.9.小敏学习了一次函数后,尝试着用相同的方法研究函数y=a|x﹣b|+c的图象和性质.(1)在给出的平面直角坐标系中画出函数y=|x﹣2|和y=|x﹣2|+1的图象;(2)猜想函数y=﹣|x+1|和y=﹣|x+1|﹣3的图象关系;(3)尝试归纳函数y=a|x﹣b|+c的图象和性质;(4)当﹣2≤x≤5时,求y=﹣2|x﹣3|+4的函数值范围.。
课时练:第三章《一元一次方程》实际应用选择题提优(一)1.如图,已知正六边形ABCDEF,甲、乙两点分别从顶点A和顶点B同时出发,沿正六边形ABCDEF的边逆时针运动,甲的速度是乙速度的3倍,则点甲、乙的第2018次相遇在()A.边BC B.边CD C.边DE D.边EF2.某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准量的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家11月份用水12吨,交水费20元,则该市每户的月用水标准量为()A.8吨B.9吨C.10吨D.11吨3.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克4.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A.11 B.8 C.7 D.55.某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A.7折B.8折C.9折D.6折6.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3.A.38 B.34 C.28 D.447.初三某班学生在会议室看录像,每排坐13人,则有1人无处坐,每排14人,则空12个座位,则这间会议室共有座位的排数是()A.12 B.14 C.13 D.158.在如图所示的2017年4月份的月历表中,任意框出表中竖列上四个相邻的数,这四个数的和可能是()A.70 B.63 C.99 D.1019.中国CBA篮球常规赛比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,今年某队在全部38场比赛中最少得到70分,那么这个队今年胜的场次至少是()A.6场B.31场C.32场D.35场10.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A.140元B.135元C.125元D.120元11.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是()A.168元B.300元C.60元D.400元12.某品牌商品,按标价九折出售,仍可获得20%的利润,若该商品标价为28元,则商品的进价为()A.21元B.19.8元C.22.4元D.25.2元13.2016年9月28日﹣12月31日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客 400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为()A.21时B.22时C.23时D.24时14.李老师新买了一辆小轿车,为了掌握车的耗油情况,在连续两次加油时做了如下工作:(1)把油箱加满油;(2)记录了两次加油时的累积里程(注:“累积里程”指汽车从出厂开始累积行驶的路程).以下是李老师连续两次加油时的记录:加油时间加油量(升)加油时的累计里程(千米)2017年3月18日15 12002017年3月28日30 1500 则在这段时间内,该车每100千米平均耗油量为()A.15升B.10升C.7.5升D.5升15.某商场把一双钉鞋按标价的八折出售,仍可获利20%.若钉鞋的进价为100元,则标价为()A.145元B.165元C.180元D.150元16.某文具店的学习用品计算器、钢笔、笔记本,已知一台计算器的价钱比6支钢笔价钱多6元,一本笔记本的价钱比2支钢笔价钱少2元,则下列判断正确的是()A.一台计算器的价钱是一本笔记本的3倍B.若一台计算器降价4元,则其价钱是一本笔记本的3倍C.若一台计算器降价8元,则其价钱是一本笔记本的3倍D.若一台计算器降价12元,则其价钱是一本笔记本的3倍17.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A.8 B.7 C.6 D.518.如图,给出的是某年4月份的日历,任意圈出一竖列上相邻的三个数,请运用方程的思想来研究,你发现这三个数的和不可能是()A.27 B.42 C.54 D.7219.李漠在夜市上买了块廉价手表,经一段时间观察发现,该手表每小时比准确时间慢2.5min.某天清晨,李漠在5:36与准确时间对准,则在当天中午12:00下课时,这块手表指示的时间是()A.11:28 B.11:36 C.11:44 D.11:5220.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价()A.24元B.26元C.28元D.30元21.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定22.如图,这是2016年12月的日历表,任意圈出一竖列上相邻的四个数,请你运用方程的思想来研究,发现这四个数的和不可能是()A.50 B.58 C.68 D.7023.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元24.某服装店老板以60元出售一件衣服,结果获利25%,问这件衣服的进价是()A.40 B.48 C.50 D.8025.超市推出如下优惠方案(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款()A.288元B.332元C.288元或316元D.332元或363元参考答案1.解:设正六边形的边长为1,乙的路程为x,则甲的路程为3x,根据题意得:3x﹣x=2017×6+1,解得:x=6051.5=1008×6+3.5,∴甲、乙的第2018次相遇在EF的中点.故选:D.2.解:设该市每户的月用水标准量为x吨,1.5x+(12﹣x)×2.5=20,解得,x=10,故选:C.3.解:设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,答:每个小箱子装洗衣粉8.5千克,故选:C.4.解:可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x﹣3)×1.6+8=16,解得:x=8.即此人从甲地到乙地经过的路程最多为8km.故选:B.5.解:商品利润为20%,则利润应是:200×20%=40元,则售价是:200+40=240元.设该商品销售应按x折销售,则:300×0.1x=240解得:x=8,即8折.故选:B.6.解:设小明家5月份用水xm3,当用水量为20m3时,应交水费为20×2=40(元).∵40<64,∴x>20.根据题意得:40+(2+1)(x﹣20)=64,解得:x=28.故选:C.7.解:设这间会议室共有座位x排,根据题意得:13x+1=14x﹣12,解得:x=13.答:这间会议室共有座位13排.故选:C.8.解:方法1:设这四个数中最小的一个数为x,则其余的三个数为x+7,x+14,x+21,那么,这四个数的和为x+x+7+x+14+x+21=4x+42.A、如果4x+42=70,那么x=7,符合题意;B、如果4x+42=63,那么x=5.25,不合题意;C、如果4x+42=99,那么x=14.25,不合题意;D、如果4x+42=101,那么x=14.75,不合题意.方法2:因为4x+42一定为偶数,而选项中也只有一个偶数.故选:A.9.解:设胜了x场,由题意得:2x+(38﹣x)=70,解得x=32.答:这个队今年胜的场次至少是32场.故选:C.10.解:设这种服装每件的成本价为x元,根据题意得:80%×(1+40%)x﹣x=15,解得:x=125.答:这种服装每件的成本为125元.故选:C.11.解:设每件服装进价为x元,由题意得:(1+50%)x×80%=360,解得:x=300.故每件服装的进价是300元.故选:B.12.解:设商品进价为x元,由题意得:90%×28=x+20%x,解得x=21.故选:A.13.解:设该灯展人数饱和时的时间约为x点,根据题意得:(x﹣17)×(900﹣600)=1600﹣400,解得x=21.即该灯展人数饱和时的时间约为21时.故选:A.14.解:由题意可得:两次加油间耗油30升,行驶的路程为1500﹣1200=300(千米)所以该车每100千米平均耗油量为:30÷(300÷100)=10(升).故选:B.15.解:设每件的标价为x元,由题意得:80%x=100×(1+20%),解得:x=150.即每件的标价为150元.故选:D.16.解:设一支钢笔的价钱为x元,则一台计算器的价钱为(6x+6)元,一本笔记本的价钱为(2x﹣2)元,∵6x+6﹣12=6x﹣6=3(2x﹣2),∴若一台计算器降价12元,则其价钱是一本笔记本的3倍.故选:D.17.解:(方法一)设甲计划完成此项工作的天数为x,根据题意得:x﹣(1+)=3,解得:x=7.(方法二)设甲计划完成此项工作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式方程的解,且符合题意.故选:B.18.解:设这三个数中中间的数为x,则另外两数分别为x﹣7、x+7,三个数之和为x﹣7+x+x+7=3x.A、3x=27,解得:x=9,故A不符合题意;B、3x=42,解得:x=14,故B不符合题意;C、3x=54,解得:x=18,故C不符合题意;D、3x=72,解得:x=24,24+7=31>30,故D符合题意.故选:D.19.解:设在当天中午12:00下课时,这块手表指示的时间为x,12:00﹣x=(12﹣5﹣)×2.5,解得,x=11:44,故选:C.20.解:设标价是x元,根据题意有:0.8x=20(1+20%),解可得:x=30.故标价为30元.故选:D.21.解:设赚了25%的衣服的成本为x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的成本为y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选:B.22.解:设圈出一竖列上相邻的四个数中最小的数为x,则另外三个数为x+7、x+14、x+21.根据题意得:x+(x+7)+(x+14)+(x+21)=4x+42.A、4x+42=50,解得:x=2,A符合题意;B、4x+42=58,解得:x=4,B符合题意;C、4x+42=68,解得:x=6.5,C不符合题意;D、4x+42=70,解得:x=7,D符合题意.故选:C.23.解:设进货价为x元,由题意得:(1+100%)x×60%=60,解得:x=50,故选:D.24.解:设这件衣服的进价为x元,由题意得,60﹣x=25%x,解得:x=48,即这件衣服的进价是48元.故选:B.25.解:(1)第一次购物显然没有超过100,即在第二次消费80元的情况下,他的实质购物价值只能是80元.(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过100元但不足300元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=252,解得:x=280.①第二种情况:他消费超过300元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=252,解得:x=315.即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元.综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元.因此均可以按照8折付款:360×0.8=288元395×0.8=316元故选:C.。
一元一次方程应用题提优训练1、假期间,小明和小颖两家共 8 人相约外出旅行,分别乘坐两辆出租车前往机场,在距离机场11 千米处一辆车出 了故障不能继续行驶.此时离机场停止办理登机手续还有 30 分钟,唯一可以利用的交通工具只有另一辆出租车, 连同司机在内限乘 5 人,车速每小时 60 千米.(1)如果这辆车分两批接送,其中 4 人乘车先走,余下 4 人原地等候, 8 人能否及时到达机场办理登机手续?(上下车时间忽略不计)(2)如果这辆车在送第一批客人的时候,余下的人以每小时6 千米的速度步行前往机场,待司机将第一批客人送达后立即返回接第二批客人,他们能及时到达机场吗?2、去年元旦期间,某商场打出促销广告,如下表所示:其中 500 元仍按九折优惠,超过 500 元部分按八折优惠全部按九折优惠办法 (1)用代数式表示(所填结果需化简)x x x设一次性购买的物品原价是 元,当原价 超过 200 元但不超过 500 元时,实际付款为 元;当原价 超过500元时,实际付款为元;(2)若甲购物时一次性付款490元,则所购物品的原价是多少元?(3)若乙分两次购物,两次所购物品的原价之和为1000元(第二次所购物品的原价高于第一次),两次实际付款共894元,则乙两次购物时,所购物品的原价分别是多少元?3、某人去水果批发市场采购苹果,他看中了A、B两家苹果。
这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)500以上~15001500以上~2500价零售价的70%【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】(1)如果他批发600千克苹果,则他在A家批发需要元,在B家批发需要元.元,在B家批发需要元(2)如果他批发x千克苹果(1500<x<2000),则他在A家批发需要(用含x的代数式表示).(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.4、国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.消费金额(元)返还金额(元)100~50060注:100~500表示消费金额大于100元且小于或等于500元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为500元的商品,则消费金额为400元,获得的优惠额为500×(1﹣80%)+60=160(元).(1)购买一件标价为700元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x元(x>500)的商品,那么该顾客获得的优惠额为多少?(用含有x的代数式表示)(3)若顾客在该商场第一次购买一件标价x元(x>800)的商品后,第二次又购买了一件标价为300元的商品,两件商品的优惠额共为300元,则这名顾客第一次购买商品的标价为元.5、随着出行方式的多样化,某地区三类打车方式的收费标准如下:出租车3千米以内:12元 1.5元/千米0.5元/分钟2元/千米超过3千米的部分:2.4元/千米0.6元/分钟(如:乘坐8千米,耗时12分钟,出租车的收费为:12+2.4×(8-3)=24(元);顺风车的收费为:8×1.5+12×0.5=18(元);专车的收费为:8×2+12×0.6=23.2(元))解决问题:(假设打车的平均车速为30千米/小时)(1)李强乘车从新一城去江阴汽车站,全程10千米,如果小明使用顺风车,需要支付的打车费用为(2)李强乘车从市区去华西村,用顺风车比乘坐出租车节省了3元.求市区到华西村的路程;;(3)滴滴公司为了和吸引客户,分别推出了优惠方式,顺风车对于乘车路程在5千米以上(含5千米)的客户每次收费立减9元;专车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.6、旅行社组织了甲、乙两个旅游团到游乐场游玩,两团总报名人数为120人,其中甲团人数不超过50人,游乐场规定一次性购票50人以上可享受团队票.门票价格如下:门票类别购票要求散客票团队票A超过50人但不超过100人70元/人团队票B超过100人60元/人票价(元/人)80元/人旅行社经过计算后发现,如果甲、乙两团合并成一个团队购票可以比分开购票节约300元.(1)求甲、乙两团的报名人数;(2)当天到达游乐场后发现团队票价格作了临时调整,团队票A每张降价a元,团队票B每张降价2a元,同时乙团队因故缺席了30人,此时甲、乙两团合并成一个团队购票可以比分开购票节约225元,求a的值.7、每年“双11”网上商城都会推出各种优惠活动经行促销,今年某单位在“双11”到来之前咨询了某网上商城的A、B两家店铺,打算在“双11”当天选择其中一家购买同一款运动手表若干台,已知该款手表在A、B两家店铺的标价均为900元/台,“双11”促销活动期间,对于该款手表,这两家店铺分别推出下列优惠活动:A店铺:“双11”当天购买,享受立减活动:当购买台数不超过12台时,每台立减140元;当购物台数超过12台时,前12台优惠不变,超过部分每台立减220元B店铺:提前一次性支付定金600元(最多一次),到“双11”当天购买就可以抵用1200元;同时,如果“双11”当天的下单金额超过1000元还可以享受立减活动;下单金额每满450元立减50元(注:下单金额=标价×购物数量)(1)“双11”当天,若该单位一单购买了5台该表手表,①若在A店铺购买,实付金额为元;②若在B店铺购物,实付的最少金额为元.(2)“双11”当天,若该单位一单要购买若干台该款手表,经过计算发现,在A店铺购买的实付金额与在B店铺购买的实付最少金额相等,问该单位要购买多少台该款手表.8、在计算 1+4+7+10+13+16+19+22+25+28 时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S ,n (a a ) S (其中 n 表示数的个数,a 表示第一个数,a 表示最后一个数). n 1 n 21 10(1 28) 所以,1+4+7+10+13+16+19+22+25+28 用上面的知识解答下面问题:145 2某公司对外招商承包一个分公司,符合条件的两个企业 A 、B 分别拟定上缴利润方案如下:A :每年结算一次上缴利润,第一年上缴 1.5 万元,以后每年比前一年增加 1 万元;B :每半年结算一次上缴利润,第一个半年上缴 0.3 万元,以年每半年比前半年增加 0.3 万元.(1)如果承包期限 2 年,则 A 企业上缴利润的总金额为(2)如果承包期限为 n 年,则 A 企业上缴利润的总金额为(用含 n 的代数式表示);万元,B 企业上缴利润的总金额为 万元,B 企业上缴利润的总金额为 万元; 万元(3)承包期限 n=20 时,通过计算说明哪个企业上缴利润的总金额比较多?多多少万元? 9.如图是某市民健身广场的平面示意图,它是由 6 个正方形拼成的长方形,已知中间最小的正方形 A 的边长是 1(1)若设图中最大正方形 B 的边长是 x 米,请用含 x 的代数式分别表示出正方形 F 、E 和 C 的边长 、 、(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的 MN 和 PQ ).请根据这个等量关系,求x 的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙 2 个工程队单独铺设分别需要 10 天、15 天完成.如果两队从同一点开始,沿相反的方向同时施工 2 天后,因甲队另有任务,余下的工程由 乙队单独施工, 试问还要多少天完成10、某景区内的环形路是边长为800 m 的正方形ABCD,如图1 和图2 所示.现有1 号、2 号两游览车分别从出口A和景点C同时出发,1 号车逆时针、2 号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1 号车、2 号车在左半环线离出口A的路程y,y (m),并求1 2出当两车相距的路程是400 m时t的值;(2) 求当t为何值时,1 号车第三次恰好经过景点C,并直接写出这一段时间内它与2 号车相遇过的次数.[发现] 如图2,游客甲在BC上的一点K (不与点B,C重合) 处候车,准备乘车到出口A. 设CK=x m.情况一:若他刚好错过2 号车,便搭乘即将到来的1 号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)10、某景区内的环形路是边长为800 m 的正方形ABCD,如图1 和图2 所示.现有1 号、2 号两游览车分别从出口A和景点C同时出发,1 号车逆时针、2 号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1 号车、2 号车在左半环线离出口A的路程y,y (m),并求1 2出当两车相距的路程是400 m时t的值;(2) 求当t为何值时,1 号车第三次恰好经过景点C,并直接写出这一段时间内它与2 号车相遇过的次数.[发现] 如图2,游客甲在BC上的一点K (不与点B,C重合) 处候车,准备乘车到出口A. 设CK=x m.情况一:若他刚好错过2 号车,便搭乘即将到来的1 号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)10、某景区内的环形路是边长为800 m 的正方形ABCD,如图1 和图2 所示.现有1 号、2 号两游览车分别从出口A和景点C同时出发,1 号车逆时针、2 号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1 号车、2 号车在左半环线离出口A的路程y,y (m),并求1 2出当两车相距的路程是400 m时t的值;(2) 求当t为何值时,1 号车第三次恰好经过景点C,并直接写出这一段时间内它与2 号车相遇过的次数.[发现] 如图2,游客甲在BC上的一点K (不与点B,C重合) 处候车,准备乘车到出口A. 设CK=x m.情况一:若他刚好错过2 号车,便搭乘即将到来的1 号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)。
1第四章《一元一次方程》综合提优练习第四章《一元一次方程》综合提优练习一.选择题一.选择题1.书架上,第一层的数量是第二层书的数量x 的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是(本.依上述情形,所列关系式成立的是( )A .2x x+3B .2x (x+8)+3C .2x ﹣8x+3D .2x ﹣8(x+8)+32.小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m/s ,小亮跑步的速度为4m/s ,则起跑后60s 内,两人相遇的次数为(次数为( ) A .3B .4C .5D .63.小石家的脐橙成熟了!小石家的脐橙成熟了!今年甲脐橙园有脐橙今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x 千克到甲脐橙园,则可列方程为(千克到甲脐橙园,则可列方程为( )A .7000=2(5000+x )B .7000﹣x =2×5000C .7000﹣x =2(5000+x )D .7000+x =2(5000﹣x )4.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是(方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15D .0.8×40%x ﹣x =155.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x 天完成这项工程,则可以列的方程是(天完成这项工程,则可以列的方程是( )A .B .C .D .6.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为(零件,则根据题意可得的方程为( ) A .12x =62(23﹣x )B .3×12x =2×23(62﹣x )C .2×12x =3×23(62﹣x )D .23(62﹣x )=12x7.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是(则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2068.某超市在“元旦”活动期间,推出如下购物优惠方案:某超市在“元旦”活动期间,推出如下购物优惠方案: ①一次性购物在100元(不含100元)以内,不享受优惠;元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)元)以内,一律享受九折优惠;以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠;元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款(则小敏至少需付款( )元)元 A .288B .296C .312D .3209.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(高度变为多少公分?( )底面积(平方公分)底面积(平方公分) 甲杯甲杯 60 乙杯乙杯80丙杯丙杯 100A .5.4B .5.7C .7.2D .7.510.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =(=( )A .5:3B .7:5C .23:14D .47:2911.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约( ) A .4819元B .4818元C .4817元D .4816元12.某企业接到为地震灾区生产活动房的任务,某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,此企业拥有九个生产车间,此企业拥有九个生产车间,现在每个车间原现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人B .10人C .12人D .14人二.填空题二.填空题13.某商品在进价的基础上加价80%再打八折销售,可获利润44元,则该商品的进价为元,则该商品的进价为 元.元.14.甲乙两车分别从A ,B 两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了半小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.则A ,C 两地相距两地相距 千米.千米.15.某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置元.学校添置台电脑时,两种方案的费用相同.台电脑时,两种方案的费用相同. 16.A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距两地相距 千米.千米.17.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,若设前年的产值为x 万元,由题意可列方程万元,由题意可列方程. 18.“十一”“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时,经过 小时能相遇.小时能相遇.19.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x 公里,应付给司机21元,则x = .20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,正方形的边开始移动,甲点依顺时针方向环行,甲点依顺时针方向环行,甲点依顺时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的若乙的速度是甲的速度的3倍,则它们第2018次相遇在边次相遇在边 .21.科学考察队的一辆越野车需要穿越650千米的沙漠,但这辆车每次装满汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点P ,越野车装满油从起点A 出发,到储油点P 时从车中取出部分油放进P 储油点,然后返回出发点A ,加满油后再开往P ,到P 储油点时取出储存的所有油放在车上,储油点时取出储存的所有油放在车上,再到达终点.再到达终点.用队长想出的方法,这辆越野车穿越这片沙漠的最大距离是片沙漠的最大距离是 千米.千米.22.已知a ,b 为定值,关于x 的方程1,无论k 为何值,它的解总是1,则a+b= . 三.解答题三.解答题23.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?总花费最少?24.中国古代算书《算法统宗》中有这样一道题:甲赶群羊逐草茂,乙拽肥羊随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半(注:四分之一的意思)群,得你一只来方凑.玄机奥妙谁参透?大意是说:牧羊人赶着一群羊去寻找草长得茂盛的地方放牧,有一个过路人牵着1只肥羊从后面跟了上来,他对牧羊人说你赶的这群羊大概有100只吧?牧羊人答道:如果这一群羊加上1倍,再加上原来羊群的一半,再加上原来羊群的一半,又加上原来这群羊的又加上原来这群羊的四分之一,连你牵着的这只肥羊也算进去,连你牵着的这只肥羊也算进去,才刚好满才刚好满100只.你知道牧羊人放牧的这群羊一共有多少只吗?共有多少只吗?25.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:出如表所示的数据:功率功率使用寿命使用寿命 价格价格 普通白炽灯普通白炽灯 100瓦(即0.1千瓦)千瓦) 2000小时小时 3元/盏 优质节能灯优质节能灯20瓦(即0.02千瓦)千瓦)4000小时小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.元. (注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)电费)如:若选用一盏普通白炽灯照明1000小时,那么它的费用为1000×0.1×0.5+3=53(元),请解决以下问题:请解决以下问题:(1)在白炽灯的使用寿命内,设照明时间为x 小时,请用含x 的代数式分别表示用一盘白炽灯的费用y1(元)和一盏节能灯的费用y2(元):(2)在白炽灯的使用寿命内,照明多少小时时,使用这两种灯的费用相等?)在白炽灯的使用寿命内,照明多少小时时,使用这两种灯的费用相等? (3)如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.小时,购买哪一种灯更省钱?请你通过计算说明理由.26.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了一个鱼塘,经过一年多的精心养殖,经过一年多的精心养殖,今年今年10月份从鱼塘里捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10月份收入52000元,元,(1)今年10月份从鱼塘里捕捞草鱼和花鲢各多少千克?月份从鱼塘里捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12月份再次从鱼塘里捕捞.捕捞数量和销售价格上,草鱼数量比10月份减少了2a 千克,销售价格不变;花鲢数量比10月份减少了a%,销售价格比10月份减少了,该贫困户在10月份和12月份两次捕捞中共收入了94040元,真正达到了脱贫致富,求a 的值.的值.27.王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.本词典. (1)每个书包和每本词典的价格各是多少元?)每个书包和每本词典的价格各是多少元?(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?28.育才中学组织七年级师生去春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,则少租一辆,且余15个座位.个座位. (1)求参加春游的师生总人数;)求参加春游的师生总人数;(2)已知一辆45座客车的租金每天250元,一辆60座客车的租金每天300元,问单租哪种客车省钱?种客车省钱?(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?(只写出租车方案即可)可)一.选择题一.选择题1.书架上,第一层的数量是第二层书的数量x 的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是(本.依上述情形,所列关系式成立的是( )A .2x x+3B .2x (x+8)+3C .2x ﹣8x+3D .2x ﹣8(x+8)+3【解答】D【解析】由题意知,第一层书的数量为2x 本,则可得到方程2x ﹣8(x+8)+3.故选D .2.小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m/s ,小亮跑步的速度为4m/s ,则起跑后60s 内,两人相遇的次数为(次数为( ) A .3 B .4C .5D .6【解答】C【解析】设两人起跑后60s 内,两人相遇的次数为x 次,依题意得;次,依题意得;每次相遇间隔时间t ,A 、B 两地相距为S ,V 甲、V 乙分别表示小明和小亮两人的速度,则有:有:(V 甲+V 乙)t =2S ,则t ,则x =60,解得:x =5.4,∵x 是正整数,且只能取整,是正整数,且只能取整, ∴x =5. 故选C .3.小石家的脐橙成熟了!小石家的脐橙成熟了!今年甲脐橙园有脐橙今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x 千克到甲脐橙园,则可列方程为(千克到甲脐橙园,则可列方程为( ) A .7000=2(5000+x ) B .7000﹣x =2×5000C .7000﹣x =2(5000+x )D .7000+x =2(5000﹣x )【解答】D【解析】设从乙脐橙园运脐橙x 千克到甲脐橙园,千克到甲脐橙园, 则7000+x =2(5000﹣x ). 故选D .4.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是(方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15 D .0.8×40%x ﹣x =15 【解答】B【解析】设这种服装每件的成本价是x 元,由题意得:元,由题意得: 0.8×(1+40%)x ﹣x =15 故选B .5.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x 天完成这项工程,则可以列的方程是(天完成这项工程,则可以列的方程是( )A .B .C .D .【解答】C【解析】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:为:.故选C .6.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为(零件,则根据题意可得的方程为( ) A .12x =62(23﹣x )B .3×12x =2×23(62﹣x )C .2×12x =3×23(62﹣x )D .23(62﹣x )=12x【解答】C【解析】设应分配x 人生产甲种零件,人生产甲种零件, 12x ×2=23(62﹣x )×3, 故选C .7.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是(则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .206【解答】D【解析】由题意,设T 字框内处于中间且靠上方的数为2n ﹣1, 则框内该数左边的数为2n ﹣3,右边的为2n+1,下面的数为2n ﹣1+10, ∴T 字框内四个数的和为:字框内四个数的和为:2n ﹣3+2n ﹣1+2n+1+2n ﹣1+10=8n+6. 故T 字框内四个数的和为:8n+6.A 、由题意,令框住的四个数的和为22,则有:,则有: 8n+6=22,解得n =2.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;B 、由题意,令框住的四个数的和为70,则有:,则有: 8n+6=70,解得n =8.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;C 、由题意,令框住的四个数的和为182,则有:,则有: 8n+6=182,解得n =22.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;D 、由题意,令框住的四个数的和为206,则有:,则有: 8n+6=206,解得n =25.由于数2n ﹣1=49,排在数表的第5行的最右边,它不能处于T 字框内中间且靠上方的数,所以不符合题意.所以不符合题意.故框住的四个数的和不能等于206. 故本选项符合题意;故本选项符合题意; 故选D .8. 某超市在“元旦”活动期间,推出如下购物优惠方案:某超市在“元旦”活动期间,推出如下购物优惠方案: ①一次性购物在100元(不含100元)以内,不享受优惠;元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)元)以内,一律享受九折优惠;以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠;元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款(则小敏至少需付款( )元)元 A .288 B .296 C .312 D .320【解答】C【解析】设第一次购物购买商品的价格为x 元,第二次购物购买商品的价格为y 元,元, 当0<x <100时,x =90; 当100≤x <350时,0.9x =90, 解得:x =100; ∵0.9y =270, ∴y =300.∴0.8(x+y )=312或320. 所以至少需要付312元.元. 故选C .9. 桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(高度变为多少公分?( )底面积(平方公分)底面积(平方公分) 甲杯甲杯 60 乙杯乙杯 80 丙杯丙杯 100A .5.4B .5.7C .7.2D .7.5【解答】C【解析】设后来甲、乙、丙三杯内水的高度为3x 、4x 、5x , 根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x , 解得:x =2.4,则甲杯内水的高度变为3×2.4=7.2(公分). 故选C .10.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =(=( )A .5:3B .7:5C .23:14D .47:29【解答】D【解析】设灰色长方形的长上摆5x 个小正方形,宽上摆3x 个小正方形,个小正方形, 2(5x+3x )+4=148 x =95x =45,3x =27, AD =45+2=47, AB =27+2=29,.故选D .11.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约( ) A .4819元 B .4818元C .4817元D .4816元【解答】C【解析】设每年应还x 元,则根据题意可知:元,则根据题意可知:50000×(1+0.05)15=x ×(1+0.05)14+x ×(1+0.05)13+…+x . 用计算器得出:x =4817 故选C .12.某企业接到为地震灾区生产活动房的任务,某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,此企业拥有九个生产车间,此企业拥有九个生产车间,现在每个车间原现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人 B .10人C .12人D .14人【解答】C【解析】设每个车间原有成品a 件,每个车间每天生产b 件产品,根据检验速度相同得:件产品,根据检验速度相同得:,解得a =4b ;则A 组每名检验员每天检验的成品数为:2(a+2b )÷(2×8)=12b ÷16b .那么B 组检验员的人数为:5(a+5b )÷(b )÷5=45b b ÷5=12(人). 故选C . 二.填空题二.填空题13.某商品在进价的基础上加价80%再打八折销售,可获利润44元,则该商品的进价为元,则该商品的进价为 元.元. 【解答】100【解析】设这件商品的进价为x 元,元, x (1+80%)×0.8=x+44,解得,x=100,即这件商品的进价为100元,元,故答案为100.14.甲乙两车分别从A,B两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车在相遇后又行驶了2小时到达B地后休整了半小时,然后调头并保持原速与乙车同向行驶,千米.千米.两地相距经过一段时间后两车同时到达C地.则A,C两地相距【解答】360)千米,【解析】设乙车每小时行驶x千米,则甲车每小时行驶(x+20)千米,由题意得:3x=2(x+20),解得:x=40,则x+20=60,千米,即乙车每小时行驶40千米,则甲车每小时行驶60千米,∴A,B两地的距离为:3×60+3×40=300(千米),设两车相遇后经过y小时到达C地,地,由题意得:60(y﹣2.5)=40(y+3),解得:y=13.5,∴B,C两地的距离为:60(13.5﹣2.5)=660(千米),∴A,C两地的距离为:660﹣300=360(千米);故答案为360.15.某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置台电脑时,两种方案的费用相同.元.学校添置 台电脑时,两种方案的费用相同.【解答】3台电脑,【解析】设学校添置x台电脑,由题意,得7000x=6000x+3000,解得x=3,答:当学校添置3台电脑时,两种方案的费用相同;台电脑时,两种方案的费用相同;故答案为3.16.A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距两地相距 千米.千米. 【解答】760【解析】设乙车的平均速度是x 千米/时,则时,则4(x )=560.解得x =60即乙车的平均速度是60千米/时.时.设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t+7)小时,则)小时,则 80(1+10%)t =60(7+t ) 解得t =15.所以60(7+t )﹣560=760(千米)(千米) 故答案为760.17.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,若设前年的产值为x 万元,由题意可列方程万元,由题意可列方程 . 【解答】550【解析】设前年的产值是x 万元,则去年的产值是1.5x 万元,今年的产值是3x 万元,依题意有意有x+1.5x+3x =550.故答案为x+1.5x+3x =550.18.“十一”“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时,经过 小时能相遇.小时能相遇. 【解答】2【解析】设经过t 小时相遇,则小时相遇,则 20t =15t+10, 解方程得:t =2,所以两人经过两个小时后相遇.所以两人经过两个小时后相遇. 故答案为2.19.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x 公里,应付给司机21元,则x = . 【解答】12【解析】因为21>7, 所以x >2.由题意知,7+1.4(x ﹣2)=21 解得x =12.故答案为12.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,正方形的边开始移动,甲点依顺时针方向环行,甲点依顺时针方向环行,甲点依顺时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的若乙的速度是甲的速度的3倍,则它们第2018次相遇在边次相遇在边 .【解答】DC【解析】正方形的边长为4,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:份,由题意知:①第一次相遇甲乙行的路程和为8,甲行的路程为82,乙行的路程为8﹣2=6,在AD 边相遇;边相遇;②第二次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,在DC 边相遇;边相遇;③第三次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,在CB 边相遇;边相遇;④第四次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,。
一元一次方程复习一.选择题(共14小题)1.下列判断正确的是()A.方程是等式,等式就是方程B.方程是含有未知数的等式C.方程的解就是方程的根D.方程2x=3x没解2.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B. C.x+2y=1 D.xy﹣3=53.已知下列方程:(1)2x+3=;(2)7x=9;(3)4x﹣2=3x+1;(4)x2+6x+9=0;(5)x=3;(6)x+y=8.其中是一元一次方程的个数是()A.2 B.3 C.4 D.54.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3405.一架在无风情况下每小时航速为1200千米的飞机,逆风飞行一条x千米的航线用了3小时,顺风飞行这条航线用了2小时.依题意列方程:1200﹣=﹣1200,这个方程表示的意义是()A.飞机往返一次的总时间不变B.顺风与逆风的风速相等C.顺风与逆风时,飞机自身的航速不变D.顺风与逆风时,所飞的航线长不变6.方程ax=b+3的解是()A.有一个解x=+3 B.有无数个解C.没有解D.当a≠0时,x=+7.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.5 B.4 C.3 D.28.若方程2x=8和方程ax+2x=4的解相同,则a的值为()A.1 B.﹣1 C.±1 D.09.若方程6x﹣3=2﹣3x的解与关于x的方程6﹣2k=2x+6的解相同,则k的值为()A. B.﹣C. D.﹣10.用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是()A.10cm2B.12cm2C.14cm2D.16cm211.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8 B.6 C.3 D.212.一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于()A.0.6元B.0.5元C.0.45元D.0.3元13.甲、乙两位同学在环形跑道上从同一点G出发,按相反方向沿跑道而行.已知甲每分钟跑240米,乙每分钟跑1 80米,如果他们同时出发,并且当他们在出发点G第一次相遇时结束跑步,则他们从出发到结束之间中途相遇的次数是()A.6 B.7 C.8 D.不能确定14.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元 B.赔16元 C.不赚不赔D.无法确定二.填空题(共9小题)15.在①2x﹣1;②2x+1=3x;③|π﹣3|=π﹣3;④t+1=3中,等式有,方程有.(填入式子的序号)16.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是.17.已知(|k|﹣1)x2+(k﹣1)x+3=0是关于x的一元一次方程,则k的值为.18.已知关于x的方程ax+b=c的解是x=1,则|c﹣a﹣b﹣1|=.19.已知x=﹣3是方程ax﹣6=a+10的解,则a=.20.x=3是方程4x﹣3(a﹣x)=6x﹣7(a﹣x)的解,那么a=.21.若|x﹣1|=3,则x=.22.若方程2x+1=3和的解相同,则a的值是.23.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为元.三.解答题(共16小题)24.阅读下面的解题过程:解方程:|5x|=2.解:(1)当5x≥0时,原方程可化为一元一次方程5x=2,解得x=;(2)当5x<0时,原方程可化为一元一次方程﹣5x=2,解得x=﹣.请同学们仿照上面例题的解法,解方程3|x﹣1|﹣2=10.25.已知关于x的方程3x+a=1与方程2x+1=﹣7的解相同,求a的值.26.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?27.列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?29.如图,沿着边长为90cm的正方形,按照A﹣B﹣C﹣D﹣A…的方向,电子蚂蚁甲从A以65cm/min的速度前进,电子蚂蚁乙同时从A以72cm/min的速度前进.(1)当乙第一次追上甲时,它们在正方形的哪条边上?(2)当甲、乙第二次在正方形的同一条边上时,至少走了多少分钟?(3)试一试乙从B出发时,(1)(2)是怎样的答案?30.甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行40千米,乙车每小时行50千米.两车分别到达B地和A地后,立即返回,返回时,甲车的速度增加二分之一,乙车的速度增加五分之一.已知两车两次相遇处的距离是50千米,则A,B两地的距离为多少千米?31.新石商店新进一批衬衣和成对的暖瓶,暖瓶的对数正好是衬衣件数的一半.每件衬衣进价是40元,每对暖瓶的进价也是40元,商店将这批物品以高出进价10%的价钱卖了出去,因商店职员需要,留下了7件物品.这时,商店发现所卖这批物品的钱数恰好等于买进这批物品所花的钱数.这批物品的利润可用留下的7件物品的零售价之和所代表.这7件物品都是什么?它们值多少钱?32.环行跑道周长为400米,甲乙两人在同时同地顺时针沿环行跑道跑,甲每分钟跑52米,乙每分钟跑46米,甲乙两人每跑100米休息1分钟,问甲何时追上乙?33.有160名学生到离校60千米处旅游,用一辆能载40人的客车运送,设计了步行与乘车相结合的办法,使他们用最短时间到达旅游点,车速每小时50千米,步行每小时5千米,那么这个最短时间是多少小时?(列方程解)34.某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?35.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.36.甲、乙两种商品单价之和为100元,因季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原单价之和提高了2%,求甲、乙两种商品的单价.37.有23人在甲方处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?38.仔细观察下面的日历,回答下列问题:(1)在日历中,用正方形框圈出四个日期(如图).求出图中这四个数的和;(2)任意用正方形框圈出四个日期,如果正方形框中的第一个数为x,用代数式表示正方形框中的四个数的和;(3)若将正方形框上下左右移动,可框住另外的四个数,这四个数的和能等于40吗?如果能,依次写出这四个数;如果不能,请说明理由.39.一个两位数,个位上的数是十位数的2倍,如果把十位与个位上的数对调,那么所得的数比原两位数大36,求原两位数.参考答案一.选择题(共14小题)1.B;2.B;3.B;4.A;5.B;6.D;7.B;8.B;9.B;10.B;11.D;12.C;13.A;14.B;二.填空题(共9小题)15.②③④;②④;16.﹣1;17.﹣1;18.1;19.﹣4;20.;21.4或﹣2;22.7;23.1600;三.解答题(共16小题)24.;25.;26.;27.180;28.;29.;30.;31.;32.;33.;34.;35.2或8;36.;37.;38.;39.;。
人教版2020七年级数学上册第三章一元一次方程自主学习优生提升测试卷(附答案详解)1.解方程211x x +-﹣12x =122x -时,去分母方程两边同乘的最简公分母( ) A .(x+1)(x ﹣1)B .2(x+1)(x ﹣1)C .x (x+1)(x ﹣1)D .2x (x+1)(x ﹣1)2.已知方程3x -m =+32m x 与方程2(x +2)=4(x +3)的解相同,则m 的值为( ) A .-18B .18C .-4D .-123.如果关于x 的方程2mx m x +=+无解,则m 的值是( )A .0B .1C .2D .34.下列方程中,属于一元一次方程的是( )A .x +2y =1B .2y +y 2+1=0 C .2x +3=0 D .2y 2=85.方程kx =3 的解为自然数,则整数k 等于A .1,3B .0,1C .,D .1,3±±6.当x =3时,式子3x 2-5ax +10的值为7,则a 等于( )A .2B .-2C .1D .-17.已知2x =是关于x 的方程()112a x a x +=+的解,则a 的值是( ) A .15 B .25 C .35 D .458.如图,正方形ABCD 的边长为1,电子蚂蚁P 从点A 分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q 从点A 以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在( )A .点AB .点BC .点CD .点D9.下列方程是一元一次方程的是( )A .23x y +=-B . 33x x +=-C .12x =D .210x -=10.x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解.11.关于x 的方程()1210k k x -+=是一元一次方程,则k =___________. 12.已知梯形的下底为6cm ,高为5cm ,面积为25cm 2,则上底的长等于______13.如果方程3x=9与方程2x+k=﹣1的解相同,则k=___.14.若关于x 的议程:3x n-1+(m-2)x 2 = 5是一元一次方程,则m =_____n =__15.已知关于x 的方程=2的解是x=2,则m=__________.16.若方程2x a -2-3=0是关于x 的一元一次方程,则a =____________.17.已知关于x 的方程7﹣kx=x+2k 的解是x=2,则k = _____.18.方程3+12x -16x -=1去分母后所得的结果是___________________. 19.若x=-3是方程kx+k=6的解,则k =_________20.解方程(组):(1) 3516x -=; (2)2234x y x y =⎧⎨-=⎩21.在数轴上,点A 表示数m ,点B 表示数n ,已知m 、n 满足:(3m+n )2+|n ﹣6|=0. (1)求m 、n 的值;(2)若在数轴上存在一点C ,使得点C 到点A 的距离是C 到点B 的距离的3倍,求点C 表示的数;(3)若小蚂蚁甲从点A 处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B 处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O 处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t 秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t .(5分)22.有一根钢管长12米,要锯成两段,使第一段比第二段短2米,每段各长多少米? 23.如图,数轴的原点为0,点A 、B 、C 是数轴上的三点,点B 对应的数位1,AB=6,BC=2,动点P 、Q 同时从A 、C 出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t 秒(t >0)(1)求点A 、C 分别对应的数;(2)经过t 秒后,求点P 、Q 分别对应的数(用含t 的式子表示)(3)试问当t 为何值时,OP=OQ ?24.一件工作,甲单独完成需7.5小时,乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?25.关于x的一元一次方程4x+m+1=2x﹣1的解是负数,求m的取值范围.26.一个两位数,其个位上的数与十位上的数的和等于6,而个位与十位上的数的积等于这两位数的三分之一,求这个两位数.27.解方程或解比例.① 5+0.7x =103 ② X ∶35= 2 ∶1328.列方程...解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)甲乙进价(元/件) 2230售价(元/件) 2940(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中购进甲种商品的件数不变,购进的乙种商品的件数是第一次购进乙种商品件数的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?29.甲、乙两列火车从相距1500km的两站同时相向开出,甲列车的平均速度是100km,乙列车的平均速度是150km/h,问多少小时后两车相距250km?参考答案1.D【解析】三个分母分别为21(1)(1),2,222(1)x x x x x x -=+--=- 则最简公分母为2x (x+1)(x ﹣1).故选D.2.C【解析】解方程2(x +2)=4(x +3)可得x=-4,把x=-4代入方程3x -m =+32m x 可得-12-m=122m -,解得m=-4,故选C.3.B【解析】 分析:本题考查的是方程无解的情况,解出方程,得到的式子无意义. 解析:解方程得,21m x m -=- ,∵方程无解,所以m=1. 故选B.4.B【解析】试题解析:A 、含有2个未知数,不是一元一次方程,故本选项错误;B 、是一元一次方程,故本选项正确;C 、不是整式方程,不是一元一次方程,故本选项错误;D 、是一元二次方程,故本选项错误.故选B .5.A【解析】系数化为得,x=3k, ∵关于x 的方程kx=3的解为自然数,∴k 的值可以为:1、3.故选:B.6.A【解析】根据题意可把3x 代入式子3x2-5ax+10中可以得到关于字母a的一元一次方程:27-15a+10=7,解得a=2,因此正确选项是A,7.D【解析】试题解析:把x=2代入方程得3a=12a+2,解得:a=4 5 .故选D.8.D【解析】【详解】由题意可知,点P的运动速度是1个单位/秒,点Q 的速度是3个单位/秒,第一次相遇在点D,依此类推,可知第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D……,由此可知四次一循环,2017÷4=504……1,所以第2017次相遇在点D,故选D.【点睛】本题主要考查规律性问题,通过分析先确定前几次相遇点是解题的关键.9.B【解析】由一元一次方程的定义:“只含有一个未知数,且含未知数的项的次数是1的整式方程叫做一元一次方程”分析可知,上述方程中,只有B是一元一次方程,其余三个选项中的方程都不是一元一次方程.故选B.10.x = - 6.【解析】试题解析:∵x - 3(x + 2) = 6,∴x - 3x -6= 6,∴-2x=12,∴x=-6.故答案为: x = - 6.11.-1【解析】试题解析:∵方程(k-1)x|k|+2=10是一元一次方程,∴k-1≠0,|k|=1,解得:k=-1.12.4cm【解析】解:设梯形上底为x,则(x+6)×5÷2=25,解得:x=4.故答案为:4cm.13.-7【解析】解:3x=9,系数化为1,得:x=3.∵方程3x=9与方程2x+k=﹣1的解相同,∴6+k=-1,解得:k=-7.故答案为:-7.点睛:本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.14.m=2n=2【解析】试题解析:根据题意得:n-1=1;m-2=0解得:m=2;n=2.15.0【解析】把x =2代入原方程得:,解得:m=0.故答案为:0.16.3【解析】已知方程2x a-2-3=0是关于x的一元一次方程,根据一元一次方程的定义可得a-2=1,解得a=3.17.5 4【解析】【详解】关于x的方程7﹣kx=x+2k的解是x=2,∴7-2k=2+2k,解得:k=5 4 .故答案为54.18.3(3x+1)-(x-1)=6 【解析】方程3+12x -16x -=1两边同乘以6得,3(3x +1)-(x -1)=6. 19.-3【解析】解:∵x =-3是方程kx +k =6的解,∴-3k +k =6,解得:k =-3.故答案为:-3.20.(1)7x =; (2) 84x y =⎧⎨=⎩. 【解析】试题分析:(1)移项合并同类项,化系数为1即可;(2)直接用代入法解答即可.试题解析:解:(1)3x =16+5,3x =21,x =7;(2)2234x y x y =⎧⎨-=⎩①②,把①代入②,得:4y -3y =4,解得:y =4,把y =4代入①,得:x =8.∴84x y =⎧⎨=⎩. 21.(1)m=-2,n=6;(2)C 点表示的数是4或10①t=43;②t=8 【解析】试题分析:(1)根据非负数的性质求得m 、n 的值;(2)点C 可能在A 、B 之间,也可能在点B 的右侧;(3)需要分类讨论:①甲、乙两球均向左运动,即0≤t≤3时;)①甲、乙两球均向左运动,即0≤t≤3时.根据速度、时间、距离的关系列出方程并解答.试题解析:(1)∵(3m+n)2+|n−6|=0,∴3m+n =0,n−6=0,解得m=−2,n=6;(2)设点C 表示的数是x ,①当点C 在A 、 B 之间时,x−(−2)=3(6−x),解得x=4;②当点C 在B 点的右侧时,x−(−2)=3(x−6),解得x=10.综上所述,点C 表示4或10;(3)①甲、乙两球均向左运动,即0⩽t⩽3时,此时OA=2+t,OB’=6−2t,则可得方程2+t=6−2t,解得t=43;②甲继续向左运动,乙向右运动,即t>3时,此时OA=2+t,OB’=2t−6,则可得方程2+t=2t−6,解得t=8.答:甲、乙两小球到原点的距离相等时经历的时间为43秒或8秒.点睛:本题考查数轴、非负数的性质、一元一次方程的应用等知识,解题的关键是学会用方程的思想思考问题.22.第一段长为5米,第二段长为7米.【解析】试题分析:设第二段长为x米,则第一段长为(x-2)米,根据钢管长12m,列出方程解方程即可.试题解析:设第二段长为x米,则第一段长为(x-2)米.根据题意得,x+(x-2)=12.解得x=7.则7-2=5.答:第一段长为5米,第二段长为7米.23.(1)点A对应的数是﹣5,点C对应的数是3;(2)点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)t= 23或8.【解析】【分析】(1)根据点B对应的数为1,AB=6,BC=2,得出点A对应的数是1-6=-5,点C对应的数是1+2=3;(2)根据动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,表示出移动的距离,即可得出对应的数;(3)分两种情况讨论:当点P与点Q在原点两侧时和当点P与点Q在同侧时,根据OP=OQ,分别列出方程,求出t的值即可.【详解】解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=23;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为23或8时,OP=OQ.24.133小时.【解析】试题分析:设共需要x小时完成任务.,根据总工作量=各部分的工作量之和建立等量关系列出方程解方程即可.试题解析:设共需要x小时完成任务.由题意得(+)×1+=1.解得x=.答:共需小时完成任务.25.m>-2.【解析】先把m当作已知条件表示出x的值,再根据x是负数得出关于m的不等式,求出m 的取值范围即可.解:∵4x+m+1=2x-1,∴x=-2-m,∵x的值是负数,∴2-m<0,解得m>-2.26.24或15【解析】试题分析:首先设个位数字为x ,则十位数字为(6-x ),由题意得等量关系:两个数字的积=这个两位数的13,根据等量关系列出方程,再解即可. 试题解析:设个位上的数为x ,则十位数字为(6-x),由题意得: x(6-1)=13[10(6-x)+x], 解得:x 1=4,x 2=5,十位数字为:6-4=2,或6-5=1这个两位数是:15或24,27.①X=140; ②X=185. 【解析】试题分析:(1)移项后系数化1即可;(2)利用比例的性质把方程化为1635x = ,系数化1即可.试题解析:(1)0.7x=103-50.7x=98x=140 (2)1635x =, 185x =. 28.(1) 两种商品全部卖完后可获得1950元利润;(2) 第二次乙种商品是按原价打8.5折销售.【解析】【详解】解:(1)设第一次购进甲种商品x 件,则乙的件数为(1152x +)件,根据题意得, 122301560002x x ⎛⎫+⨯+= ⎪⎝⎭. 解得 x=150. 则1157515902x +=+=(件)(29﹣22)×150+(40﹣30)×90=1950(元) 答:两种商品全部卖完后可获得1950元利润.(2)设第二次乙种商品是按原价打y 折销售, 由题意,有(2922)150403090319501810y ⎛⎫-⨯+⨯-⨯⨯=+ ⎪⎝⎭. 解得 y=8.5.答:第二次乙种商品是按原价打8.5折销售【点评】本题考查了利润=售价﹣进价的运用,列一元一次方程解实际问题的运用及一元一次方程的解法的运用.解答时根据题意建立方程是关键.29.5小时后或7小时后两车正好相距250km.【解析】试题分析:设x 小时后两车相距250km ,根据250km 有两种情况分别列出方程求解即可. 试题解析:设x 小时后相距250km ,当两列列车在相遇前相距250km ,由题意得1001501500250x x +=-,解得5x =.当两列列车在相遇后相距250km ,由题意,得1001501500250x x +=+,解得7x =,即5小时后或7小时后两车正好相距250km点睛:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.。
2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)专题08 应用一元一次方程-打折销售【典型例题】1.商场举行优惠活动,活动规则如下:①一次性购物不超过60元不享受任何优惠;②一次性购物超过60元但不超过180元,一律打九折;③一次性购物超过180元,一律打八折.(1)小刚和朋友在活动中各自单独购买了原价为a ,b 元()60,60180a b <<<的商品,则他们实际付款金额之和为元. (2)小明在商场分别购买了两次商品,共花费193.2元,其中第二次商品原价是第一次商品原价的4倍,那么这两次商品原价总和是多少元?【专题训练】一、选择题1.(2020·阜南县中岗中学七年级月考)文具店把某种钢笔的标价提高25 %后,欲恢复原价,则应该降价( ) A .25 % B .20 % C .15 % D .10 %2.随着地摊经济的复苏,失业的小李做起了小本生意.他把一件标价80元的T 恤衫,按照7折销售仍可获利10元,设这件T 恤的成本为x 元,根据题意,下面所列的方程正确的是( )A .800.710x ⨯-=B .80710x ⨯-=C .800.710x ⨯=-D .80710x ⨯=-3.(2020·湖南长沙·八年级月考)某种商品因换季准备打折出售,若按定价的七五折出售将赔25元,若按定价的九折出售将赚20元,则这种商品的定价为( )A .280元B .300元C .320元D .200元4.(2020·长沙市雅礼雨花中学九年级一模)随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180B.170C.160D.1505.(2020·长沙市开福区青竹湖湘一外国语学校九年级二模)中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40%B.20%C.60%D.30%二、填空题6.(2020·吉林七年级期末)一件定价为150元的商品,若按九折销售仍可获利25%,设这种商品的进价为x元,则可列出方程是______________________.7.(2020·桐城市第二中学七年级期中)某商场销售某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润400元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得纯利润为________元.8.(2020·江苏七年级期中)淘宝“双十一”大促,某店铺一件标价为480的大衣打八折出售,仍可盈利20%,若设这件大衣的成本是x元,根据题意,可得到的方程是__________________.9.(2019·广州市南武实验学校九年级月考)某县2018年农民人均年收7.8万元,计划到2019年,农民人均年收入达到9.1万元,设人均年收入的平均增长率为x,则可列方程________.10.(2020·重庆南开中学九年级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是__________元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).三、解答题11.(2020·安徽七年级期中)某学校食堂这个月的大米购进量比上个月减少了5%,由于受疫情影响米价上涨,这个月购进大米的费用反而比上个月增加了14%,求这个月大米价格相对上个月的增长率.12.(2019·武汉一初慧泉中学七年级月考)列方程解决实际问题:服装店销售某款服装,一件服装的标价为300元.(1)若按标价的八折销售,则实际售价为元;(2)在(1)的条件下销售这款服装仍可获利25%,请问这款服装每件的进价为多少元?13.(2020·浙江七年级期中)乐清市某服装店在国庆期间对顾客实行优惠,规定如下:(1)王老师一次性购物标价总和为600元,他实际付款元(直接写出答案).(2)若顾客在该超市一次性购物实际付款360元,问此顾客一次性购物标价总和为多少元?14.(2020·河北七年级期中)家乐福超市出售甲、乙两种商品,甲种商品每件进价20元,售价35元;乙种商品每件进价30元,售价50元.(1)若该超市同时购进甲、乙两种商品共100件,且使这100件商品的总利润(利润=售价﹣进价)为1800元,需购进甲、乙两种商品各多少件?(2)在“元旦”期间,该超市对甲、乙两种商品进行如下优惠促销活动:按上述优惠条件,若小张第一天只购买甲种商品一次性付款210元,第二天只购买乙种商品打折后一次性付款440元,那么这两天他在该超市购买甲、乙两种商品一共多少件?15.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示(1)求这两种水果各购进多少千克?果店销售完这批水果获得的利润是多少元?(利润 售价-成本)16.(2019·北京师范大学乌海附属学校七年级月考)列方程解应用题:某社区超市第一次总共用6000元购进甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,甲、乙两种商品的进价如表:(1)求该超市第一次购进乙种商品的件数?(2)甲乙两种商品的售价如上表,若将第一次所购商品全部卖完后,一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原售价销售,乙商品在原售价上打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,求第二次乙种商品是按原价打几折销售?。
苏科版七年级上《4.2 解一元一次方程》强化提优检测(时间:60分钟满分:100分)一.选择题(共8题;共24分)1.下列方程的变形中移项正确的是()A.由8+x=12得x=12+8 B、由5x+8=4x得5x-4x=8C.由10x-2=4-2x得10x+2x=4+2 D、由2x=3x-5得-5=3x-2x2.在解方程时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)3.已知方程x﹣2y+3=8,则整式x﹣2y的值为()A.5 B.10 C.12 D.154.设“●、▲、■”分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放“■”的个数为()A.6个B.5个C.4个D.3个5.已知关于x的方程5x+3k=21与5x+3=0的解相同,则k的值是()A.﹣10 B.7 C.﹣9 D.86.解方程的步骤如下,发生错误的步骤是()A.2(x﹣1)﹣(x+2)=3(4﹣x)B.2x﹣2﹣x+2=12﹣3xC.4x=12 D.x=37.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.5 B.4 C.3 D.28.若a=b,则下列等式:①a+2=b+2;②a-3=b-3,③4a=4b;④-5a=-5b;⑤ac=bc仍成立的有( )A.2个B.3个C.4个D.5个二、填空题(共8题;共24分)9.用适当的数或整式填空,使所得结果仍是等式,并说明依据是什么.(1)如果6+x=2,那么x=_______,根据是_______.(2)如果3/2x=15,那么x=_______,根据是_______.10.若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是.11.当x=时,代数式2x+1与5x﹣8的值互为相反数.12.在梯形面积公式s=(a+b)h中,已知s=60,b=4,h=12,则a=.13.规定一种运算“*”a*b=a﹣2b,则方程x*3=2*3的解为14.若关于x的方程mx+2=2m﹣2x的解满足方程|x﹣|=1,则m=.15.若a+2=0,则a3=_______.16.关于x的方程kx﹣1=2x的解为正实数,则k的取值范围是.三、解答题(共8题;共52分)17.(12分)解下列方程(1)7x+6=16﹣3x;(2)2(3﹣x)=﹣4(x+5);(3);(4).18.(5分)当k为何值时,关于x的方程-12x+5k=-1的解为3?19.(6分)已知y1=x+3,y2=2x-3(1)当x取何值时,y1=y2?(2)当x取何值时,y1的值比y2的值的2倍大8?20.(5分)先阅读下列问题过程,然后解答问题.解方程:|x+3|=2.21.(5分)已知关于x的方程=x+与=3x﹣2的解互为相反数,求m的值.22.(5分)a,b,c,d为有理数,现规定一种运算:=ad﹣bc,求=18时x的值.23.(6分)已知2a-3x=11是关于x的方程。
一、解答题1.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.解析:(1)B所对应的数为2;(2)A,B两点间距离是12个单位长度;(3)经过4秒或8秒长时间A,B两点相距4个单位长度.【分析】(1)根据左减右加可求点B所对应的数;(2)先根据时间=路程÷速度,求出运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的B点在A点右边4个单位长度;运动后的B点在A点左边4个单位长度;列出方程求解即可.【详解】解:(1)﹣2+4=2.故点B所对应的数为2;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.【点睛】本题考查了数轴,行程问题的数量关系的运用,解答时根据行程问题的数量关系列出方程是解决问题的关键.2.解方程:(1)3x﹣4=2x+5;(2)2531 64x x--+=.解析:(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键.3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.5.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x个家长,则有(15﹣x)个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,根据题意得:100x+100×0.8(15﹣x)=1400,解得:x=10,15﹣x=5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.6.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a的值及此方程的解.解析:y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x -++-=-1. 解析:(1)x =-516;(2)x =16. 【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x +15)=1231-(x -7). 去分母,得6(x +15)=15-10(x -7).去括号,得6x +90=15-10x +70.移项及合并同类项,得16x =-5. 系数化为1,得x =-516. (2)2110121364x x x -++-=-1 去分母,得4(2x -1)-2(10x +1)=3(2x +1)-12.去括号,得8x -4-20x -2=6x +3-12.移项,得8x -20x -6x =3-12+4+2.合并同类项,得-18x =-3.系数化为1,得x =16. 【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.8.解下列方程: (1)51784a -=; (2)22146y y +--=1; (3)2131683x x x -+-= -1 解析:(1)3a =;(2)4y =-;(3)179x =. 【分析】 (1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.9.运用等式的性质解下列方程:(1)3x =2x -6;(2)2+x =2x +1; (3)35x -8=-25x +1. 解析:(1)x =-6;(2)x =1;(3)x =9【分析】(1)根据等式的性质:方程两边都减2x ,可得答案;(2)根据等式的性质:方程两边都减x ,化简后方程的两边都减1,可得答案. (3)根据等式的性质:方程两边都加25x ,化简后方程的两边都加8,可得答案. 【详解】(1)两边减2x ,得3x -2x =2x -6-2x .所以x =-6.(2)两边减x ,得2+x -x =2x +1-x .化简,得2=x +1.两边减1,得2-1=x +1-1所以x =1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.10.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+7解析:(1)m=2;(2)x=4【分析】(1)先合并同类项,再化系数为1解一元一次方程即可;(2)先移项,再合并同类项解一元一次方程即可.【详解】(1)合并同类项,得:﹣4m=﹣8,系数化为1,得: m=2,(2)移项,得:3x﹣2x=7﹣3,合并同类项,得: x=4.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法及步骤是解答的关键.11.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
一、填空题
1.若2a 与1-a 互为相反数,则a=_______________;
2.方程5x ―4=4x ―2变形为5x ―4x=―2+4的依据是________________;
3.x=_____________时,代数式2(x -1)-3的值等于-9。
4.已知公式S=
2
1(a+b )h,若S=30,a=6 , b= 4 , 则h=______________; 5.若a 、b 互为相反数(a ≠0),则ax+b=0的解为________________; 6.如果方程5x+3|a|= -3的解是x=-6,那么a=_________________;
7.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是___________;
8.0<x<10 , 则满足条件|x -3|=a 的整数a 共有_________个,它们的和等于__________;
9.已知关于x 的方程21+x -3
m x +=1的解的绝对值是3,则m 的值等于____________; 10.已知a :b :c=2:3:4,a+b+c=27,则a ―2b ―3c=_________________;
二、选择题
1.x=3是方程( )的解
A .3x=6
B .(x -3)(x -2)=0
C .x(x -2)=4
D .x+3=0
2.已知代数式 3x -12的值与-
3
1互为倒数,那么x 的值为( ) A .-3 B .3 C .-31 D .31 3.下列变形正确的是( )
A .若x 2=y 2,则x=y
B .若axy=a,则xy= 1
C .若-23x=8,则x=-12
D .若a x =a
y ,则x=y 4.3个连续偶数的和为36,则它们的积为( )
A .998
B .1200
C .1680
D .1868
5.有一种足球是由32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,则黑皮有(32-x )块,每块白皮有6条边,共6x 条边,因每块白皮有3条边和黑皮连在一起,故黑皮共有3x 条边,要求出黑皮、白皮的块数,列出的方程是( )
A .3x=32-x
B .3x=5(32-x)
C .5x=3(32-x )
D .6x=32-x
6.小明的父亲到银行存入20000元人民币,存期一年,年利率为1.98%,到期应交纳所获得利息的20%的利息税,那么小明的父亲存款到期交利息税后共得款( )
A .20158.4元
B .20198元
C .20396元
D .20316.8元
三、列方程解应用题
1.用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m 3, 第一架工作16小时,第二架工作24小时,共掘土8640 m 3,问每架掘土机每小时可以掘土多少 m 3
?
2.甲、乙、丙三个工厂共同筹办一所厂办学校,所出经费不同,其中甲厂出总数的
72,乙厂出甲丙两厂和的
2
1,已知丙厂出了16000元.问这所厂办学校总经费是多少,甲乙两厂各出了多少元?
3.一条山路,从山下到山顶,走了1小时还差1km ,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km .
4.一艘轮船从甲地顺流而下6小时到达乙地,原路返回需用10个小时才能到达甲地,已知水流的速度是每小时3千米,求甲、乙两地的距离。
5.一个进水管和一个出水管,单开进水管5小时就能灌满一池水,在灌水两小时后发现出水管没有关,关闭出水管后再继续向水池灌水,再经4小时才将水池灌满,问单开出水管需多少时间才能把一池水放完?
6.一家三口在假期期间去北方旅游,当地有甲、乙两家旅行社,其定价都一样,但对家庭旅游都有优惠,甲旅行社表示大人不打折,小孩打六折;乙旅行社表示一家三口全部打八折,经核算,乙旅行社要便宜240元,问成人定价为多少元?
7.一辆汽车以每小时40千米的速度由甲地驶向乙地,车行3小时后,因遇雨,平均速度被迫每小时减少10千米,结果到乙地比预计的时间晚了45分钟,求甲、乙两地的距离。
8.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动。
某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前去参展,用6辆汽车装运,每辆汽车规定满载,且只能装这一种产品,因包装限制,每辆汽车满载时能装运香菇1.5吨或茶叶2吨。
问装运香菇、茶叶的汽车各需多少辆?
9.某市为了鼓励节约用水,对自来水的收费标准作了如下规定:每月每户用水不超过10吨的部分,按0.45元/吨收费;超过10吨而不超过20吨的部分按0.80元/吨收费;超过20吨的部分按1.5元/吨收费。
现已知李老师家某月缴水费14元,则李老师家这个月用水多少吨?
10.在五一黄金周期间,小明、小亮等同学随家人一同到江郎山游玩.下面是买门票时,小明与他爸爸的对话:
问题:(1)小明他们一共去了几个成人?几个学生?
(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.
11.商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台l 500元,乙种每台2 100元,丙种每台2 500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?。