高三资料实用版检测卷 答案
- 格式:doc
- 大小:14.50 KB
- 文档页数:1
2024年陕西省高三教学质量检测试题(一)语文注意事项:本试卷满分150分,考试时间150分钟。
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
回答非选择题时,用签字笔直接写在答题卡的相应位置,写在试卷、草稿纸和答题卡上的非指定区域均无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。
暑期档《长安三万里》热映,不仅展现了唐朝诗人李白、高适和杜甫的风采,还精心描画出唐代街巷坊肆的日常景象。
时光荏苒,长安已是“西安”,城市布局与唐代相比有了很多变化。
近代以降,这座城市的唐风并不浓郁,直至2010年大明宫国家遗址公园建成,西安因地制宜,走出一条复现古都风貌的独特路径:长安西市遗址上修建的大唐西市博物馆于原址“就地展示”,对汉唐城市遗址修葺则“修旧如旧”。
6个仿唐街区复现“丹柱素壁”的建筑外表,商铺林立,游客熙攘,一派浓郁烟火气,一如今人对古代长安繁华街市的想象。
严格说来,历史文化名城难以真正“复原”。
城市不是西伯利亚荒原上偶然发现的猛犸象遗体,能在冰冻岁月中保持原貌。
一座城市的社会生活如流水般奔腾不息,后人很难分辨汉代长安、唐代长安与宋元“长安”之间的区别。
同时,即便古代城市规划设计明确,现有证据仍不足以完整复原整座城市。
比如,初至京城便明白“长安居不易”的白居易,年近五旬终于在长安新昌坊有了住宅。
对此,诗人并未吝惜笔墨,但我们仅能从诗中依稀得知他住在新昌坊东边,“最近东头是白家”,且宅前有松,“但有双松当砌下”,更多信息则无从知晓。
那么,如何在历史信息的汪洋大海中复现一座古代城市呢?理论上,我们可以立足此时此地,从现状倒推出一座城市最初的样貌。
以西安为例,在时光长河中逆流而上,观察明清西安府城墙的营建,欣赏元初马可·波罗赞美的“城甚壮丽”,了解北宋吕大忠始建碑林的动机,感受盛唐帝都的万千气象,直到见证隋文帝营造大兴城的那一刻。
姓名__________座位号____________(在此卷上答题无效)绝密★启用前2023年池州市普通高中高三教学质量统一监测语文试题(答案在最后)满分:150分考试时间:150分钟注意事项:1.答题前,考生务必将自己的学校、姓名、班级、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1-5题。
材料一:6月17日,中国完全自主设计建造的航空母舰“福建舰”在江南造船厂顺利下水。
“福建舰”是继“辽宁舰”与“山东舰”之后,中国拥有的第三艘航母。
其采用平直通长飞行甲板,配备有电磁弹射和阻拦装置,满载排水量8万余吨。
就排水量而言,“福建舰”仅次于美国的“福特”级和“尼米兹”级核动力航母,领先于俄罗斯的“库兹涅佐夫”号、英国的“伊丽莎白”级和法国的“戴高乐”号核动力航母,是当之无愧的世界头号常规动力航母.另外值得一提的是,“福建舰”在国内首次应用了电磁弹射技术。
相较于传统的滑跃式起飞方式,电磁弹射可以让战斗机满载燃料和弹药起飞,还可以满足大到运输机、预警机,小到无人机等各类机型在航母上的起飞条件。
由于电磁弹射的研发难度高,此前只有美国掌握了这项技术。
因此,“福建舰”的下水无疑掀开了中国海军航母发展和远洋作战的新篇章。
(摘编自乐水《“福建舰”下水掀开中国海军航母发展新篇章》)材料二:电磁推进技术的原理早在19世纪初就已有人提出,后经过几十年的探索与研究,人们相继研制出了各种电磁感应原理的直线发射装置或模型,但由于受相关研究领域技术的影响,上述模型的性能距工程实用尚存在着较大的差距。
70年代以后,超大功率脉冲技术和电子技术的飞速发展使电磁发射技术有了重大突破:1978年澳大利亚的马歇尔等人用550MJ的单极发电机作为电源,采用等离子体电枢在5m长的导轨炮上把3g重的聚碳酸脂弹丸加速到了5.9km/s的初速度。
2024届云南三校高芳备考实用性联考卷(五)英语注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2. 每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3. 考试结束后,请将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What do the speakers mainly talk about?A. Flowers.B. Birthday presents.C. Clothes.2. How many cans of Coke has Rowan drunk?A. Three.B. Nine.C. Twelve.3. Where does the conversation take place?A. At home.B. At a bus station.C. In a school.4. What is the probable relationship between the speakers?A. Workmates.B. Boss and employee.C. Interviewer and interviewee.5. Who helped the woman practice speaking French?A. The man.B. Her sister.C. Her neighbor.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
石家庄市2023届高中毕业年级教学质量检测(二)语文试卷试题及答案(本试卷满分150分,考试时间150分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选出其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题, 17分)阅读下面的文字,完成1~5题。
材料一:节能绿色环保建筑材料,又称为“生态建材”,是指采用清洁生产技术、少用天然资源和能源、大量使用工业或城市固态废物生产的无毒害、无污染、无放射性、有利于环境保护和人体健康的建筑材料。
有些传统建筑材料中会含有有毒物质以及相关污染物,这些物质会对生态环境造成危害,同时,这些物质很容易散发出来,严重危害人们的身体健康。
此外,传统建筑材料的使用,会产生大量的二氧化碳,不符合我国节能减排的发展要求。
与传统建筑材料相比,生态建材除了具有屏蔽有害辐射物质的功能,还有保温性好、节能效果显著等特征,还能实现对温度的调节和控制。
为了实现建筑工程的绿色化施工,技术人员要根据建筑工程施工类型,将节能绿色环保建筑材料科学应用于建筑工程中,以提高墙体结构设计水平、维护结构设计水平、防水结构设计水平、门窗结构设计水平以及保温结构设计水平。
在建筑工程的墙体施工期间,经常用到混凝土结构。
但是普通混凝土材料无法达到建筑节能降耗、绿色环保的相关标准和要求。
在这样的背景下,大量新型建筑墙体材料不断涌现,被广泛应用于建筑工程中。
常规混凝土与新型混凝土性能对比从表格中的数据可以看出,新型墙体材料主要包含以下几种类型:(1)加气混凝土。
加气混凝土原料主要包含两种成分,一种是硅砂,另一种是粉煤灰,通过将它们与石灰、石膏、水泥等材料进行充分混合,并置于高温环境下进行蒸压养护处理即可成型。
一、选择题(每题2分,共20分)1. 下列词语中,没有错别字的一组是:A. 纷至沓来、推陈出新、因地制宜、功亏一篑B. 窃窃私语、别具一格、诲人不倦、名垂青史C. 豁然开朗、掩耳盗铃、翩翩起舞、草长莺飞D. 欣欣向荣、夸父追日、首当其冲、汗牛充栋2. 下列各句中,没有语病的一句是:A. 随着我国经济的快速发展,人民生活水平不断提高,许多家庭都购买了汽车。
B. 面对突如其来的疫情,医护人员冲锋在前,用实际行动诠释了“医者仁心”的崇高精神。
C. 近年来,我国在科技创新方面取得了举世瞩目的成就,这得益于我国科技工作者的辛勤努力。
D. 为了实现我们的梦想,我们必须努力学习,不断提高自己的综合素质。
3. 下列各句中,表达不准确的一句是:A. 这个故事告诉我们,失败并不可怕,可怕的是失去了再次站起来的勇气。
B. 通过这次社会实践,我深刻体会到了团结协作的重要性。
C. 随着科技的发展,我们的生活越来越便捷,但同时也带来了一些问题。
D. 在这次比赛中,我们充分发挥了团队精神,取得了优异的成绩。
4. 下列各句中,运用比喻手法的一句是:A. 他的笑容如阳光般温暖。
B. 他的声音如洪钟般响亮。
C. 他的眼睛像星星一样明亮。
D. 他的思维如泉涌般丰富。
5. 下列各句中,表达得体的一句是:A. 你真是个天才,做什么事都一帆风顺。
B. 你的建议非常有价值,我们一定要认真考虑。
C. 你太笨了,这个问题都解决不了。
D. 你的作品太差了,我看了都感到不舒服。
二、填空题(每题2分,共20分)6. 请用“不仅……而且……”的句式,表达下列意思:他不仅学习成绩优秀,而且乐于助人。
7. 请用“虽然……但是……”的句式,表达下列意思:虽然这次考试我没有取得理想的成绩,但是我已经尽力了。
8. 请用“因为……所以……”的句式,表达下列意思:因为天气太热,所以我们都穿着短袖。
9. 请用“即使……也……”的句式,表达下列意思:即使遇到困难,我们也要坚持下去。
2024届贵州省六校联盟高考实用性联考卷(三)化学试题注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.考试结束后,请将本试卷和答题卡一并交回。
满分100分,考试用时75分钟。
可能用到的相对原子质量:H-1Li-7C-12O-16P-31S-32Fe-56Cu-64一、选择题:本题共14小题,每题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.化学与生活、科学、技术等密切相关。
下列说法正确的是A.不插电的暖贴发热原理是化学能转化为电能B.葡萄酒中添加适量二氧化硫的作用是漂白杀菌C.免洗洗手液的有效成分中含有活性银离子,能使蛋白质变性D.纤维是人们生活中的必需品。
天然纤维、再生纤维和合成纤维统称为化学纤维【答案】C【解析】【详解】A.不插电的暖贴发热原理有化学能转化为热能,故A错误;B.葡萄酒中添加适量二氧化硫的作用是抗氧化杀菌,故B错误;C.银离子有强氧化性,能使蛋白质变性,故C正确;D.天然纤维不属于化学纤维,再生纤维和合成纤维统称为化学纤维,故D错误;故选C。
2.下列化学用语表示错误的是H O的VSEPR模型:A.2B.基态N原子的轨道表示式:C H的电子式为C.24D.()3232CH CH CH CH 的名称:3-甲基戊烷【答案】B 【解析】【详解】A .2H O 有2个σ键,2对孤对电子,VSEPR 模型:,故A 正确;B .不符合洪特规则,2p 上的三个电子应该都独占轨道且自旋平行,故B 错误;C .乙烯中有碳碳双键和碳氢键,电子式为,故C 正确;D .()3232CH CH CH CH 主链上有5个碳原子,3号位有1个甲基,名称为3-甲基戊烷,故D 正确;故选B 。
3.设A N 为阿伏加德罗常数的数值。
河北衡水中学2024-25届高三年级上学期检测一语文本试卷共8页,总分150分,考试时间150分钟。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:社会结构的现代化转型使社会呈现出个体化趋势,而个体化趋势下青年的社会心态也将随之转变。
在现代社会中,标准化的价值观不复存在,生活方式没有孰优孰劣,每个人经历的都是试验性的生活,生活方式的个人化与价值观的独立性显得越来越重要。
伴随着思想的解放,边界意识成为现代社会的首要意识而被强调,指出个人边界不容侵犯。
当前青年群体对社交边界感的强调,在某种意义上正是现代社会中个体独立意识和隐私意识的体现,是青年在现代社会中追求个性、渴望自由的情感表达。
社交边界感已经成为现代青年的新需求。
具体来看,此种需求体现在两个方面:一是拥有个人的边界。
拥有清晰的个人边界能使人学会评价人际关系,规避掉繁杂人际关系中的迷茫与压力,以及其对个人生活意志的主宰。
二是不侵犯他人的边界。
“已所不欲,勿施于人”,在坚持自我独立性的同时能够做到尊重他人的社交边界,才是社会互动中被崇尚的礼貌社交。
在高度倦怠的现代社会中,边界感成为现代青年自我保护与自我储能的方式。
德国社会学家齐美尔最早对社交中的边界予以重视,通过对现代社会的分析,他将社会生活中的社交距离视为自我与他人“内在关联”的心理距离,这其实是一种“内心的屏障”,起到屏保作用。
在快节奏的当今社会,频繁的社会流动让现代人每天要不断地与人接触,面对社交过载,如果没有这种人与人之间的“屏保效应”,人们终将会困于烦乱的社会交往中而感到精疲力竭,因此,边界感还为疲惫的年轻人提供了在内卷化社会中喘息的机会。
(摘编自王昕迪、胡鹏辉(边界感:现代社会青年社交需求及其建构》)材料二:2023年,“饭搭子”“旅游搭子’’“考研搭子”等名词层出不穷。
“搭子社交”以共同兴趣或需求为基础,秉持着严格的分寸感,满足青年们浅尝辄止的轻社交需求,成为更适应当代社会青年的社交方式。
2024届云南三校高考备考实用性联考卷(七)数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效,3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合{}{}10,1,1,3,4A xx B =-=-∣ ,那么如图阴影部分表示的集合为()A.{}1,4-B.{}1,3,4C.{}1,4D.{}1,3,4-2.若1i +是一元二次方程20,x ax a a -+=∈R 的根,则该方程的两根之和为()A.2B.1i -C.22i- D.13.已知(1,0),||1,||a b a b ==+=a 与b 的夹角为()A.π6B.π3C.2π3D.5π64.小张、小王两人计划报一些兴趣班,他们分别从“篮球、绘画、书法、游泳、钢琴”这五个随机选择一个,记事件A :“两人至少有一人选择篮球”,事件B :“两人选择的兴趣班不同”,则概率()P BA =∣()A.49B.59C.89D.455.我国古代有一种容器叫“方斗”,“方斗”的形状是一种上大下小的正四棱台(两个底面都是正方形的四棱台),如果一个方斗的容积为28升(一升为一立方分米),上底边长为4分米,下底边长为2分米,则该方斗的表面积为()A.(220dm+ B.(220dm+ C.256dm D.(220dm+6.已知圆的半径为1,,,a b c 分别为该圆的内接ABC 的三边,若abc =ABC 的面积为()B. C. D.7.如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,……第n 层有n a 个球,则数列1n a ⎧⎫⎨⎬⎩⎭的前30项和为()A.6031B.382C.2031D.19318.已知函数()e ln xf x x x x a =---,若()0f x =在()0,e x ∈有实数解,则实数a 的取值范围是()A.[)0,∞+ B.1,e∞⎡⎫+⎪⎢⎣⎭C.[)1,∞+D.[)e,∞+二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列说法正确的是()A.设随机变量X 的均值为,a μ是不等于μ的常数,则X 相对于μ的偏离程度小于X 相对于a 的偏离程度(偏离程度用差的平方表示)B.若一组数据12,,,n x x x 的方差为0,则所有数据()1,2,,i x i n = 都相同C.用决定系数2R 比较两个回归模型的拟合效果时,2R 越小,残差平方和越小,模型拟合效果越好D.在对两个分类变量进行2χ独立性检验时,如果列联表中所有数据都扩大为原来的10倍,在相同的检验标准下,再去判断两变量的关联性时,结论不会发生改变10.函数()()ππ02,22f x x ωϕωϕ⎛⎫=+<-<< ⎪⎝⎭的部分图象如图所示,则下列说法中正确的是()A.()f x 的表达式可以写成()5π24f x x ⎛⎫=+ ⎪⎝⎭B.()f x 的图象关于直线5π8x =对称C.()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D.若方程()1f x =在()0,m 上有且只有6个根,则5π13π,24m ⎛⎫∈⎪⎝⎭11.如图,已知二面角l αβ--的棱l 上有,A B 两点,,,,C AC l D BD l αβ∈⊥∈⊥,且AC AB BD ==,则()A.当αβ⊥时,直线CD 与平面β所成角的正弦值为33B.当二面角l αβ--的大小为60 时,直线AB 与CD 所成角为45C.若22CD AB ==,则三棱锥A BCD -的外接球的体积为55π3D.若2CD AB =,则二面角C BD A --的余弦值为277三、填空题(本大题共3小题,每小题5分,共15分)12.已知多项式()423450123453(1)x x a a x a x a x a x a x +-=+++++,则2345a a a a +++=__________.13.若()2ln 1f x x b ⎛⎫=+⎪+⎝⎭为奇函数,则b =__________.14.油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,北京市文化宫于春分时节开展油纸伞文化艺术节.活动中将油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半,阳光照射油纸伞在地面形成了一个椭圆形影子(春分时,北京的阳光与地面夹角为60 ),若伞柄底端正好位于该椭圆的焦点位置,则该椭圆的离心率为__________.四、解答题(共77分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)设圆C 与两圆222212:(3)1,:(3)1C x y C x y ++=-+=中的一个内切,另一个外切.(1)求圆心C 的轨迹E 的方程;(2)已知直线0(0)x y m m -+=>与轨迹E 交于不同的两点,A B ,且线段AB 的中点在圆2265x y +=上,求实数m 的值.16.(本小题满分15分)已知函数()1ln 2f x a x x x =++,且曲线()y f x =在点()()1,1f 处的切线与直线12y x =-垂直.(1)求函数()f x 的单调区间;(2)若关于x 的不等式()22mf x x x+ 恒成立,求实数m 的取值范围.17.(本小题满分15分)如图,在几何体ABCDEF 中,ADEF 为等腰梯形,ABCD 为矩形,AD ∥,1EF AB =,3,2,1AD DE EF ===,平面ADEF ⊥平面ABCD .(1)证明:BF CF ⊥;(2)求直线AF 与平面CEF 所成角的余弦值.18.(本小题满分17分)现有标号依次为1,2,,n 的n 个盒子,标号为1号的盒子里有2个黑球和2个白球,其余盒子里都是1个黑球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子, ,依次进行到从1n -号盒子里取出2个球放入n 号盒子为止.(1)当2n =时,求2号盒子里有3个黑球的概率;(2)当3n =时,求3号盒子里的黑球的个数ξ的分布列;(3)记n 号盒子中黑球的个数为n X ,求n X 的期望()n E X .19.(本小题满分17分)三阶行列式是解决复杂代数运算的算法,其运算法则如下:123123123231312321213132123a a a b b b a b c a b c a b c a b c a b c a b c c c c =++---.若111222i j ka b x y z x y z ⨯=,则称a b⨯ 为空间向量a 与b的叉乘,其中()()111111222222,,,,,a x i y j z k x y z b x i y j z k x y z =++∈=++∈R R ,{},,i j k 为单位正交基底.以O 为坐标原点,分别以,,i j k的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,已知,A B 是空间直角坐标系中异于O 的不同两点.(1)①若()()0,2,1,1,3,2A B -,求OA OB ⨯;②证明:0OA OB OB OA ⨯+⨯=.(2)记AOB 的面积为AOB S ,证明:12AOB S OA OB =⨯;(3)问:2()OA OB ⨯ 的几何意义表示以AOB 为底面、OA OB ⨯ 为高的三棱锥体积的多少倍?2024届云南三校高考备考实用性联考卷(七)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.由{}10A x x =-∣ ,得U {1A x x =<-∣ð或0}x >,而{}1,1,3,4B =-,依题意,阴影部分表示的集合(){}U1,3,4A B ⋂=ð,故选B.2.设20x ax a -+=的另一个根是z ,易知z 与1i +一定是共轭复数,故z 1i =-,故1i 1i 2++-=,故选A.3.由题知,222||1,()||2||||cos ||3a a b a a b b θ=+=++=,所以1π2cos 1,cos ,23θθθ===,故选B.4.由题意可知A :两人都没选择篮球,即()44165525P A =⨯=,所以()()9125P A P A =-=,而AB :有一人选择篮球,另一人选别的兴趣班,则()4285525P AB⨯==⨯,所以()()()88259925P AB P B A P A ===∣,故选C.5.如图所示,高线为MN ,由方斗的容积为28升,可得(1284163MN =++⋅,解得3MN=.由上底边长为4分米,下底边长为2分米可得AM NB AB ===,侧面积为面积为(220dm s =+,故选 D.6.设,,a bc 分别为角,,A B C 所对的边,在ABC 中,由正弦定理可得,22sin sin sin a b c R A B C====,所以11162sin ,sin 222244ABC c c abc C S ab C ab ===⋅=== ,故选C.7.根据已知条件有11a =,当2n 时,21324312,3,4,,n n a a a a a a a a n --=-=-=-= ,以上各式累加得:1234n a a n -=++++ ,又11a =,所以()()1123422n n n a n n +=+++++=,经检验11a =符合上式,所以()()*12n n n a n +=∈N ,所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则111111122122233411n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,所以3026023131S =-=,故选A.8.根据题意,()0f x =,所以e ln x a x x x =--,令()()e ln ,0,e xg x x x x x =--∈,则函数()e ln x f x x x x a =---在()0,e 上存在零点等价于y a =与()g x 的图象有交点.()()()()()1e 1111e e 1e 11e xx x x xx x x g x x x x x x x x +-+⎛⎫=+--=+-=+'-=⎪⎝⎭,令()()e 1,0,e x h x x x =-∈,则()e e 0x x h x x =+>',故()h x 在()0,e 上单调递增,因为()010h =-<,()1e 10h =->,所以存在唯一的()00,1x ∈,使得()00h x =,即00e 10x x -=,即001e xx =,00ln x x =-,所以当00x x <<时,()()()00,0,h x g x g x <'<单调递减,当0e x x <<时,()()()00,0,h x g x g x >'>单调递增,所以()0min 000000()e ln 11xg x g x x x x x x ==--=-+=,又0x →时,()g x ∞→+,故()()[)0,e ,1,x g x ∞∈∈+,所以1a ,故选C.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)题号91011答案ABADABD【解析】9.对于A ,由均值的性质可知222()()()E X a E X a μμ-=-+-,由于a 是不等于μ的常数,故可得22()()E X a E X μ->-,即X 相对于μ的偏离程度小于X 相对于a 的偏离程度,A 正确;对于B ,根据方差公式()()()2222121s n x x x x x x n ⎡⎤=-+-++-⎣⎦ ,可知若一组数据1x ,2,,n x x 的方差为0,则12,B n x x x === 正确;对于C ,由决定系数的定义可知,C 错误;对于2D,χ的值变为原来的10倍,在相同的检验标准下,再去判断两变量的关联性时,结论可能发生改变,D 错误,故选AB.10.对A ,由()01f =-1ϕ=-,即2sin 2ϕ=-,又πππ,224ϕϕ-<<∴=-,又()f x 的图象过点π,08⎛⎫⎪⎝⎭,则π08f ⎛⎫= ⎪⎝⎭,即ππππsin 0,π8484k ωω⎛⎫-=∴-= ⎪⎝⎭,即得82k ω=+,k ∈Z ,又02,2ωω<∴= ,所以()π5π2244f x x x ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭,故A 正确;对B,5π5π5π5π208842f ⎛⎫⎛⎫=⨯+==⎪ ⎪⎝⎭⎝⎭,故B 错误;对C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在5π7π,88x ⎡⎤∈⎢⎥⎣⎦单调递减,故C 错误;对于D ,由()1f x =,得5π2cos 242x ⎛⎫+= ⎪⎝⎭,解得ππ4x k =+或ππ,2k k +∈Z ,方程()1f x =在()0,m 上有6个根,从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个根为13π4,所以5π13π24m < ,故D 正确,故选AD.11.对A 选项:当αβ⊥时,因为,l AC l αβ⋂=⊥,所以AC β⊥,所以直线CD 与平面β所成角为CDA ∠,又因为AD β⊂,所以AC AD ⊥,因为,BD l AC AB BD ⊥==,所以AD ==,所以sin 3ACCDA CD∠===,故A正确;对B 选项:如图,过A 作AE ∥BD ,且AE BD =,连接,ED EC ,则四边形ABDE 为正方形,所以AB ∥DE ,所以CDE ∠(或其补角)即为直线AB 与CD 所成角,因为BD l ⊥,四边形ABDE 为正方形,有AE ∥BD ,所以AE l ⊥,又因为AC l ⊥,所以CAE ∠即为二面角l αβ--的平面角,即60CAE ∠= ,由AC l AE l AC AE A ⊥⊥⋂=、、,且,AC AE ⊂平面ACE ,所以l ⊥平面ACE ,又四边形ABDE 为正方形,所以DE ∥l ,所以DE ⊥平面ACE ,又CE ⊂平面ACE ,所以DE CE ⊥.由AC BD =且四边形ABDE 为正方形,60CAE ∠= ,所以AC AE CE ==,所以tan 1CDE ∠=,即45CDE ∠= ,即直线AB 与CD 所成角为45 ,故B 正确;对于D ,如图,作AE ∥BD ,且AE BD =,则二面角l αβ--的平面角为CAE ∠,不妨取22CD AB ==,由2CD =,在Rt DEC中,易得CE =,在ACE 中,由余弦定理得1cos 2CAE ∠=-,120CAE ∠= ,过C 点作CO AE ⊥交线段EA 的延长线于点O ,则CO ⊥平面ABDE ,过O 点作OH BD ⊥,交线段DB 的延长线于点H ,连接CH ,则CHO ∠为二面角C BD A --的平面角,易得37,1,22CO HO CH ===,所以27cos 7OH CHO CH ∠==,故D 正确;对C 选项:同选项D 可知120CAE ∠= ,如图,分别取线段,AD AE 的中点,G M ,连接GM ,过G 点作平面β的垂线,则球心O '必在该垂线上,设球的半径为R ,则O E R '=,又ACE 的外接圆半径1312sin120r =⨯= ,而平面ACE ⊥平面ABDE ,所以O G '∥平面ACE ,即MG 的长为点O '到平面ACE 的距离,则2215124R ⎛⎫=+= ⎪⎝⎭,所以四面体A BCD -的外接球的体积为34π36R =,故C 错误,故选AB D.三、填空题(本大题共3小题,每小题5分,共15分)【解析】12.含x 的项为:443344C (1)3C (1)11x x x ⋅⋅-+⋅⋅⋅-=-,故111a =-;令0x =,即03a =,令1x =,即01234523450,8a a a a a a a a a a =+++++∴+++=.13.()f x 定义域为210x b+>+,得x b >-或2x b <--,由()f x 为奇函数有20b b ---=,所以1b =-.14.如图,伞的企沿与地面接触点B 是椭圆长轴的一个端点,伞沿在地面上最远的投影点A 是椭圆长轴的另一个端点,对应的伞沿为,C O 为伞的圆心,F 为伞柄底端,即椭圆的左焦点,令椭圆的长半轴长为a ,半焦距为c ,由,OF BC OF OB ⊥==,得45,2,a c BF FBC AB a BC ∠+===== ABC 中,60BAC ∠= ,则()175,sin75sin 453022224ACB ∠==+=⨯+⨯= ,由正弦定理得,2sin75sin60a =,解得2a =,则2c =,所以该椭圆的离心率2c e a ==-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)解:(1)圆221:(3)1C x y ++=的圆心为()13,0C -,半径为1,圆222:(3)1C x y -+=的圆心为()23,0C ,半径为1,设圆C 的半径为r ,若圆C 与圆1C 内切,与圆2C 外切,则121,1CC r CC r =-=+,可得212CC CC -=;若圆C 与圆2C 内切,与圆1C 外切,则211,1CC r CC r =-=+,可得122CC CC -=;综上所述:122CC CC -=,可知:圆心C 的轨迹E 是以12C C 、为焦点的双曲线,且1,3a c ==,可得2228b c a =-=,所以圆心C 的轨迹E 的方程为2218y x -=.(2)联立方程221,80,y x x y m ⎧-=⎪⎨⎪-+=⎩消去y 得227280x mx m ---=,则()()222Δ42883270m m m =++=+>,可知直线与双曲线相交,如图6,设()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y ,可得120008,277x x m m x y x m +===+=,即8,77m m M ⎛⎫ ⎪⎝⎭,且8,77m m M ⎛⎫ ⎪⎝⎭在圆2265x y +=上,则2286577m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得7m =±,又0m >,所以实数m 的值为7.16.(本小题满分15分)解:(1)函数()f x 的定义域为()21{0},2a xx f x x x >=-'+∣,又曲线()y f x =在点()()1,1f 处的切线与直线12y x =-垂直,所以()1122f a =-+=',即1a =.()()()()21211ln 2,(0)x x f x x x f x x x x +-+'∴=+=>,由()0f x '<且0x >,得102x <<,即()f x 的单调递减区间是10,2⎛⎫ ⎪⎝⎭,由()0f x '>得12x >,即()f x 的单调递增区间是1,2∞⎛⎫+ ⎪⎝⎭.(2)由(1)知不等式()22m f x x x + 恒成立,可化为1ln 222m x x x x x +++ 恒成立,即ln 12m x x ⋅+ 恒成立.令()ln 1g x x x =⋅+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<在10,e ⎛⎫ ⎪⎝⎭上单调递减;当1,e x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,g x g x '>在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增.所以1e x =时,函数()g x 有最小值11e-.由ln 12m x x ⋅+ 恒成立,得22e m - ,即实数m 的取值范围是2,2e ∞⎛⎤-- ⎥⎝⎦.17.(本小题满分15分)(1)证明:如图7,过点F 作AD 的垂线,垂足为M ,连接,MB MC ,由已知可得1,2,2,5AM MF MD BM CM =====,平面ADEF ⊥平面ABCD ,平面ADEF ⋂平面,ABCD AD FM =⊂平面ADEF ,,FM AD FM ⊥∴⊥平面ABCD ,,MB MC ⊂ 平面,,ABCD FM MB FM MC ∴⊥⊥,3,6BF CF ∴==,222BF CF BC ∴+=,BF CF ∴⊥.(2)解:建立如图所示空间直角坐标系,A xyz -则()()()1,3,0,0,2,1,0,1,1C E F ,()()()0,1,1,1,1,1,0,1,0AF CE EF ∴==--=- ,设平面CEF 的法向量为(),,n x y z = ,则0,0,n EF y n CE x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ 令1x =得()1,0,1n = ,设直线AF 与平面CEF 所成角为θ,则,1sin cos ,2AF n AF n AF nθ⋅==== .ππ0,,26θθ⎡⎤∈∴=⎢⎥⎣⎦ ,即直线AF 与平面CEF所成角的余弦值为2.18.(本小题满分17分)解:(1)由题可知2号盒子里有3个黑球的概率为202224C C 1C 6P ==.(2)由题可知ξ可取1,2,3,()221123222222224444C C C C C 71C C C C 36P ξ==⨯+⨯=,()221123222222224444C C C C C 73C C C C 36P ξ==⨯+⨯=,()()()11211318P P P ξξξ==-=-==,所以3号盒子里的黑球的个数ξ的分布列为ξ123P 7361118736(3)记1n a -为第()2n n 号盒子有一个黑球和三个白球的概率,则116a =,1n b -为第()2n n 号盒子有两个黑球和两个白球的概率,则12211,318b b ==,则第()2n n 号盒子有三个黑球和一个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++-- ,化解得121162n n b b --=+,得12131331,565515n n b b b --⎛⎫-=--= ⎪⎝⎭,而21313565b b ⎛⎫-=- ⎪⎝⎭,则数列35n b ⎧⎫-⎨⎬⎩⎭为等比数列,首项为131515b -=,公比为16,所以13115156n n b -⎛⎫=+ ⎪⎝⎭,又由1221162n n n a b a ---=+求得:111556n n a ⎛⎫=- ⎪⎝⎭.因此()()1111111231322n n n n n n n E X a b a b a b ------=⨯+⨯+⨯--=--=.19.(本小题满分17分)(1)①解:因为()()0,2,1,1,3,2A B -,则()0214020321,1,2132i j k OA OB i j k i i j k ⨯==-++--=-+=-- .②证明:设()()111222,,,,,A x y z B x y z ,则121212212121OA OB y z i z x j x y k x y k z x j y z i⨯=++--- ()122112211221,,y z y z z x z x x y x y =---,将2x 与1x 互换,2y 与1y 互换,2z 与1z 互换,可得()211221122112,,OB OA y z y z z x z x x y x y ⨯=--- ,故()0,0,00OA OB OB OA ⨯+⨯== .(2)证明:因为sin AOB ∠===.故1sin 2AOB S OA OB AOB ∠=⋅= ,故要证12AOB S OA OB =⨯ ,只需证OA OB ⨯= ,即证2222||||()OA OB OA OB OA OB ⨯=-⋅ .由(1)()()()111222122112211221,,,,,,,,OA x y z OB x y z OA OB y z y z z x z x x y x y ==⨯=--- ,故()()()2222122112211221||OA OB y z y z z x z x x y x y ⨯=-+-+- ,又()2222222222111222121212|,|,()OA x y z OB x y z OA OB x x y y z z =++=++⋅=++ ,则2222||||()OA OB OA OB OA OB ⨯=-⋅ 成立,故12AOBS OA OB =⨯ .(3)解:由(2)12AOB S OA OB =⨯ ,得22()||OA OB OA OB ⨯=⨯ 1222AOB OA OB OA OB S OA OB =⨯⋅⨯=⋅⨯ ,故21()63AOB OA OB S OA OB ⨯=⋅⨯⨯ ,故2()OA OB ⨯ 的几何意义表示以AOB 为底面、OA OB ⨯ 为高的三棱锥体积的6倍.。
2024届云南三校高考备考实用性联考卷(四)理科综合参考答案一、选择题:本题共13小题,每小题6分。
题号1234567 8 9 10 11 12 13答案 C B B D C A A B C D D C B 二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求;第19~21题有多项符合题目要求,全部选对的给6分,选对但不全的给3分,有选错的给0分。
题号14 15 16 17 18 19 20 21 答案 D D B C D BC AD AC 【解析】1.B点时CO2释放量与O2消耗量之比为7∶3,则有氧呼吸与无氧呼吸的CO2释放量之比为3∶4,所以消耗的葡萄糖之比为1∶4,A正确。
C点时光合作用强度与呼吸作用强度相等,所以C点之前已开始进行光合作用,B正确。
自由水/结合水的比值上升时,结合水相对减少,植物的抗逆性应减弱,C错误。
低温诱导促使植物开花的作用称为春化作用,促进冬小麦开花进而提高结实率,D正确。
2.交感神经兴奋使支气管扩张,A错误。
肾上腺髓质分泌肾上腺素增加,能促进细胞代谢,提高机体应激能力,B正确。
缓冲物质位于细胞外液中,可调节血浆(细胞外液)的pH,C错误。
血浆中Ca2+浓度降低会引起手足抽搐,D错误。
3. 显性纯合子和隐性纯合子自交子代都不发生性状分离,故不能判断出亲本的基因型,A错误。
测交就是检测待测个体产生的配子种类及比例,B正确。
根据测交子代出现宽叶∶窄叶=1∶1,高茎∶矮茎=1∶1,只能判断这两对基因遵循分离定律,不能判断出这两对基因遵循自由组合定律,C错误。
根据杂合子AaBb自交子代出现4种表型可能是基因自由组合,也可能是染色体互换导致的,不能判断出这两对基因遵循自由组合定律,D错误。
4.杂交育种的原理是基因重组,A正确。
射线处理可能导致植株发生基因突变引起基因结构变化,也可能发生染色体变异导致基因数量或排列顺序改变,B正确。
2025届云南三校高考备考实用性联考卷(一)数㊀学注意事项:1 答题前ꎬ考生务必用黑色碳素笔将自己的姓名㊁准考证号㊁考场号㊁座位号在答题卡上填写清楚.2 每小题选出答案后ꎬ用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动ꎬ用橡皮擦干净后ꎬ再选涂其他答案标号.在试题卷上作答无效.3 考试结束后ꎬ请将本试卷和答题卡一并交回.满分150分ꎬ考试用时120分钟.一㊁单项选择题(本大题共8小题ꎬ每小题5分ꎬ共40分.在每小题给出的四个选项中ꎬ只有一项是符合题目要求的)1.已知集合A={xx2-2x-3>0}ꎬB={x0<x<4}ꎬ则(∁RA)ɘB=A.(3ꎬ4)B.(0ꎬ3]C.(-ɕꎬ3)ɣ(1ꎬ4)D.(-ɕꎬ-1)2.已知复数z=2i1+iꎬ则下列说法正确的是A.z=1-iB.z=2C.z-=1+iD.z的虚部为i㊀图13.如图1ꎬαꎬβ是九个相同的正方形拼接而成的九宫格中的两个角ꎬ则tan(α+β)=A.-3B.33C.3D.14.假设AꎬB是两个事件ꎬ且P(A)>0ꎬP(B)>0ꎬ则下列结论一定成立的是A.P(AB)ɤP(BA)B.P(AB)=P(A)P(B)C.P(BA)=P(AB)D.P(AB)=P(B)P(BA)5.已知a=log52ꎬb=log73ꎬc=12ꎬ则下列判断正确的是A.c<b<aB.b<a<cC.a<b<cD.a<c<b6.在前n项和为Sn的正项等比数列{an}中ꎬ设公比为qꎬ{an}满足a1a4=8ꎬa3=a2+2ꎬbn=log2anSn+1ꎬ则A.q=12B.Sn=2an+1C.bn=n-12nD.数列{bn}的最大项为b37.在正方体ABCD-A1B1C1D1中ꎬM是线段C1D1(不含端点)上的动点ꎬN为BC的中点ꎬ则A.CMʊ平面A1BDB.BDʅAMC.MNʊ平面A1BDD.平面A1BDʅ平面AD1M8.已知F为双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的左焦点ꎬA是C的右顶点ꎬ点P在过点F且斜率为2-3的直线上ꎬøOAP=2π3且线段OP的垂直平分线经过点Aꎬ则C的离心率为A.3-2B.3-1C.3D.6二、多项选择题(本大题共3小题ꎬ每小题6分ꎬ共18分ꎬ在每小题给出的四个选项中ꎬ有多项是符合题目要求的.全部选对的得6分ꎬ部分选对的得部分分ꎬ有选错的得0分)9.已知函数f(x)=x3-3x+2ꎬ则A.f(x)有两个极值点B.点(0ꎬ2)是曲线y=f(x)的对称中心C.f(x)有三个零点D.直线y=0是曲线y=f(x)的一条切线10.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)ω>0ꎬφɤπ2æèçöø÷的最小正周期为πꎬ且过点(0ꎬ2)ꎬ则A.f(x)在0ꎬπ2æèçöø÷单调递增B.f(x)的一条对称轴为x=π2C.f(x)的周期为π2D.把函数f(x)的图象向左平移π6个长度单位得到函数g(x)的解析式为g(x)=2cos2x+π3æèçöø÷11.已知an=2n和bn=3n-1ꎬ数列{an}和{bn}的公共项由小到大组成数列{Cn}ꎬ则A.C3=32B.{Cn}不是等比数列C.数列1bnbn+1{}的前n项和Tn=12-13n+2D.数列bnan{}的前n项和Snɪ[1ꎬ5)三㊁填空题(本大题共3小题ꎬ每小题5分ꎬ共15分)12.若函数f(x)=(2x+a)ln3x-13x+1为偶函数ꎬ则a=㊀㊀㊀㊀.13.正四棱锥的顶点都在同一球面上ꎬ若该棱锥的高为2ꎬ底面边长为1ꎬ则该球的表面积为㊀㊀㊀㊀.14.已知抛物线C:y2=4xꎬ焦点为Fꎬ不过点F的直线l交抛物线C于AꎬB两点ꎬD为AB的中点ꎬD到抛物线C的准线的距离为dꎬøAFB=120ʎꎬ则ABd的最小值为㊀㊀㊀㊀㊀.四㊁解答题(共77分ꎬ解答应写出文字说明ꎬ证明过程或演算步骤)15.(本小题满分13分)已知在әABC中ꎬ三边aꎬbꎬc所对的角分别为AꎬBꎬCꎬa(cosA+cosBcosC)=3bsinAcosC.(1)求Cꎻ(2)若a+b=2cꎬәABC外接圆的直径为4ꎬ求әABC的面积.16.(本小题满分15分)如图2ꎬ在四棱锥P-ABCD中ꎬPDʅ底面ABCDꎬCDʊABꎬAD=DC=CB=2ꎬAB=4ꎬDP=3.(1)证明:BDʅPAꎻ(2)求平面ABD与平面PAB的夹角.㊀图217.(本小题满分15分)已知椭圆C1:x22a2+y22b2=1(a>b>0)左右焦点F1ꎬF2分别为椭圆C2:x2a2+y2b2=1(a>b>0)的左右顶点ꎬ过点F1且斜率不为零的直线与椭圆C1相交于AꎬB两点ꎬ交椭圆C2于点Mꎬ且әABF2与әBF1F2的周长之差为4-22.(1)求椭圆C1与椭圆C2的方程ꎻ(2)若直线MF2与椭圆C1相交于DꎬE两点ꎬ记直线MF1的斜率为k1ꎬ直线MF2的斜率为k2ꎬ求证:k1k2为定值.18.(本小题满分17分)绿色已成为当今世界主题ꎬ绿色动力已成为时代的驱动力ꎬ绿色能源是未来新能源行业的主导.某汽车公司顺应时代潮流ꎬ最新研发了一款新能源汽车ꎬ并在出厂前对该批次汽车随机抽取100辆进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析ꎬ得到如图3所示的频率分布直方图.㊀图3(1)估计这100辆汽车的单次最大续航里程的平均值x-(同一组中的数据用该组区间的中点值代表)ꎻ(2)若单次最大续航里程在330km到430km的汽车为 A类汽车 ꎬ以抽样检测的频率作为实际情况的概率ꎬ从该汽车公司最新研发的新能源汽车中随机抽取10辆ꎬ设这10辆汽车中为 A类汽车 的数量为Yꎬ求E(Y).(3)某汽车销售公司为推广此款新能源汽车ꎬ现面向意向客户推出 玩游戏ꎬ送大奖 活动ꎬ客户可根据抛掷硬币的结果ꎬ操控微型遥控车在方格图上行进ꎬ若遥控车最终停在 胜利大本营 ꎬ则可获得购车优惠券.已知硬币出现正㊁反面的概率都是12ꎬ方格图上标有第0格㊁第1格㊁第2格㊁ ㊁第30格.遥控车开始在第0格ꎬ客户每掷一次硬币ꎬ遥控车向前移动一次ꎬ若掷出正面ꎬ遥控车向前移动一格(从k到k+1)ꎬ若掷出反面ꎬ遥控车向前移动两格(从k到k+2)ꎬ直到遥控车移到第29格(胜利大本营)或第30格(失败大本营)时ꎬ游戏结束.已知遥控车在第0格的概率为P0=1ꎬ设遥控车移到第n格的概率为Pn(n=1ꎬ2ꎬ ꎬ30)ꎬ试证明:数列{Pn-Pn-1}(n=1ꎬ2ꎬ ꎬ29)是等比数列ꎬ并解释此方案能否成功吸引顾客购买该款新能源汽车?9.(本小题满分17分)(1)证明:当0<x<1时ꎬx-x2<sinx<xꎻ(2)已知函数f(x)=cosax-ln(1-x2)ꎬ若x=0是f(x)的极小值点ꎬ求a的取值范围.2025届云南三校高考备考实用性联考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)题号 1 2 3 4 5 6 7 8 答案 B B D A D C D C 【解析】1.2230x x -->,(3)(1)0x x -+>,得x >3或x <−1,∴{|31}A x x x =><-或,{|04}B x x =<<, ∴{|13}A x x =-R ≤≤ ,∴(03]A B =R , ,故选B.3.由题意及图得,1tan 3α=,1tan 2β=,∴11tan tan 23tan()11tan tan 11123αβαβαβ+++==⨯=-+-,∵π02α⎛⎫∈ ⎪⎝⎭,,π02β⎛⎫∈ ⎪⎝⎭,,∴π4αβ+=,∴tan()1αβ+=,故选D.5.55771log 2log log log 32a b =<==<=,即a c b <<,故选D. 6.A .∵148a a =,322a a =+,23223332824422a a a a a a a a ===-⎧⎧⎧⇒⎨⎨⎨==--=⎩⎩⎩或(舍去)∴,∴322.aq a ==11a =∴; B. 1112n n n a a q --== ,112112n n n a a q a S q --==-- ,∴12n n S a -=-,∴21n n S a =-;C .1221log log 21112222n n n n n n n a n n b S a ----====+ ;D .1122n n n nb b ++--=,∵12345b b b b b <=>>…, ∴2314b b ==,∴23{}n b b b 的最大项为和,故选C. 7.如图1,以D 为原点,分别以DA ,DC ,DD 1,所在直线为x 轴,y轴、z 轴建立空间直角坐标系. 设2AB =,则B (2,2,0),A 1 (2,0,2),A (2,0,0),C (0,2,0),N (1,2,0),设M (0,y ,2)(02y <<),则(220)DB = ,,,1(202)DA =,,,设平面1A BD 的法向量为图1111()n x y z = ,,,则11111220220n DA x z n DB x y ⎧=+=⎪⎨=+=⎪⎩ ,可取11x =,得(111)n =-- ,,, (022)CM y =- ,,∵,∴ (111)(022)0n CM y y =---=-≠ ,,,,,故A 不正确; (22)AM y =- ,,∵,∴(220)(22)240DB AM y y =-=-≠,,,,,故B 不正确;(122)MN y =-- ,,∵,∴(111)(122)10n MN y y =----=+≠,,,,,故C 不正确;∵11A D AD ⊥,111A D C D ⊥,111 AD C D D = ,1AD ,111C D AD M ⊂平面,∴11 A D AD M ⊥平面.又11A D A BD ⊂平面,∴平面11A BD AD M ⊥平面,故D 正确,故选D.8.因为2π3OAP ∠=且OP 的垂直平分线经过点A ,所以OPA △为等腰三角形且OA PA a ==,所以在三角形FPA △中tan tan(60)1FPA PFA ∠=-∠== ,∴45FPA ∠= ,从而在三角形FPA △由正弦定理可知:sin sin AF AP FPA PFA =∠∠,即:sin sin a c aFPA PFA+=∠∠,=,解得e =,故选C .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)题号 9 10 11 答案 ABD BD AD【解析】9.由题,2()33f x x '=-,令()0f x '>得1x >或1x <-,令()0f x '<得11x -<<,所以()f x 在(1)-∞-,,(1)+∞,上单调递增,(11)-,上单调递减,所以1x =±是极值点,故A 正确;令3()3h x x x =-,该函数的定义域为R ,33()()(3)3()h x x x x x h x -=---=-+=-,则()h x 是奇函数,(00),是()h x 的对称中心,将()h x 的图象向上移动两个单位得到()f x 的图象,所以点(02),是曲线()y f x =的对称中心,故B 正确;因为(1)40f -=>,(1)0f =,(2)0f -=,所以,函数()f x 在(1)-∞-,上有一个零点,当1x >时,()(1)0x f f >=,即函数()f x 在(1+)∞,上无零点,综上所述,函数()f x 有两个零点,故C 错误;令2()330f x x '=-=,可得1x =±,又(1)0(1)4f f =-=,,当切点为(10),时,切线方程为0y =,当切点为(14)-,时,切线方程为4y =,故D 正确,故选ABD.10.根据辅助角公式得πsin()cos()n 4)i (x f x x x ωϕωϕωϕ⎛⎫=+++=++ ⎪⎝⎭.∵最小正周期为π,0ω>, 2π2π2πT ω===∴,即π()24f x x ϕ⎛⎫++ ⎪⎝⎭.∵函数()f x过点(0,π||2ϕ≤,(0)πin 4f ϕ⎛⎫=+= ⎪⎝⎭∴,则ππ2π42k k ϕ+=+∈Z ,.当0k =时π4ϕ=.即π()222f x x x ⎛⎫=+= ⎪⎝⎭.令2(2ππ2π)x k k k ∈+∈Z ,,,则πππ2x k k ⎛⎫∈+ ⎪⎝⎭,,k ∈Z ,当0k =时,()f x 在π02⎛⎫⎪⎝⎭,单调递减,故A 错误;令2πx k k =∈Z ,,则π2k x k =∈Z ,,当1k =时,()f x 的一条对称轴为π2x =,故B 正确;因为()2f x x =为偶函数,所以(||)2|)2f x x x ==,则(||)f x 的周期为πk k ∈Z ,且0k ≠,故C 错误;函数()f x 的图象向左平移π6个长度单位得到函数()g x 的解析式为ππ()2263g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 正确,故选BD .11.∵2n n a =,31n b n =-,∴C n 是以2为首领,4为公比的等比数列,∴12n n C q -==1222124222n n n ---== ,∴61532232C -===, A 正确B 不正确;311(31)22n n n n b n n a -==- ;35552n nn S +=-<, 而1 1n S S =≥,∴15n S <≤,D 正确;C. 1111(31)(32)3n n b b n n +==-+ (32)(31)(31)(32)n n n n +----+11133132n n ⎛⎫=- ⎪-+⎝⎭,∴13n T =111111125588113132n n ⎛⎫-+-+-+- ⎪-+⎝⎭1…1113232n ⎛⎫=- ⎪+⎝⎭11696n =-+,∴C 选项错误,正确选项为AD ,故选AD.三、填空题(本大题共3小题,每小题5分,共15分)【解析】12.因为()f x 为偶函数,则1(1)(1)(2)ln (2)ln 22f f a a =-+=-+,∴,解得0a =,当0a =时,31ln31()2f x x x x =-+,(31)(31)0x x -+>,解得13x >或13x <-,则其定义域为1|3x x ⎧>⎨⎩或13x ⎫<-⎬⎭,关于原点对称.13()13131ln ln ln 3()13()(2)(2)(1)132x x f x x x x x x x x ---+-⎛⎫== ⎪-+-+⎝--⎭=-- 312ln31()x x x f x -==+,故此时()f x 为偶函数. 13.正四棱锥P −ABCD 的外接球的球心在它的高PO 1上,记为O ,如图2,则 PO =AO =R , 12PO =,12OO R =-, 在Rt △AOO 1中,1 2AO =, 由勾股定理:222 (2)2R R ⎫=-+⎪⎪⎝⎭, 得98R =, 所以球的表面积 281π4π16S R ==. 14.过点A B,作抛物线C :24y x =的准线的垂线,垂足为M N ,,设AM λ=,BN μ=,则由梯形的中位线可知2d λμ+=,在AFB △中由余弦定理可知:||AB =,所以||AB d =又因||AB d====,当且仅当λμ=时,等号成立,所以||AB d 图2四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)解:(1)因为(cos cos cos )sin cos a A B C A C +=,由正弦定理得,sin (cos cos cos )sin cos A A B C B A C +=,因为(0π)sin 0A A ∈≠,,,所以cos cos cos cos A B C B C +=,……………………………………(2分)因为cos cos()A B C =-+sin sin cos cos B C B C =-.……………………………………(4分)所以sin sin cos B C B C =,又sin 0B ≠,则tan C =, 因为(0π)C ∈,,所以π3C =. ……………………………………(6分)(2)由正弦定理,4sin cC=,则4sin c C ==,………………………………(8分)由余弦定理:22222121cos 222a b c a b C ab ab +-+-===,∴2()212a b ab ab +--=, 2()123a b ab +-=,∴a b +=∵, ………………………………(11分)12ab =,∴ 1sin 2ABC S ab C ==故△的面积 ………………………………(13分)16.(本小题满分15分) (1)证明:在四边形ABCD 中作DE ⊥AB 于E ,CF ⊥AB 于F ,如图3, ∵CD AB ,2CD AD CB ===,4AB =, ∴四边形ABCD 为等腰梯形,1AE BF ==∴,故 DE BD ==.……………………(2分)∴222AD BD AB +=, ∴AD BD ⊥.又∵PD ⊥平面ABCD ,BD ABCD ⊂平面, ∴PD BD ⊥, 又∵PD AD D = , ∴BD ⊥平面P AD. ……………………(5分)又 PA PAD ⊂平面, ∴BD PA ⊥.……………………………(7分)(2)解:如图4,以D 为原点建立空间直角坐标系. 由(1)可得BD =则A (2,0,0),B (0,,0), P (0,0,则(20AP =- ,,(0BP =-,, ……………………………(9分)设平面P AB 的法向量()n x y z =,,,则有20n AP x n BP ⎧=-=⎪⎨=-=⎪⎩,可取12)n = ,, …………………(12分)又平面ABD 的一个法向量 (001)m = ,,,……………………(13分)∴||cos 2||||m n m n m n 〈〉==,,…………………(14分)即平面ABD 与平面P AB, 所以,平面ABD 与平面P AB 的夹角为π4. …………………(15分)17.(本小题满分15分) (1)解:设椭圆1C 的半焦距为c ,由椭圆的定义可知2ABF △的周长为,12BF F △的周长为2c +,又2ABF △与12BF F △的周长之差为4-……………………………………(2分)所以24c -=-,图3图4又因椭圆1C 左右焦点12F F ,分别为椭圆2C 的左右顶点.c a =∴,……………………………………(4分)联立解得,a =从而有c a == ……………………………………(5分)所以222222a b c -==,解得21b =,所以所求椭圆1C 的方程为22142x y +=,椭圆2C 的方程为2212x y +=.……………………………………(6分)(2)①证明:由(1)可知椭圆1C 的方程为22142x y +=,12(0)0)F F ,,设000()(0)M x y y ≠,,则有220012x y +=,于是12kk 2020122y x ==-- .……………………………………(10分)②解:因为1212k k =-,所以21k =-,所以直线DE的方程为:y x =-+联立y x =-+22142x y +=,消去y得:230x -=,……………………………………(11分)则有:120x x ==,所以(033D E ⎛- ⎝⎭,,……………………………………(14分)83DE ==. ……………………………………(15分) 附注:本题也可由椭圆的焦半径公式可知:122()DE a e x x =-+22224412k k =-+. 也可以利用弦长公式直接求. 18.(本小题满分17分)解:(1)x =0.002×50×205+0.004×50×255+0.009×50×305+0.004×50×355+0.001×50×405 =300(km).……………………………………(3分)(2)由题意可知任取一辆汽车为“A 类汽车”的概率为(0.0040.001)500.25+⨯=,……………………………………(4分) 经分析Y ~(100.25)B ,,……………………………………(6分) ()100.25 2.5E Y =⨯=.……………………………………(8分)(3)第一次掷硬币出现正面,遥控车移到第一格,其概率为12,即112P =. 遥控车移到第(229)n n ≤≤格的情况是下面两种,而且只有两种: ①遥控车先到第n −2格,又掷出反面,其概率为212n P -;②遥控车先到第n −1格,又掷出正面,其概率为112n P -.所以211122n n n P P P --=+, ……………………………………(10分) 所以1121()2n n n n P P P P ----=--,……………………………………(11分)因为1012P P -=-, 所以129n ≤≤时,数列{P n −P n −1}是等比数列,首项为1012P P -=-,公比为12-的等比数列.所以1112P -=-,22112P P ⎛⎫-=- ⎪⎝⎭,33212P P ⎛⎫-=- ⎪⎝⎭, (112)n n P P -⎛⎫-=- ⎪⎝⎭.所以112100()()()n n n n n P P P P P P P P ---=-+-+⋯+-+=1111...1222n n -⎛⎫⎛⎫⎛⎫-+-++-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭1111212113212n n ++⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦+ ⎪⎝⎭, 01P =也满足上式,故1211(0129)32n n P n +⎡⎤⎛⎫=--=⋯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,,,,……………………………………(14分)所以获胜的概率302921132P ⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,失败的概率2929302811211111223232P P ⎡⎤⎡⎤⎛⎫⎛⎫==⨯--=--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,……………………………………(16分)所以30292829302111111110323232P P ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=-----=-->⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以获胜的概率大.所以此方案能成功吸引顾客购买该款新能源汽车.……………………………………(17分)19.(本小题满分17分)(1)证明:构建()sin (01)F x x x x =-∈,,, ……………………………………(1分) 则()1cos 0F x x '=->对(01)x ∀∈,恒成立, ……………………………………(2分)则()F x 在(01),上单调递增,可得()(0)0F x F >=, 所以sin (01)x x x >∈,,; ……………………………………(3分)构建22()sin ()sin (01)G x x x x x x x x =--=-+∈,,,………………………………(4分) 则()21cos (01)G x x x x '=-+∈,,, ……………………………………(5分)构建()()(01)g x G x x '=∈,,,则()2sin 0g x x '=->对(01)x ∀∈,恒成立,……………………………………(6分)则()g x 在(01),上单调递增,可得()(0)0g x g >=, 即()0G x '>对(01)x ∀∈,恒成立, ……………………………………(7分)则()G x 在(01),上单调递增,可得()(0)0G x G >=, 所以2sin (01)x x x x >-∈,,; 综上所述:sin x x x x 2-<<. ……………………………………(8分)(2)解:令210x ->,解得11x -<<,即函数()f x 的定义域为(11)-,, 若0a =,则21ln(1)(11)()f x x x =--∈-,,,令21u x =-, 因为1ln y u =-在定义域内单调递减,21u x =-在(10)-,上单调递增,在(01),上单调递减,则21ln(1)()x x f =--在(10)-,上单调递减,在(01),上单调递增,故0x =是()f x 的极小值点,符合题意. ……………………………………(10分)当0a ≠时,令||0b a =>,因为222()cos ln(1)cos(||)ln(1)cos ln(1)x ax x a x x bx f x =--=--=--, 且22()cos()ln[1()]cos ln(1)()x f f x bx x bx x -=----=--=, 所以函数()f x 在定义域内为偶函数,…………………………………………………………(11分)由题意可得:22()sin (11)1xf x b bx x x '=--∈--,, (i )当202b <≤时,取1min 1m b ⎧⎫=⎨⎬⎩⎭,,(0)x m ∈,,则(01)bx ∈,, 由(1)可得222222222(2)()sin()111x x x b x b f x b bx b x x x x +-'=-->--=---, 且222202010b x b x >-->,≥,, 所以2222(2)()01x b x b f x x +-'>>-, ……………………………………(13分)即当(0)(01)x m ∈⊆,,时,()0f x '>,则()f x 在(0)m ,上单调递增, 结合偶函数的对称性可知:()f x 在(0)m -,上单调递减,所以0x =是()f x 的极小值点,符合题意; ……………………………………(14分)(ⅱ)当22b >时,取10(01)x b ⎛⎫∈⊆ ⎪⎝⎭,,,则(01)bx ∈,, 由(1)可得2233223222222()sin ()(2)111x x x f x b bx b bx b x b x b x b x b x x x'=--<---=-+++----, 构建3322321()20h x b x b x b x b x b ⎛⎫=-+++-∈ ⎪⎝⎭,,, …………………………………(15分)则32231()320h x b x b x b x b ⎛⎫'=-++∈ ⎪⎝⎭,,,且331(0)00h b h b b b ⎛⎫''=>=-> ⎪⎝⎭,,则()0h x '>对10x b ⎛⎫∀∈ ⎪⎝⎭,恒成立,可知()h x 在10b ⎛⎫ ⎪⎝⎭,上单调递增,且21(0)2020h b h b ⎛⎫=-<=> ⎪⎝⎭,,所以()h x 在10b ⎛⎫ ⎪⎝⎭,内存在唯一的零点10n b ⎛⎫∈ ⎪⎝⎭,,当(0)x n ∈,时,则()0h x <,且2010x x >->,, 则3322322()(2)01xf x b x b x b x b x'<-+++-<-,……………………………………(16分)即当(0)(01)x n ∈⊆,,时,()0f x '<,则()f x 在(0)n ,上单调递减, 结合偶函数的对称性可知:()f x 在(0)n -,上单调递增, 所以0x =是()f x 的极大值点,不符合题意;综上所述:22b ≤,即22a ≤,解得a ,故a 的取值范围为a .……………………………………(17分)。