三角函数平移与向量平移的综合
- 格式:wps
- 大小:61.50 KB
- 文档页数:5
普通高等学校招生全国统一测试数学 第四章?三角函数?题目汇编及详解一、选择题〔共21题〕1.〔安徽卷〕将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是 A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- 解:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=,因此选C. 2.〔安徽卷〕设0a >,对于函数()sin (0)sin x af x x xπ+=<<,以下结论正确的选项是A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值 解:令sin ,(0,1]t x t =∈,那么函数()sin (0)sin x af x x xπ+=<<的值域为函数1,(0,1]a y t t =+∈的值域,又0a >,所以1,(0,1]ay t t=+∈是一个减函减,应选B.3.〔北京卷〕函数y =1+cos x 的图象 〔A 〕关于x 轴对称 〔B 〕关于y 轴对称 〔C 〕关于原点对称〔D 〕关于直线x =2π对称 解:函数y =1+cos 是偶函数,应选B 4.〔福建卷〕α∈(2π,π),sin α=53,那么tan(4πα+)等于A.71 B.7 C.- 71D.-7 解:由3(,),sin ,25παπα∈=那么3tan 4α=-,tan()4πα+=1tan 11tan 7αα+=-,选A.5.〔福建卷〕函数f (x )=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,那么ϖ的最小值等于A.32B.23C.2D.3 解:函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ωx 的取值范围是,34ωπωπ⎡⎤-⎢⎥⎣⎦, ∴ 32ωππ--≤或342ωππ≥,∴ ω的最小值等于32,选B. 6.〔湖北卷〕假设ABC ∆的内角A 满足2sin 23A =,那么sin cos A A +=A.3 B .3- C .53 D .53- 解:由sin2A =2sinAcosA >0,可知A这锐角,所以sinA +cosA >0,又25(sin cos )1sin 23A A A +=+=,应选A7.〔湖南卷〕设点P 是函数x x f ωsin )(=的图象C 的一个对称中央,假设点P 到图象C 的对称轴上的距离的最小值4π,那么)(x f 的最小正周期是 A .2π B . π C.2π D . 4π 解析:设点P 是函数x x f ωsin )(=的图象C 的一个对称中央,假设点P 到图象C 的对称轴上的距离的最小值4π,∴ 最小正周期为π,选B. 8.〔江苏卷〕R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,那么a =〔A 〕0 〔B 〕1 〔C 〕-1 〔D 〕±1【思路点拨】此题考查函数的奇偶性,三角函数sin x 的奇偶性的判断,此题是一道送分的概念题 【正确解答】解法1由题意可知,()()f x f x =--得a=0解法2:函数的定义域为R ,又f (x )为奇函数,故其图象必过原点即f (0)=0,所以得a =0, 解法3由f (x )是奇函数图象法函数画出()R x a x x f ∈-=,sin 的图象选A【解后反思】对数学概念及定理公式的深刻理解是解数学问题的关健,讨论函数的奇偶性,其前提条件是函数的定义域必须关于原点对称.假设函数f(x)为奇函数()()()f x f x y f x ⇔-=-⇔=的图象关于原点对称. 假设函数f(x)为偶函数()()()f x f x y f x ⇔-=⇔=的图象关于y 轴对称.9〔江苏卷〕为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点〔A 〕向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕〔B 〕向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕〔C 〕向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 〔D 〕向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕【思路点拨】此题主要考三角函数的图象变换,这是一道平时练习的比拟多的一种类型. 【正确解答】先将R x x y ∈=,sin 2的图象向左平移6π个单位长度, 得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍〔纵坐标不变〕得到函数R x x y ∈+=),63sin(2π的图像,选择C. 【解后反思】由函数sin ,y x x R =∈的图象经过变换得到函数sin(),y A x x R ωφ=+∈ 〔1〕.y=Asinx,x ∈R(A>0且A ≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的〔2〕函数y=sin ωx, x ∈R (ω>0且ω≠1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍〔纵坐标不变〕 〔3〕函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到(用平移法注意讲清方向:“加左〞“减右〞),可以先平移变换后伸缩变换,也可以先伸缩变换后平移变换,但注意:先伸缩时,平移的单位把x 前面的系数提取出来.10.〔江西卷〕函数4sin 21y x π⎛⎫=++ ⎪3⎝⎭的最小正周期为〔 〕 A.π2 B.πC.2πD.4π解:T =22ππ=,应选B11.〔辽宁卷〕函数11()(sin cos )sin cos 22f x x x x x =+--,那么()f x 的值域是 (A)[]1,1-(B) 2⎡⎤-⎢⎥⎣⎦(C) 1,2⎡-⎢⎣⎦(D)1,2⎡--⎢⎣⎦【解析】cos (sin cos )11()(sin cos )sin cos sin (sin cos )22x x x f x x x x x x x x ≥⎧=+--=⎨<⎩即等价于min {sin ,cos }x x ,应选择答案C.【点评】此题考查绝对值的定义、分段函数、三角函数等知识,同时考查了简单的转化和估算水平.12.〔辽宁卷〕函数1sin 32y x ⎛⎫=+⎪⎝⎭的最小正周期是〔 〕 A.π2 B.π C.2πD.4π解:2412T ππ==,选D13.〔全国卷I 〕函数()tan 4f x x π⎛⎫=+⎪⎝⎭的单调增区间为 A .,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭B .()(),1,k k k Z ππ+∈C .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ D .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭解:函数()tan 4f x x π⎛⎫=+⎪⎝⎭的单调增区间满足242k x k πππππ-<+<+,∴ 单调增区间为3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,选C. 14.〔全国II 〕函数y =sin2x cos2x 的最小正周期是〔A 〕2π 〔B 〕4π 〔C 〕π4 〔D 〕π2解析: 1sin 2cos 2sin 42y x x x ==所以最小正周期为242T ππ==,应选D 考察知识点有二倍角公式,最小正周期公式 此题比拟容易. 15.〔全国II 〕假设f (sin x )=3-cos2x ,那么f (cos x )=〔A 〕3-cos2x 〔B 〕3-sin2x 〔C 〕3+cos2x 〔D 〕3+sin2x 解析:22(sin )3cos 23(12sin )2sin 2f x x x x =-=--=+所以2()22f x x =+,因此22(cos )2cos 2(2cos 1)33cos 2f x x x x =+=-+=+应选C 此题主要考察函数解析式的变换和三角函数的二倍角公式,记忆的成分较重,难度一般 16.(陕西卷)"等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( )A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分又不必要条件 解析:假设等式sin(α+γ)=sin2β成立,那么α+γ=k π+(-1)k ·2β,此时α、β、γ不一定成等差数列,假设α、β、γ成等差数列,那么2β=α+γ,等式sin(α+γ)=sin2β成立,所以“等式sin(α+γ)=sin2β成立〞是“α、β、γ成等差数列〞的.必要而不充分条件.选A . 17.〔四川卷〕以下函数中,图象的一局部如右图所示的是 〔A 〕sin 6y x π⎛⎫=+⎪⎝⎭〔B 〕sin 26y x π⎛⎫=-⎪⎝⎭〔C 〕cos 43y x π⎛⎫=- ⎪⎝⎭〔D 〕cos 26y x π⎛⎫=-⎪⎝⎭解析:从图象看出,41T=1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,选D. 18.〔天津卷〕函数x b x a x f cos sin )(-=〔a 、b 为常数,0≠a ,R x ∈〕在4π=x 处取得最小值,那么函数)43(x f y -=π是〔 〕A .偶函数且它的图象关于点)0,(π对称B .偶函数且它的图象关于点)0,23(π对称 C .奇函数且它的图象关于点)0,23(π对称 D .奇函数且它的图象关于点)0,(π对称解析:函数()sin cos f x a x b x =-(a 、b 为常数,0,)a x R ≠∈,∴ ())f x x ϕ-的周期为2π,假设函数在4π=x 处取得最小值,不妨设3()sin()4f x x π=-,那么函数3()4y f x π=-=33sin()sin 44x x ππ-+=,所以3()4y f x π=-是奇函数且它的图象关于点(,0)π对称,选D.19.〔天津卷〕设ππ22αβ⎛⎫∈- ⎪⎝⎭,,,那么“αβ<〞是“tan tan αβ<〞的〔 〕 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件解析:在开区间(,)22ππ-中,函数tan y x =为单调增函数,所以设,(,),22ππαβ∈-那么""αβ<是"tan tan "αβ<的充分必要条件,选C. 20.〔浙江卷〕函数y=21sin2+4sin 2x,x R ∈的值域是 (A)[-21,23] (B)[-23,21] (C)[2122,2122++-] (D)[2122,2122---] 【考点分析】此题考查三角函数的性质,根底题. 解析:2142sin 22212cos 212sin 21sin 2sin 212+⎪⎭⎫ ⎝⎛-=+-=+=πx x x x x y ,应选择C. 【名师点拔】此题是求有关三角函数的值域的一种通法,即将函数化为()b x A y ++=ϕωsin 或()b x A y ++=ϕωcos 的模式.21.(重庆卷)假设,(0,)2παβ∈,cos()2βα-=1sin()22αβ-=-,那么cos()αβ+的值等于〔A 〕2-〔B 〕12- 〔C 〕12〔D 〕2解:由,(0,)2παβ∈,那么242βππα∈-(-,),224αππβ∈-(-,),又cos()2βα-=,1sin()22αβ-=-,所以26βπα±-=,26απβ-=- 解得3παβ==,所以 cos()αβ+=12-,应选B 二、填空题〔共10题〕22.〔福建卷〕函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值是____.解:函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ωx 的取值范围是,34ωπωπ⎡⎤-⎢⎥⎣⎦, ∴ 32ωππ--≤或342ωππ≥,∴ ω的最小值等于32. 23.〔湖南卷〕假设()sin()sin()(0)44f x a x b x ab ππ=++-≠是偶函数,那么有序实数对(,a b )可以是 .(注:只要填满足0a b +=的一组数即可)(写出你认为正确的一组数即可).解析.ab ≠0,()sin()sin()(cos )()442222f x a x b x a x x b x x ππ=++-=++-是偶函数,只要a +b =0即可,可以取a =1,b =-1.24.〔湖南卷〕假设)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,那么a = .解析:()sin()3sin()()3(cos )442222f x a x x a x x x x ππ=++-=++-是偶函数,取a =-3,可得()f x x =-为偶函数.25.〔江苏卷〕︒-︒︒+︒︒40cos 270tan 10sin 310cos 20cot = 【思路点拨】此题考查三角公式的记忆及熟练运用三角公式计算求值 【正确解答】:cot20°cos10°+3sin10°tan70°-2cos40°=︒︒︒︒+︒︒︒40cos 2cos70sin7010sin 320sin 1020cos -=︒︒︒︒︒︒2cos40sin20cos10sin103cos1020cos -+=︒︒︒︒︒2cos40sin20sin103cos1020cos -)+(=︒︒︒︒︒︒︒2cos40sin2030cos sin1030sin cos1020cos 2-)+(︒︒︒︒︒sin2040cos 2sin20sin4020cos 2-=2【解后反思】方法不拘泥,要注意灵活运用,在求三角的问题中,要注意这样的口决“三看〞即(1)看角,把角尽量向特殊角或可计算角转化,(2)看名称,把一道等式尽量化成同一名称或相近的名称,例如把所有的切都转化为相应的弦,或把所有的弦转化为相应的切,(3)看式子,看式子是否满足三角函数的公式.如果满足直接使用,如果不满足转化一下角或转换一下名称,就可以使用.26.〔全国卷I 〕设函数())()cos0f x ϕϕπ=+<<.假设()()/f x f x +是奇函数,那么ϕ=__________.解析:'())f x ϕ=+,那么()()/f x f x +=))2sin()6πϕϕϕ++=--为奇函数,∴ φ=6π.27.(陕西卷)cos43°cos77°+sin43°cos167°的值为解析:cos43°cos77°+sin43°cos167°=cos43cos77sin 43sin77cos120︒︒-︒︒=︒=-21. 28.(上海卷)如果αcos =51,且α是第四象限的角,那么)2cos(πα+= 解:cos()sin (2παα⇒+=-=-29.(上海卷)函数sin cos y x x =的最小正周期是_________. 解:函数sin cos y x x ==21sin2x,它的最小正周期是π.30.(重庆卷)βα,⎪⎭⎫⎝⎛∈ππ,43,sin(βα+)=-,53 sin ,13124=⎪⎭⎫ ⎝⎛-πβ那么cos ⎪⎭⎫ ⎝⎛+4πα=________.解: ()33,,,sin ,45παβπαβ⎛⎫∈+=-⎪⎝⎭12sin()413πβ-=,3(,2)2παβπ+∈,3(,)424πππβ-∈,∴ 4cos()5αβ+=,5cos()413πβ-=-, 那么cos()4πα+=cos[()()]4παββ+--=cos()cos()sin()sin()44ππαββαββ+-++- =4531256()()51351365⋅-+-⋅=- 31.(重庆卷)sin α=2παπ≤≤,那么tan α= .解:由sin α=,2παπ≤≤⇒cos α所以tan α=-2 三、解做题〔共16题〕 32.〔安徽卷〕310,tan cot 43παπαα<<+=- 〔Ⅰ〕求tan α的值;〔Ⅱ〕求225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭的值.解:(Ⅰ)由10tan cot 3αα+=-得23tan 10tan 30αα++=,即1tan 3tan 3αα=-=-或,又34παπ<<,所以1tan 3α=-为所求.〔Ⅱ〕225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭1-cos 1+cos 54sin 118ααα++-==6-.33.〔安徽卷〕40,sin 25παα<<=〔Ⅰ〕求22sin sin 2cos cos 2αααα++的值; 〔Ⅱ〕求5tan()4πα-的值. 解:(Ⅰ)由40,sin 25παα<<=,得3cos 5α=,所以22sin sin 2cos cos 2αααα++=22sin 2sin cos 203cos 1αααα+=-. 〔Ⅱ〕∵sin 4tan cos 3ααα==,∴5tan 11tan()41tan 7πααα--==+. 34.〔北京卷〕函数1)4()cos x f x xπ-=, 〔Ⅰ〕求()f x 的定义域;〔Ⅱ〕设α是第四象限的角,且4tan 3α=-,求()f α的值. 解:〔1〕依题意,有cosx ≠0,解得x ≠k π+2π, 即()f x 的定义域为{x|x ∈R,且x ≠k π+2π,k ∈Z }〔2〕1)4()cos x f x xπ-==-2sinx +2cosx ∴()f α=-2sin α+2cos α 由α是第四象限的角,且4tan 3α=-可得sin α=-45,cos α=35∴()f α=-2sin α+2cos α=14535.〔北京卷〕函数f (x )=xxcos 2sin 1-(Ⅰ)求f (x )的定义域;(Ⅱ)设α是第四象限的角,且tan α=34-,求f (α)的值. 解:(Ⅰ)由cos x ≠0得x ≠k π+2π〔k ∈Z ), 故f (x )的定义域为{|x |x ≠k π+2π,k ∈Z }.(Ⅱ)由于tan α=34-,且α是第四象限的角, 所以sin α=54-,cos α=53, 故f(α)=ααcos 2sin 1- =12sin cos cos ααα- =43125535⎛⎫-⨯-⨯⎪⎝⎭ =1549.36.〔福建卷〕函数f (x )=sin 2x +3x cos x +2cos 2x ,x ∈R. 〔I 〕求函数f (x )的最小正周期和单调增区间;〔Ⅱ〕函数f (x )的图象可以由函数y =sin2x (x ∈R )的图象经过怎样的变换得到?本小题主要考查三角函数的根本公式、三角恒等变换、三角函数的图象和性质等根本知识,以及推理和运算水平.总分值12分.解:〔I〕1cos 2()2(1cos 2)2x f x x x -=+++132cos 22223sin(2).62x x x π=++=++ ()f x ∴的最小正周期2.2T ππ==由题意得222,,262k x k k Z πππππ-≤+≤+∈ 即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦〔II 〕方法一:先把sin 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象.方法二:把sin 2y x =图象上所有的点按向量3(,)122a π=-平移,就得到3sin(2)62y x π=++的图象.37.〔广东卷〕函数()sin sin(),2f x x x x R π=++∈.(I)求()f x 的最小正周期; (II)求()f x 的的最大值和最小值; (III)假设3()4f α=,求sin2α的值. 解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f〔Ⅰ〕)(x f 的最小正周期为ππ212==T ; 〔Ⅱ〕)(x f 的最大值为2和最小值2-;〔Ⅲ〕由于43)(=αf ,即167cos sin 2①43cos sin -=⇒⋅⋅⋅=+αααα,即 1672sin -=α 38.〔湖南卷〕),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值. 解析: 由条件得1cos cos 2cos sin 3=⋅--θθθθ. 即0sin 2sin 32=-θθ. 解得0sin 23sin ==θθ或. 由0<θ<π知23sin =θ,从而323πθπθ==或. 39.〔辽宁卷〕函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间. 【解析】(I) 解法一:1cos 23(1cos 2)()sin 21sin 2cos 22)224x x f x x x x x π-+=++=++=++∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时, ()f x 取得最大值2函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+∈.解法二:2222()(sin cos )2sin cos 2cos 2sin cos 12cos sin 2cos 22f x x x x x x x x x x x =+++=++=++2)4x π=++∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时, ()f x 取得最大值2函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+∈.(II)解: ()2)4f x x π=++由题意得: 222()242k x k k Z πππππ-≤+≤+∈即: 3()88k x k k Z ππππ-≤≤+∈因此函数()f x 的单调增区间为3[,]()88k k k Z ππππ-+∈. 【点评】本小题考查三角公式,三角函数的性质及三角函数值求角等根底知识,考查综合运用三角有关知识的水平.40.〔山东卷〕函数f (x )=A 2sin ()x ωϕ+(A >0,ω>0,0<ϕ<2π函数,且y =f (x )的最大值为2,其图象相邻两对称轴间的距离为2,并过点〔1,2〕. 〔1〕求ϕ;〔2〕计算f (1)+f (2)+… +f (2 008).解:〔I 〕2sin ()cos(22).22A Ay A x x ωϕωϕ=+=-+ ()y f x =的最大值为2,0A >.2, 2.22A AA ∴+==又其图象相邻两对称轴间的距离为2,0ω>,12()2,.224ππωω∴==22()cos(2)1cos(2)2222f x x x ππϕϕ∴=-+=-+.()y f x =过(1,2)点,cos(2) 1.2πϕ∴+=-22,,2k k Z πϕππ∴+=+∈22,,2k k Z πϕπ∴=+∈,,4k k Z πϕπ∴=+∈又0,2πϕ<<4πϕ∴=.〔II 〕解法一:4πϕ=,1cos()1sin .222y x x πππ∴=-+=+ (1)(2)(3)(4)21014f f f f ∴+++=+++=.又()y f x =的周期为4,20084502=⨯,(1)(2)(2008)45022008.f f f ∴++⋅⋅⋅+=⨯=解法二:2()2sin ()4f x x πϕ=+223(1)(3)2sin ()2sin ()2,44f f ππϕϕ∴+=+++=22(2)(4)2sin ()2sin ()2,2f f πϕπϕ+=+++=(1)(2)(3)(4) 4.f f f f ∴+++= 又()y f x =的周期为4,20084502=⨯,(1)(2)(2008)45022008.f f f ∴++⋅⋅⋅+=⨯= 41(陕西卷)函数f(x)=3sin(2x -π6)+2sin 2(x -π12) (x ∈R) (Ⅰ)求函数f(x)的最小正周期 ; (2)求使函数f(x)取得最大值的x 的集合. 解:(Ⅰ) f (x )=3sin(2x -π6)+1-cos2(x -π12)= 2[32sin2(x -π12)-12 cos2(x -π12)]+1 =2sin[2(x -π12)-π6]+1= 2sin(2x -π3) +1∴ T =2π2=π(Ⅱ)当f (x )取最大值时, sin(2x -π3)=1,有 2x -π3 =2k π+π2即x =k π+5π12 (k ∈Z ) ∴所求x 的集合为{x ∈R |x = k π+ 5π12, (k ∈Z )}. 42.(上海卷)求函数y =2)4cos()4cos(ππ-+x x +x 2sin 3的值域和最小正周期.[解]2cos()cos()44y x x x ππ=+-22112(cos sin )22cos22sin(2)6x x xx x x π=-==+∴函数2cos()cos()44y x x x ππ=+-的值域是[2,2]-,最小正周期是π; 43.(上海卷)α是第一象限的角,且5cos 13α=,求()sin 4cos 24πααπ⎛⎫+ ⎪⎝⎭+的值.解:)42cos()4sin(παπα++=αααααααααsin cos 122sin cos )sin (cos 222cos )sin (cos 2222-⋅=-+=+ 由可得sin 1312=α, ∴原式=142131312135122-=-⨯. 44. 〔天津卷〕5tan cot 2αα+=,ππ42α⎛⎫∈ ⎪⎝⎭,.求cos2α和πsin(2)4α+的值. 本小题考查同角三角函数关系、两角和公式、倍角公式等根底知识,考查根本运算水平. 解法一:由5tan cot ,2αα+=得sin cos 5,cos sin 2αααα+=那么254,sin 2.sin 25αα==由于(,),42ππα∈所以2(,),2παπ∈ 23cos 21sin 2,5αα=--=sin(2)sin 2.cos cos 2.sin 444πππααα+=+ 4232255== 解法二:由5tan cot ,2αα+=得15tan ,tan 2αα+=解得tan 2α=或1tan .2α=由(,),42ππα∈故舍去1tan ,2α=得tan 2.α=因此,255sin αα==那么223cos 2cos sin ,5ααα=-=-且4sin 22sin cos ,5ααα==故sin(2)sin 2.coscos 2.sin444πππααα+=+42322525210=⨯-⨯=45.〔浙江卷〕如图,函数y=2sin(πx φ),x ∈R,(其中0≤φ≤2π) 的图象与y 轴交于点〔0,1〕.(Ⅰ)求φ的值;(Ⅱ)设P 是图象上的最高点,M 、N 是图象与x 轴的交点,求.的夹角与PN PM此题主要考查三角函数的图像,三角函数求角,向量夹角的计算等根底知识和根本的运算水平.解:〔I 〕由于函数图像过点(0,1),所以2sin 1,ϕ=即1sin .2ϕ=由于02πϕ≤≤,所以6πϕ=. 〔II 〕由函数2sin()6y x ππ=+及其图像,得115(,0),(,2),(,0),636M P N --所以11(,2),(,2),22PM PN =-=-从而cos ,||||PM PNPM PN PM PN ⋅<>=⋅ 1517=, 故,PM PN <>=15arccos17. 46.(重庆卷)设函数f (x )=3cos 2cos+sin ωrcos ωx+a(其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个高点的横坐标为6x . 〔Ⅰ〕求ω的值; 〔Ⅱ〕如果f (x )在区间⎥⎦⎤⎢⎣⎡-65,3ππ上的最小值为3,求a的值.1()cos 2sin 22sin 23 2,6321.2f x x x x ωωαπωαπππωω=+++⎛⎫=+++ ⎪⎝⎭⋅+==解:(I )依题意得解之得)57 ,0,,36361 sin()1,2351 (),36212x x x f x παπππππππαα++⎡⎤⎡⎤∈-+∈⎢⎥⎢⎥⎣⎦⎣⎦-≤+≤⎡⎤--++⎢⎥⎣⎦-++=(II)由(I)知,f(x)=sin(x+3又当时,故从而在上取得最小值因此,由题设知α=47.〔上海春〕函数⎥⎦⎤⎢⎣⎡∈-⎪⎭⎫ ⎝⎛+=πππ,2,cos 26sin 2)(x x x x f .〔1〕假设54sin =x ,求函数)(x f 的值; 〔2〕求函数)(x f 的值域. 19. 解:〔1〕53cos ,,2,54sin -=∴⎥⎦⎤⎢⎣⎡∈=x x x ππ , ……2分x x x x f cos 2cos 21sin 232)(-⎪⎪⎭⎫ ⎝⎛+= ……4分x x cos sin 3-=53354+=. ……8分 〔2〕⎪⎭⎫ ⎝⎛-=6sin 2)(πx x f , ……10分ππ≤≤x 2, 6563πππ≤-≤∴x , 16sin 21≤⎪⎭⎫ ⎝⎛-≤πx ,∴ 函数)(x f 的值域为]2,1[. ……14分。
精锐教育学科教师辅导讲义学员编号: 年 级:高 三 课 时 数: 3 学员姓名:赵 银 辅导科目:数 学 学科教师:汤 亮授课类型 T 三角函数C T授课日期及时段知识梳理:1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad ) 3、弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )Pyx▲SIN \COS 三角函数值大小关系图sinxcosx 1、2、3、4表示第一、二、三、四象限一半所在区域12341234sinxsinx sinx cosxcosx cosx roxya 的终边P (x,y )与原点的距离为r ,则 ry =αsin ; rx =αcos ; xy =αtan ; y x =αcot ; x r =αsec ;. yr =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yxy6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:三角函数定义域=)(x f sin x {}R x x ∈| =)(x f cos x {}R x x ∈|=)(x f tan x ⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且=)(x f cot x {}Z k k x R x x ∈≠∈,|π且=)(x f sec x ⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且=)(x f csc x{}Z k k x R x x ∈≠∈,|π且8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三TMA OPxy(3) 若 o<x<π2,则sinx<x<tanx(2)(1)|sinx|>|cosx||cosx|>|sinx||cosx|>|sinx||sinx|>|cosx|sinx>cosxcosx>sinx16. 几个重要结论:OOxyxy中国领先的个性化教育品牌 xx k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππxx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六 xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ10. 正弦、余弦、正切、余切函数的图象的性质:()ϕω+=x A y sin(A 、ω>0)定义域 R R R值域 ]1,1[+-]1,1[+-R R []A A ,-周期性 π2 π2ππωπ2奇偶性奇函数偶函数 奇函数 奇函数当,0≠ϕ非奇非偶 当,0=ϕ奇函数单调性]22,22[ππππk k ++-上为增函数;]223,22[ππππk k ++上为减函数(Z k ∈)()]2,12[ππk k -;上为增函数()]12,2[ππ+k k上为减函数(Z k ∈)⎪⎭⎫ ⎝⎛++-ππππk k 2,2上为增函数(Z k ∈)()()ππ1,+k k 上为减函数(Z k ∈)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+--)(212),(22A k A k ωϕππωϕππ上为增函数;⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+-+)(232),(22A k A k ωϕππωϕππ上为减函数(Z k ∈)注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).公式组一sin x ·csc x =1tan x =x x cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且{}Z k k x R x x ∈≠∈,|π且xy cot =xy tan =xy cos =xy sin =▲y②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ).x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T ); x y cos =是周期函数(如图);x y cos =为周期函数(π=T ); 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22.题型归纳:1、 已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象 ▲yxy=cos |x|图象▲1/2yxy=|cos2x +1/2|图象y x11-2π- 3π- O 6ππyx11-2π- 3π- O 6π π yx11-2π-3πO 6π- πyxπ 2π-6π- 1O1-3π A.B.C.D.A .关于直线x π=4对称 B .关于点0π⎛⎫ ⎪4⎝⎭,对称C .关于点0π⎛⎫ ⎪3⎝⎭,对称D .关于直线x π=3对称 2、将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( ) A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭3、函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )4、将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于() A .12π-B .3π-C .3π D .12π5、已知=-=-ααααcos sin ,45cos sin 则( )A .47B .169-C .329-D .329 6、已知等于则)2cos(),,0(,31cos θππθθ+∈=( ) A .924-B .924C .97-D .97 7、设)4tan(,41)4tan(,52)tan(παπββα+=-=+则的值是( ) A .1813B .2213 C .223 D .61 8、50tan 70tan 350tan 70tan -+的值等于( )A .3B .33C .33-D .3-9、2""3πθ=是"tan 2cos "2πθθ⎛⎫=+ ⎪⎝⎭的 ( )A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件10、已知______________________________tan ),,2(,2cos sin =∈=αππααα则11、函数()sin 3cos ([,0])f x x x x π=-∈-的单调递增区间是__________ 解答题:1、已知函数)20,0,0( )sin(πϕωϕω<≤>>++=A b x A y 在同一周期内有最高点)1,12(π和最低点)3,127(-π,求此函数的解析式2、求函数x x x y cos sin cos 2+=的值域3、若3sin 23cos 3sin 32)(2xx x x f -=,],0[π∈x ,求)(x f 的值域和对称中心坐标;4、在ABC ∆中,,,a b c 分别为角,,A B C 的对边,且满足274cos cos2()22A B C -+= (Ⅰ)求角A 的大小;(Ⅱ)若3b c +=,求a 的最小值.5、若3sin 23cos 3sin32)(2xx x x f -=在ABC ∆中,A 、B 、C 所对边分别为a 、b 、c ,若1)(=C f ,且ac b =2,求A sin .6、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足(2a -c )cosB=bcosC. (Ⅰ)求角B 的大小;(Ⅱ)设n m k k n A A m ⋅>==且),1)(1,4(),2cos ,(sin 的最大值是5,求k 的值.7、已知:(3sin ,cos ),(cos ,cos )a x x b x x ==,122)(-+⋅=m b a x f(R m x ∈,). (Ⅰ) 求()f x 关于x 的表达式,并求()f x 的最小正周期; (Ⅱ) 若]2,0[π∈x 时,()f x 的最小值为5,求m 的值.五、高考真题(10天津)已知函数2()23sin cos 2cos 1()f x x x x x R =+-∈ (Ⅰ)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值;(Ⅱ)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值。
三角函数图像的平移、变换一、 引入以简单函数为例,解说“左加右减、上加下减” 。
讲清横移的实质是把全部x 替代为 x+a ;二、三角函数图像的平移之历年高考真题1、为了获得函数y sin(2 x) 的图像,只需把函数 y sin(2 x) 的图像( A )向左平移个长度单364位( B )向右平移 个长度单位4( C )向左平移个长度单位( D )向右平移个长度单位22【答案】 B2、将函数 ysin x 的图像上全部的点向右平行挪动个单位长度, 再把所得各点的横坐标伸长到本来的102 倍(纵坐标不变) ,所得图像的函数分析式是( A ) ysin(2 x ) (B ) ysin(2 x)sin( 1x10sin( 1x 5 ( C ) y) ( D ) y )2102 20分析:将函数 y sin x 的图像上全部的点向右平行挪动个单位长度, 所得函数图象的分析式为 y = sin( x10-)再把所得各点的横坐标伸长到本来的 2 倍(纵坐标不变) ,所得图像的函数分析式是10y sin( 1x) . 【答案】 C 210以本题为例,解说横向变换的实质也是替代。
可发问:上述步骤反演,结果怎样?3、( 2010 天津文)( 8)右图是函数 y Asin ( x+ )( xR )在区间 - 5上的图象,为了获得这个函数的图象,只,6 6要将 y sin x ( x R )的图象上全部的点(A) 向左平移 个单位长度,再把所得各点的横坐标缩短到原3来的 1倍,纵坐标不变2(B) 向左平移个单位长度, 再把所得各点的横坐标伸长到原3来的 2 倍,纵坐标不变(C) 向左平移个单位长度,再把所得各点的横坐标缩短到本来的1倍,纵坐标不变621【答案】 A【分析】本题主要考察三角函数的图像与图像变换的基础知识,属于中等题。
由图像可知函数的周期为,振幅为1,因此函数的表达式能够是y=sin(2x+ ).代入( - , 0)可得的6一个值为,故图像中函数的一个表达式是y=sin(2x+ ),即 y=sin2(x+ ),因此只需将 y=sinx ( x∈ R)3 3 6 1倍,纵坐标不变。
专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
极坐标与参数方程综合复习一 基础知识:1 极坐标。
逆时针旋转而成的角为正角,顺时针旋转而成的角为负角。
),(θρ点与点关于极点中心对称。
),(θρP ),(1θρ-P 点与点是同一个点。
),(θρP ),(2πθρ+-P 2 直角坐标化为极坐标的公式:.sin ;cos θρθρ==y x极坐标化为直角坐标的公式:xy y x =+=θρtan ;222注意:1 2 注意的象限。
πθρ20,0<≤>θ3圆锥曲线的极坐标方程的统一形式:间的距离。
是对应的焦点与准线之是离心率,p e 时表示双曲线。
时表示抛物线;时表示椭圆;1110>=<<e e e 4平移变换公式:``),()(y x k h y x +=++理解为:平移前点的坐标+平移向量的坐标=平移后点的坐标5 的直线的参数方程为且倾斜角为过点α),(000y x P θρcos 1e ep -=坐标伸缩变换。
为平面直角坐标系中的,称对到应点的作用下,点:任意一点,在变换是平面直角坐标系中的定义:设点ϕλλϕ),(),()0()0({),(y x P y x P u y u y x x y x P ''>⋅='>⋅='为参数)t t y y t x x (sin cos {00αα+=+=2202000)()()(sin cos {r y y x x r y y r x x =-+-+=+=对应的普通方程为为参数θθθ。
轴上的椭圆的参数方程,焦点在这是中心在原点为参数的一个参数方程为椭圆x O b y a x b a by a x )(sin cos {)0(12222ϕϕϕ==>>=+程。
轴上的双曲线的参数方,焦点在这是中心在原点为参数,的一个参数方程为,双曲线x O b y a x b a b y a x )2,20(tan sec {)00(12222πϕπϕϕϕϕ≠<≤==>>=-参数方程。
降幂公式、辅助角公式应用降幂公式(cosα)^2=(1+cos2α)/2 (sinα)^2=(1-cos2α)/2(tanα)^2=(1-cos(2α))/(1+cos(2α))推导公式如下直接运用二倍角公式就是升幂,将公式Cos2α变形后可得到降幂公式: cos2α=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2 cos2α=2(cosα)^2-1,(cosα)^2=(cos2α+1)/2co s2α=1-2(sinα)^2,(sinα)^2=(1-cos2α)/2 降幂公式例10、(2008惠州三模)已知函数x x x x f cos sin sin 3)(2+-= (I )求函数)(x f 的最小正周期; (II )求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域. 解:x x x x f cos sin sin 3)(2+-=x x 2sin 2122cos 13+-⨯-= 232cos 232sin 21-+=x x 23)32sin(-+=πx (I )ππ==22T (II )∴20π≤≤x ∴34323πππ≤+≤x ∴ 1)32sin(23≤+≤-πx 所以)(x f 的值域为:⎥⎦⎤⎢⎣⎡--232,3 点评:本题考查三角恒等变换,三角函数图象的性质,注意掌握在给定范围内,三角函数值域的求法。
例11、(2008广东六校联考)已知向量a =(cos 23x ,sin 23x ),b =(2sin 2cos x x ,-),且x ∈[0,2π].(1)求b a+(2)设函数b a x f +=)(+b a⋅,求函数)(x f 的最值及相应的x 的值。
解:(错误!未找到引用源。
)由已知条件: 20π≤≤x , 得:33(coscos ,sin sin )2222x x x x a b +=+-2 x x sin 22cos 22=-= (2)2sin 23sin 2cos 23cossin 2)(xx x x x x f -+=x x 2cos sin 2+= 23)21(sin 21sin 2sin 222+--=++-=x x x ,因为:20π≤≤x ,所以:1sin 0≤≤x所以,只有当: 21=x 时, 23)(max =x f ,0=x ,或1=x 时,1)(min =x f点评:本题是三角函数与向量结合的综合题,考查向量的知识,三角恒等变换、函数图象等知识。
三角函数图象的作法:1.y=Asin(ωx+φ)的图象:的图象:①用五点法作图①用五点法作图::五点取法由ωx +j =0=0、、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图描点作图. .②图象变换:先平移、再伸缩两个程序③A---A---振幅振幅振幅 vp2=T--------周期周期周期 pw 21==T f --------频率频率频率 相位--+j w x 初相--j2、函数sin()y A x k w j =++的图象与函数sin y x =的图象之间可以通过变化A k w j ,,,来相互转化.A w ,影响图象的形状,k j ,影响图象与x 轴交点的位置.轴交点的位置.由由A 引起的变换称振幅变换,引起的变换称振幅变换,由由w 引起的变换称周期变换,它们都是伸缩变换;由j 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象j j j <¾¾¾¾¾¾¾®向左向左((>0)>0)或向右或向右或向右((0)平移个单位长度得sin()y x j =+的图象()w w w¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾®®横坐标伸长横坐标伸长(0<(0<<1)<1)或缩短或缩短或缩短((>1)1到原来的纵坐标不变 得sin()y x w j =+的图象()A A A >¾¾¾¾¾¾¾¾¾®纵坐标伸长纵坐标伸长((1)1)或缩短或缩短或缩短(0<(0<<1)为原来的倍横坐标不变 得sin()y A x w j =+的图象(0)(0)k k k ><¾¾¾¾¾¾¾®向上或向下平移个单位长度得sin()y A x k j =++的图象.的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<¾¾¾¾¾¾¾¾¾®纵坐标伸长或缩短为原来的倍(横坐标不变横坐标不变))得sin y A x =的图象(01)(1)1()w w w<<>¾¾¾¾¾¾¾¾¾®横坐标伸长或缩短到原来的纵坐标不变得sin()y A x w =的图象(0)(0)j j j w><¾¾¾¾¾¾¾®向左或向右平移个单位得sin ()y A x x w j =+的图象(0)(0)k k k ><¾¾¾¾¾¾¾®向上或向下平移个单位长度得sin()y A x k w j =++的图象.的图象.注意:利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种x ? ? ? ? j w +x2p p23pp 2)sin(j w +=x A yA 0 -A 0变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
高二数学《向量》知识点总结考点一:向量的概念、向量的大体定理【内容解读】了解向量的实际背景,把握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,明白得向量的几何表示,把握平面向量的大体定理。
注意对向量概念的明白得,向量是能够自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求把握向量的加减法运算,会用平行四边形法那么、三角形法那么进行向量的加减运算;把握实数与向量的积运算,明白得两个向量共线的含义,会判定两个向量的平行关系;把握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并明白得其几何意义,把握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判定两个平面向量的垂直关系。
【命题规律】命题形式要紧以选择、填空题型显现,难度不大,考查重点为模和向量夹角的概念、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】把握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮忙明白得。
【命题规律】重点考查概念和公式,要紧以选择题或填空题型显现,难度一样。
由于向量应用的普遍性,常常也会与三角函数,解析几何一并考查,假设出此刻解答题中,难度以中档题为主,偶然也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主若是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
第三章 三角函数、三角恒等变换及解三角形第9课时 三角函数的综合应用(对应学生用书(文)、(理)57~59页)1. (必修5P 9例题4题改编)设△ABC 的三个内角A 、B 、C 所对的边分别是a 、b 、c ,且a cosA =c sinC,则A =________.答案:π4解析:由a cosA =c sinC ,a sinA =c sinC ,得a sinA =acosA ,即sinA =cosA ,所以A =π4.2. (必修4P 45习题1.3第8题改编)将函数y =sinx 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin ⎝⎛⎭⎫x -π6的图象,则φ=________.答案:116π解析:将函数y =sinx 向左平移φ(0≤φ<2π)个单位得到函数y =sin(x +φ).只有φ=116π时有y =sin ⎝⎛⎭⎫x +116π=sin ⎝⎛⎭⎫x -π6. 3. (必修4P 109习题3.3第6(2)题改编)tan π12-1tan π12=________.答案:-23解析:原式=sinπ12cos π12-cosπ12sin π12=-⎝⎛⎭⎫cos 2π12-sin 2π12sin π12cos π12=-cosπ612sin π6=-2 3. 4. (必修4P 115复习题第13题改编)已知函数f(x)=3sinxcosx -cos 2x +12(x ∈R ),则f(x)在区间⎣⎡⎦⎤0,π4上的值域是________.答案:⎣⎡⎦⎤-12,32解析:f(x)=32sin2x -12cos2x =sin ⎝⎛⎭⎫2x -π6.当x ∈⎣⎡⎦⎤0,π4时,2x -π6∈⎣⎡⎦⎤-π6,π3,故值域为⎣⎡⎦⎤-12,32.5. 在△ABC 中,AC =7,BC =2,B =60°,则边BC 上的高为________. 答案:332解析:由余弦定理,得7=c 2+4-2c ,即c 2-2c -3=0,解得c =3,所以边BC 上的高h =3sin60°=332.1. 同角三角函数的基本关系式:sin 2α+cos 2α=1,tan α=sin αcos α.2. 两角和与差的正弦余弦和正切公式:sin (α±β)=sin αcos β±cos αsin β,cos (α±β)=cos αcos βsinαsin β,tan (α±β)=tan α±tan β1tan αtan β.3. 二倍角公式:sin2α=2sin αcos α,cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,tan2α=2tan α1-tan 2α.4. 三角函数的图象和性质5. 正弦定理和余弦定理:(1) 正弦定理:a sinA =b sinB =csinC=2R(R 为三角形外接圆的半径).(2) 余弦定理:a 2=b 2+c 2-2bccosA ,cosA =b 2+c 2-a 22bc.题型1 三角恒等变换例1 已知sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π2.(1) 求cosA 的值;(2) 求函数f(x)=cos2x +52sinAsinx 的值域.解:(1) 因为π4<A<π2,且sin ⎝⎛⎭⎫A +π4=7210,所以π2<A +π4<3π4,cos ⎝⎛⎭⎫A +π4=-210.所以cosA =cos ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=cos ⎝⎛⎭⎫A +π4cos π4+sin ⎝⎛⎭⎫A +π4sin π4=-210·22+7210·22=35. (2) 由(1)可得sinA =45.所以f(x)=cos2x +52sinAsinx=1-2sin 2x +2sinx =-2⎝⎛⎭⎫sinx -122+32,x ∈R .因为sinx ∈[-1,1],所以,当sinx =12时,f(x)取最大值32;当sinx =-1时,f(x)取最小值-3. 所以函数f(x)的值域为⎣⎡⎦⎤-3,32. 备选变式(教师专享)(2013·上海卷)若cosxcosy +sinxsiny =12,sin2x +sin2y =23,则sin(x +y)=________.答案:23解析:由题意得cos(x -y)=12,sin2x +sin2y =sin[(x +y)+(x -y)]+sin[(x +y)-(x -y)]=2sin(x +y)cos(x-y)=23sin(x +y)=23.题型2 三角函数的图象与性质 例2 已知函数f(x)=Asin ⎝⎛⎭⎫π3x +φ,x ∈R ,A>0,0<φ<π2,y =f(x)的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A).(1) 求f(x)的最小正周期及φ的值;(2) 若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.解:(1) 由题意得T =2ππ3=6.因为P(1,A)在y =Asin ⎝⎛⎭⎫π3x +φ的图象上,所以sin ⎝⎛⎭⎫π3+φ=1.因为0<φ<π2,所以φ=π6.(2) 设点Q 的坐标为(x 0,-A). 由题意可知π3x 0+π6=3π2,得x 0=4,所以Q(4,-A).连结PQ ,在△PRQ 中,∠PRQ =2π3,由余弦定理得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-(9+4A 2)2A·9+A 2=-12,解得A 2=3.又A>0,所以A = 3. 备选变式(教师专享)已知函数f(x)=sin (ωx +φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π. (1) 求函数f(x)的表达式;(2) 若sin α+f(α)=23,求2sin ⎝⎛⎭⎫2α-π4+11+tan α的值.解:(1) ∵ f(x)为偶函数,∴ sin(-ωx +φ)=sin (ωx +φ),即2sin ωxcos φ=0恒成立, ∴ cos φ=0,又∵ 0≤φ≤π,∴ φ=π2. 又其图象上相邻对称轴之间的距离为π,∴ T =2π,∴ ω=1,∴f(x)=cosx. (2) ∵ 原式=sin2α-cos2α+11+tan α=2sin αcos α,又∵ sin α+cos α=23,∴ 1+2sin αcos α=49, 即2sin αcos α=-59,故原式=-59.题型3 正弦定理、余弦定理的综合应用例3 (2013·浙江)在锐角△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2asinB =3b.(1) 求角A 的大小;(2) 若a =6,b +c =8,求△ABC 的面积.解:(1) 由2asinB =3b 及正弦定理a sinA =b sinB ,得sinA =32.因为A 是锐角,所以A =π3.(2) 由余弦定理a 2=b 2+c 2-2bccosA ,得b 2+c 2-bc =36.又b +c =8,所以bc =283. 由三角形面积公式S =12bcsinA ,得△ABC 的面积为733.备选变式(教师专享)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C =π3,a =5,△ABC 的面积为10 3.(1) 求b ,c 的值; (2) 求cos ⎝⎛⎭⎫B -π3的值.解:(1) 由已知,C =π3,a =5,因为S △ABC =12absinC ,即103=12b ·5sin π3,解得b =8.由余弦定理可得:c 2=25+64-80cos π3=49, 所以c =7.(2) 由(1)有cosB =25+49-6470=17,由于B 是三角形的内角,易知sinB =1-cos 2B =437,所以cos ⎝⎛⎭⎫B -π3=cosBcos π3+sinBsin π3=17×12+437×32=1314.题型4 三角函数、平面向量、解三角形的综合应用例4 已知向量m =⎝⎛⎭⎫sinA ,12与n =(3,sinA +3cosA)共线,其中A 是△ABC 的内角. (1) 求角A 的大小;(2) 若BC =2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状. 解:(1) 因为m ∥n ,所以sinA ·(sinA +3cosA)-32=0.所以1-cos2A 2+32sin2A -32=0,即32sin2A -12cos2A =1, 即sin ⎝⎛⎭⎫2A -π6=1.因为A ∈(0,π),所以2A -π6∈⎝⎛⎭⎫-π6,11π6. 故2A -π6=π2,A =π3.(2) 由余弦定理,得4=b 2+c 2-bc. 又S △ABC =12bcsinA =34bc ,而b 2+c 2≥2bcbc +4≥2bcbc ≤4(当且仅当b =c 时等号成立),所以S △ABC =12bcsinA =34bc ≤34×4= 3.当△ABC 的面积取最大值时,b =c. 又A =π3,故此时△ABC 为等边三角形.备选变式(教师专享)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b),n =(sin B ,sin A),p =(b -2,a -2).(1) 若m ∥n ,求证:△ABC 为等腰三角形;(2) 若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1) 证明:∵ m ∥n ,∴ asin A =bsin B ,即a·a 2R =b·b2R ,其中R 是△ABC 外接圆半径,∴ a =b.∴ △ABC为等腰三角形.(2) 解:由题意可知m·p =0,即a(b -2)+b(a -2)=0.∴ a +b =ab.由余弦定理可知,4=a 2+b 2-ab =(a +b)2-3ab ,即(ab)2-3ab -4=0,∴ab =4(舍去ab =-1),∴ S =12absin C =12×4×sin π3= 3.在已知值求角中,应合理选择三角函数形式进行求解,避免增根. 【示例】 (本题模拟高考评分标准,满分14分) 若sin α=55,sin β=1010,且α、β均为锐角,求α+β的值. 学生错解:解: ∵ α为锐角,∴ cos α=1-sin 2α=255.又β为锐角,∴ cos β=1-sin 2β=31010. ∵ sin (α+β)=sin αcos β+cos αsin β=22, 由于0°<α<90°,0°<β<90°, ∴ 0°<α+β<180°, 故α+β=45°或135°.审题引导: 在已知值求角中,角的范围常常被忽略或不能发现隐含的角的大小关系而出现增根不能排除.要避免上述情况的发生,应合理选择三角函数形式进行求解,根据计算结果,估算出角的较精确的取值范围,并不断缩小角的范围,在选择三角函数公式时,一般已知正切函数值,选正切函数,已知正余弦函数值时,若角在(0,π)时,一般选余弦函数,若是⎝⎛⎭⎫-π2,π2,则一般选正弦函数.规范解答: 解: ∵ α为锐角,∴ cos α=1-sin 2α=255.(2分) 又β为锐角,∴ cos β=1-sin 2β=31010.(4分) 且cos (α+β)=cos αcos β-sin αsin β=22,(10分) 由于0<α<π2,0<β<π2,所以0<α+β<π,因为y =cosx 在[]0,π上是单调递减函数,故α+β=π4.(14分)错因分析: 没有注意挖掘题目中的隐含条件,忽视了对角的范围的限制,造成出错. 事实上,仅由sin (α+β)=22,0°<α+β<180°而得到α+β=45°或135°是正确的,但题设中sin α=55<12,sin β=1010<12,使得0°<α<30°,0°<β<30°从而0°<α+β<60°,故上述结论是错误的.在已知值求角中,应合理选择三角函数形式进行求解,避免增根.本题中0<α+β<π,因为y =cosx 在[]0,π上是单调函数,所以本题先求cos (α+β)不易出错.1. (2013·常州期末)函数f(x)=cos πx 2cos π(x -1)2的最小正周期为________.答案:2解析:f(x)=cos πx 2cos π(x -1)2=cos πx 2·sin πx 2=12sin πx ,最小正周期为T =2ππ=2.2. (2013·北京期末)已知函数f(x)=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f(x)的值域是⎣⎡⎦⎤-12,1,则a 的取值范围是________.答案:⎣⎡⎦⎤π3,π 解析:若-π3≤x ≤a ,则-π6≤x +π6≤a +π6,因为当x +π6=-π6或x +π6=7π6时,sin ⎝⎛⎭⎫x +π6=12,所以要使f(x)的值域是⎣⎡⎦⎤-12,1,则有π2≤a +π6≤7π6,即π3≤a ≤π,即a 的取值范围是⎣⎡⎦⎤π3,π. 3. (2013·北京期末)已知△ABC 中,AB =3,BC =1,sinC =3cosC ,则△ABC 的面积为________. 答案:32解析:由sinC =3cosC ,得tanC =3>0,所以C =π3.根据正弦定理可得BC sinA =ABsinC ,即1sinA =332=2,所以sinA =12.因为AB>BC ,所以A<C ,所以A =π6,即B =π2,所以三角形为直角三角形,所以S △ABC =12×3×1=32.4. (2013·新课标Ⅰ卷)设当x =θ时,函数f(x)=sinx -2cosx 取得最大值,则cos θ=________. 答案:-255解析:∵ f(x)=sinx -2cosx =5⎝⎛⎭⎫55sinx -255cosx .令cos φ=55,sin φ=-255,则f(x)= 5(sinxcos φ+sin φcosx)=5sin(x +φ), 当x +φ=2k π+π2,k ∈Z ,即x =2k π+π2-φ,k ∈Z 时,f(x)取最大值,此时θ=2k π+π2-φ,k ∈Z ,∴ cos θ=cos ⎝⎛⎭⎫2k π+π2-φ=sin φ=-255.1. (2014·扬州期末)在锐角△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c.向量m =(1,cosB),n =(sinB ,-3),且m ⊥n .(1) 求角B 的大小;(2) 若△ABC 面积为103,b =7,求此三角形周长. 解:(1) m·n =sinB -3cosB ,∵ m ⊥n ,∴ m ·n =0, ∴ sinB -3cosB =0.∵ △ABC 为锐角三角形,∴ cosB ≠0, ∴ tanB = 3.∵ 0<B<π2,∴ B =π3.(2) ∵ S △ABC =12acsinB =34ac ,由题设34ac =103,得ac =40.由72=a 2+c 2-2accosB ,得49=a 2+c 2-ac ,∴ (a +c)2=(a 2+c 2-ac)+3ac =49+120=169.∴ a +c =13,∴ 三角形周长是20.2. 在△ABC 中, a 、b 、c 分别是角A 、B 、C 的对边,△ABC 的周长为2+2,且sinA +sinB =2sinC. (1) 求边c 的长;(2) 若△ABC 的面积为13sinC ,求角C 的度数.解:(1) 在△ABC 中, ∵ sinA +sinB =2sinC ,由正弦定理,得a +b =2c ,∴ a +b +c =2c +c =(2+1)c =2+2.∴ a +b =2,c = 2.(2) 在△ABC 中, S △ABC =12absinC =13sinC ,∴ 12ab =13 ,即ab =23. 又a +b =2,在△ABC 中,由余弦定理,得cosC =a 2+b 2-c 22ab =(a +b )2-2ab -22ab =12,又在△ABC中∠C ∈(0,π),∴ ∠C =60°.3. (2013·湖北卷)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c.已知cos2A -3cos(B +C)=1. (1) 求角A 的大小;(2) 若△ABC 的面积S =53,b =5,求sinBsinC 的值.解:(1) 由已知条件得:cos2A +3cosA =1,∴ 2cos 2A +3cosA -2=0,解得cosA =12,∴ ∠A =60°.(2) S =12bcsinA =53c =4,由余弦定理,得a 2=21,(2R)2=a 2sin 2A =28,∴ sinBsinC =bc 4R 2=57.4. (2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A. (1) 求cosA 的值; (2) 求c 的值.解:(1) 因为a =3,b =26,∠B =2∠A.所以在△ABC 中,由正弦定理得3sinA =26sin2A .所以2sinAcosAsinA =263.故cosA =63. (2) 由(1)知cosA =63,所以sinA =1-cos 2A =33. 又因为∠B =2∠A ,所以cosB =2cos 2A -1=13.所以sinB =1-cos 2B =223.在△ABC 中,sinC =sin(A +B)=sinAcosB +cosAsinB =539.所以c =sin sin a CA=5.1. 三角变换的基本策略是化异为同,即将函数名称、角、次数等化异为同.2. 对于函数y =Asin (ωx +φ)+B ,常用“五点法”画图象,运用整体思想研究性质.3. 求三角函数的单调区间、周期,及判断函数的奇偶性,要注意化归思想的运用,通过恒等变换转化为基本三角函数类型,注意变形前后的等价性.4. 解三角函数的综合题时应注意:(1) 与已知基本函数对应求解,即将ωx+φ视为一个整体X;(2) 将已知三角函数化为同一个角的一种三角函数,如y=Asin(ωx+φ)+B或y=asin2x+bsinx+c;(3) 换元方法在解题中的运用.请使用课时训练(B)第9课时(见活页).[备课札记]。
三角函数向量平移一、介绍三角函数是数学中非常重要的概念,它与向量平移密切相关。
本文将从三角函数的基本概念开始,逐步探讨三角函数在向量平移中的应用和意义。
二、三角函数基本概念三角函数包括正弦函数、余弦函数和正切函数,它们是数学函数库中的基本函数之一。
2.1 正弦函数正弦函数是指在单位圆上,从原点到圆上一点与x轴的正方向所夹的角的正弦值。
其函数图像是一条连续的波浪线,具有周期性、奇偶性和对称性。
2.2 余弦函数余弦函数是指在单位圆上,从原点到圆上一点与x轴的正方向所夹的角的余弦值。
其函数图像是一条连续的波浪线,也具有周期性、奇偶性和对称性。
2.3 正切函数正切函数是指在单位圆上,从原点到圆上一点与x轴的正方向所夹的角的正切值。
其函数图像是一条连续的曲线,具有周期性和奇偶性。
三、向量平移的定义向量平移是指将向量沿指定的方向和距离移动的操作。
在平面几何中,向量平移包括平移向量和被平移的向量。
3.1 平移向量平移向量是指用于描述平移操作的向量,它由平移方向和平移距离组成。
平移向量的大小和方向决定了向量平移的结果。
3.2 被平移的向量被平移的向量是指需要进行平移操作的向量。
通过将被平移的向量与平移向量相加,可以得到平移后的向量。
四、三角函数与向量平移的关系三角函数与向量平移密切相关,特别是在平面几何中。
通过使用三角函数,我们可以确定平移向量的方向和大小,从而实现向量平移。
4.1 平移向量的方向在向量平移中,平移向量的方向可以由正弦函数和余弦函数来确定。
具体而言:•如果平移向量与x轴正方向的夹角为θ,那么平移向量在x轴方向上的分量为cos(θ),在y轴方向上的分量为sin(θ)。
4.2 平移向量的大小在向量平移中,平移向量的大小可以由正切函数来确定。
具体而言:•如果平移向量与x轴的夹角为θ,平移距离为d,那么平移向量的大小为d*tan(θ)。
4.3 向量平移的计算通过以上关系,我们可以计算出平移向量的方向和大小。
第3讲平面向量的数量积及应用举例最新考纲考向预测1.通过物理中的功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.命题趋势平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问题,平面向量数量积的综合应用仍是高考考查的热点,题型仍是选择题与填空题.核心素养数学运算、逻辑推理1.向量的夹角(1)条件:平移两个非零向量a和b至同一起点,结论:∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角.(2)范围:0°≤θ≤180°.特殊情况:当θ=0°时,a与b共线同向.当θ=180°时,a与b共线反向.当θ=90°时,a与b互相垂直.2.向量的数量积(1)条件:两个向量a与b,夹角θ,结论:数量|a||b|cos_θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos_θ.(2)数量积的几何意义条件:a的长度|a|,b在a方向上的投影|b|cos_θ(或b的长度|b|,a在b方向上的投影|a|cos_θ),结论:数量积a·b等于|a|与|b|cos_θ的乘积(或|b|与|a|cos_θ的乘积).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=a,b.结论几何表示坐标表示向量的模|a|=a·a |a|=x21+y21夹角余弦cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x2+y2a⊥b充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y2常用结论1.求平面向量的模的公式(1)a2=a·a=|a|2或|a|=a·a=a2;(2)|a±b|=(a±b)2=a2±2a·b+b2;(3)若a=(x,y),则|a|=x2+y2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).常见误区1.投影和两向量的数量积都是数量,不是向量.2.向量a在向量b方向上的投影与向量b在向量a方向上的投影不是一个概念,要加以区别.3.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于a·(b·c),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.1.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )·c =a ·(b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33D .3解析:选B.a ·b =|a ||b |cos 135°=-122,所以|b |=-1224×⎝ ⎛⎭⎪⎫-22=6.3.(多选)已知向量a =(1,-2),b =(-2,4),则( ) A .a ∥b B .(a +b )·a =-5 C .b ⊥(a -b )D .2|a |=|b |解析:选ABD.因为1×4=-2×(-2),所以a ∥b ,又a +b =(-1,2),所以(a +b )·a =-5.a -b =(3,-6),b ·(a -b )≠0,所以C 错误,|a |=5,|b |=25,2|a |=|b |,故选ABD.4.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 解析:cos θ=a·b |a||b|=-632×6=-32,又因为0≤θ≤π,所以θ=5π6. 答案:5π65.已知向量a 与b 的夹角为π3,|a |=|b |=1,且a ⊥(a -λb ),则实数λ=________.解析:由题意,得a ·b =|a ||b |cos π3=12,因为a ⊥(a -λb ),所以a ·(a -λb )=|a |2-λa ·b =1-λ2=0,所以λ=2.答案:2平面向量数量积的运算(1)(2021·内蒙古赤峰二中、呼市二中月考)已知向量a ,b 的夹角为π3,若c =a |a|,d =b |b|,则c ·d =( ) A.14B .12 C.32 D .34(2)(多选)已知△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB→|,下列结论正确的是( ) A.CA→在CB →方向上的投影长为- 3 B.OA →·AB →=OA →·AC →C.CA→在CB →方向上的投影长为 3 D.OB →·AB →=OC →·AC→ 【解析】 (1)c ·d =a |a|·b |b|=|a||b|cos a ,b |a||b|=cos π3=12.故选B.(2)由OA→+AB →+AC →=0得OB →=-AC →=CA →,所以四边形OBAC 为平行四边形.又O 为△ABC 外接圆的圆心,所以|OB→|=|OA →|,又|OA →|=|AB →|,所以△OAB 为正三角形.因为△ABC 的外接圆半径为2,所以四边形OBAC 是边长为2的菱形,所以∠ACB =π6,所以CA →在CB →上的投影为|CA →|cos π6=2×32=3,故C 正确.因为OA →·AB→=OA →·AC →=-2,OB →·AB →=OC →·AC→=2,故B ,D 正确.【答案】 (1)B (2)BCD计算向量数量积的三个角度(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.1.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55 B .-55 C .-255D .-355解析:选D.由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2,所以a ·b =-3,所以向量b 在a 方向上的投影为a·b |a|=-355.故选D.2.(2020·重庆第一中学月考)已知非零向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为120°,且|b |=2|a |,则向量a ,c 的数量积为( )A .0B .-2a 2C .2a 2D .-a 2解析:选A.由非零向量a ,b ,c 满足a +b +c =0,可得c =-(a +b ),所以a ·c =a ·[-(a +b )]=-a 2-a ·b =-a 2-|a |·|b |·cosa ,b.由于a ,b 的夹角为120°,且|b |=2|a |,所以a ·c =-a 2-|a |·|b |cos 120°=-|a |2-2|a |2×⎝ ⎛⎭⎪⎫-12=0.故选A.3.(一题多解)(2020·武昌区高三调研)在等腰直角三角形ABC 中,∠ACB =π2,AC =BC =2,点P 是斜边AB 上一点,且BP =2P A ,那么CP →·CA →+CP →·CB→=( ) A .-4 B .-2 C .2D .4解析:选D.通解:由已知得|CA →|=|CB →|=2,CA →·CB→=0,AP →=13(CB →-CA →),所以CP →·CA →+CP →·CB →=(CA →+AP →)·CA →+(CA →+AP →)·CB →=|CA →|2+AP →·CA →+CA →·CB →+AP →·CB →=|CA →|2+13(CB →-CA →)·(CB→+CA →)=|CA →|2+13|CB →|2-13|CA →|2=22+13×22-13×22=4. 优解:由已知,建立如图所示的平面直角坐标系,则C (0,0),A (2,0),B (0,2),设P (x ,y ).因为BP =2P A ,所以BP →=2P A →,所以(x ,y -2)=2(2-x ,-y ),所以⎩⎪⎨⎪⎧x =43y =23,所以CP →·CA →+CP →·CB →=(43,23)·(2,0)+(43,23)·(0,2)=4.故选D.平面向量数量积的应用角度一 求两平面向量的夹角(1)(2020·高考全国卷Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos〈a ,a +b 〉=( )A .-3135B .-1935 C.1735D .1935(2)(2021·普通高等学校招生全国统一考试模拟)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉=( )A.73 B .23 C.79D .29【解析】 (1)由题意,得a ·(a +b )=a 2+a ·b =25-6=19,|a +b |=a2+2a·b +b2=25-12+36=7,所以cosa ,a +b=a·(a +b )|a||a +b|=195×7=1935,故选D.(2)因为a ,b 是单位向量,所以|a |=|b |=1.又因为a ·b =0,c =7a +2b ,所以|c |=(7a +2b )2=3,a ·c =a ·(7a +2b )=7, 所以cos 〈a ,c 〉=a·c |a||c|=73.因为〈a ,c 〉∈[0,π],所以sin 〈a ,c 〉=23.故选B. 【答案】 (1)D (2)B求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系.(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x1x2+y1y2x21+y 21·x 2+y 2.角度二 求平面向量的模(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA→|=________.【解析】 因为M 为BC 的中点,所以AM→=12(AB →+AC →),所以|MA→|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, 所以|MA→|=132. 【答案】 132求向量的模或其范围的方法(1)定义法:|a |=a2=a·a ,|a ±b |=(a±b )2=a2±2a·b +b2. (2)坐标法:设a =(x ,y ),则|a |=x2+y2.(3)几何法:利用向量加减法的平行四边形法则或三角形法则作出向量,再利用解三角形的相关知识求解.[提醒] (1)求形如m a +n b 的向量的模,可通过平方,转化为数量的运算. (2)用定义法和坐标法求模的范围时,一般把它表示成某个变量的函数,再利用函数的有关知识求解;用几何法求模的范围时,注意数形结合的思想,常用三角不等式进行最值的求解.角度三 两平面向量垂直问题已知向量AB →与AC →的夹角为120°,且|AB→|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为________.【解析】 因为AP →⊥BC →,所以AP →·BC →=0.又AP→=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0, 所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0.解得λ=712.【答案】 712有关平面向量垂直的两类题型根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.1.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |=( ) A .22 B .25 C.17D .15解析:选 C.因为a -b =(3,2),所以|a -b |=5,所以|a -b |2=|a |2-2a ·b +|b |2=5-2a ·b =5,则a ·b =0,所以|a +2b |2=|a |2+4a ·b +4|b |2=17,所以|a +2b |=17.故选C.2.(多选)设a ,b 是两个非零向量,则下列命题为假命题的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 解析:选ABD.对于A ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题; 对于C ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |, 得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题. 对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0, 因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |, 所以D 不正确. 故选ABD.3.(一题多解)已知正方形ABCD ,点E 在边BC 上,且满足2BE →=BC →,设向量AE→,BD →的夹角为θ,则cos θ=________. 解析:方法一:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,则|AE →|=5,|BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.方法二:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.答案:-1010向量数量积的综合应用在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【解】 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理a sin A =b sin B ,得sin B =bsin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. K在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而∠C ∈(0,π),所以∠C =π3. (2)由AD→=DB →知,CD →-CA →=CB →-CD →, 所以2CD→=CA →+CB →, 两边平方得4|CD→|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23.核心素养系列4 逻辑推理——平面向量与三角形的“四心”三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔a OA→+b OB →+c OC →=0. 类型一 平面向量与三角形的“重心”问题已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC→],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点【解析】 取AB 的中点D ,则2OD→=OA →+OB →, 因为OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], 所以OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,所以P ,C ,D 三点共线,所以点P 的轨迹一定经过△ABC 的重心. 【答案】 C类型二 平面向量与三角形的“内心”问题在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463 C .43D .62【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 【答案】 B类型三 平面向量与三角形的“垂心”问题已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A .重心B .垂心C .外心D .内心【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C ,所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.【答案】 B类型四 平面向量与三角形的“外心”问题已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO→=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎪⎫45,35 B .⎝⎛⎭⎪⎫35,45C.⎝⎛⎭⎪⎫-45,35 D .⎝⎛⎭⎪⎫-35,45【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC→, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝⎛⎭⎪⎫12-x AB →2-yAC →·AB→=0,①由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB→=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB2→, 所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①,②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.【答案】 A[A 级 基础练]1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D .32解析:选A.c =a +k b =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =0,b ·c =(1,1)·(1+k ,2+k )=1+k +2+k =3+2k =0,所以k =-32.2.若向量OF1→=(1,1),OF2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .25 C.5D .15解析:选 C.由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2=5.3.(2020·贵阳市第一学期监测考试)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.109 B .259 C.269D .89解析:选A.方法一:因为|AB→+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即∠BAC =90°.所以AE →·AF →=⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)·⎣⎢⎡⎦⎥⎤AC →-13(AC →-AB →)=⎝ ⎛⎭⎪⎫23AB→+13AC →·(23AC →+13AB →)=29AB →2+29AC →2=109,故选A.方法二:因为|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即AB→⊥AC →,以A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (0,1),E (23,23),F (43,13),所以AE →·AF →=(23,23)·(43,13)=89+29=109,故选A.4.(多选)在△ABC 中,下列命题正确的是( ) A.AB→-AC →=BC →B.AB→+BC →+CA →=0 C .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D .若AC→·AB →>0,则△ABC 为锐角三角形 解析:选BC.由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B对;因为(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0, 所以|AB→|2=|AC →|2,即AB =AC , 所以△ABC 为等腰三角形,故C 对;因为AC →·AB →>0,所以角A 为锐角,但三角形不一定是锐角三角形.故选BC. 5.(2020·安徽示范高中名校月考)已知a ,b ,c 均为单位向量,a 与b 的夹角为60°,则(c +a )·(c -2b )的最大值为( )A.32 B .3 C .2D .3解析:选B.设c 与a -2b 的夹角为θ.因为|a -2b |2=a 2-4a ·b +4b 2=3,所以|a -2b |=3,所以(c +a )·(c -2b )=c 2+c ·(a -2b )-2a ·b =1+|c ||a -2b |cos θ-1=3cos θ,所以(c +a )·(c -2b )的最大值为3,此时cos θ=1.故选B.6.(2020·湖南、河南、江西3月联考)设非零向量a ,b 满足|a |=3|b |,cos a ,b=13,a ·(a -b )=16,则|b |=________. 解析:因为|a |=3|b |,cos a ,b=13,所以a ·(a -b )=9|b |2-|b |2=8|b |2=16,所以|b |=2.答案:27.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:因为|a |=|a +2b |, 所以|a |2=|a |2+4a ·b +4|b |2, 所以a ·b =-|b |2, 令a 与b 的夹角为θ.所以cos θ=a·b |a||b|=-|b|23|b||b|=-13. 答案:-138.(2020·新高考卷改编)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是________. 解析:AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB →方向上的投影,所以结合图形可知,当P 与C 重合时投影最大,当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB→∈(-2,6).答案:(-2,6)9.已知向量a =(2,-1),b =(1,x ). (1)若a ⊥(a +b ),求|b |的值;(2)若a +2b =(4,-7),求向量a 与b 夹角的大小. 解:(1)由题意得a +b =(3,-1+x ). 由a ⊥(a +b ),可得6+1-x =0, 解得x =7,即b =(1,7), 所以|b |=50=52.(2)由题意得,a +2b =(4,2x -1)=(4,-7), 故x =-3,所以b =(1,-3),所以cos 〈a ,b 〉=a·b |a||b|=(2,-1)·(1,-3)5×10=22,因为〈a ,b 〉∈[0,π], 所以a 与b 的夹角是π4.10.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.解:(1)由题设知,AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=42. 故所求的两条对角线的长分别为42,210.(2)方法一:由题设知,OC→=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11, 所以t =-115.方法二:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115. [B 级 综合练]11.(多选)(2020·山东九校联考)已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE→+OC →=0 C .|OA→+OB →+OC →|=32 D.ED→在BC →方向上的投影为76 解析:选BCD.由题意知E 为AB 的中点,则CE ⊥AB ,以E 为原点,EA ,EC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO→=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233,因为BO →∥DO →,所以y -233=-13y , 解得y =32,即O 是CE 的中点,则OE→+OC →=0,所以选项B 正确;|OA→+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确; 因为CE ⊥AB ,所以AB →·CE →=0,所以选项A 错误;ED→=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3). 故ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.故选BCD.12.(2020·山东济宁一中月考)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP→=m AC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A. 2 B .43 C .3D . 3解析:选 D.令CP→=k CD →(0<k <1),则AP →=AC →+CP →=AC →+k CD →=AC →+k (AD →-AC →)=AC →+k ⎝ ⎛⎭⎪⎫23AB →-AC →=2k 3AB →+(1-k )AC→=m AC →+12AB →,所以1-k =m ,2k 3=12,所以m =14,因为△ABC 的面积为23,所以12|AC →|·|AB →|·32=23,所以|AC →|·|AB→|=8,所以|AP →|=116|AC →|2+14|AB →|2+18|AC →||AB →|=1+116|AC →|2+16|AC →|2≥3,当且仅当|AC→|=4时取“=”,所以|AP →|的最小值为 3.故选D.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解:(1)由题设知AB→=(n -8,t ), 因为AB→⊥a ,所以8-n +2t =0. 又因为5|OA →|=|AB →|,所以5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, 所以OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),因为AC→与a 共线,所以t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k . 因为k >4,所以0<4k <1,所以当sin θ=4k 时,t sin θ取得最大值32k , 由32k =4,得k =8,此时θ=π6,OC →=(4,8), 所以OA →·OC →=(8,0)·(4,8)=32.14.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC→+OD →|的最小值;(2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1), 由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC→+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC→+OD →|有最小值,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC→=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4,因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2θ+π4≤5π4,所以当2θ+π4=π2,即θ=π8时,sin ⎝ ⎛⎭⎪⎫2θ+π4取得最大值1. 所以当θ=π8时,m ·n 取得最小值,为1-2.[C 级 创新练]15.在Rt △ABC 中,∠C 是直角,CA =4,CB =3,△ABC 的内切圆与CA ,CB分别切于点D ,E ,点P 是图中阴影区域内的一点(不包含边界).若CP →=xCD →+yCE →,则x +y 的值可以是( )A .1B .2C .4D .8解析:选 B.设△ABC 内切圆的圆心为O ,半径为r ,连接OD ,OE ,则OD ⊥AC ,OE ⊥BC ,所以3-r +4-r =5,解得r =1,故CD =CE =1,连接DE ,则当x +y =1时,P 在线段DE 上,但线段DE 均不在阴影区域内,排除A ;在AC 上取点M ,在CB 上取点N ,使得CM =2CD ,CN =2CE ,连接MN ,所以CP→=x 2CM →+y2CN→,则当点P 在线段MN 上时,x 2+y 2=1,故x +y =2.同理,当x +y =4或x +y =8时,点P 不在△ABC 内部,排除C ,D ,故选B.16.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin a ,b,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是________.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin a ,b,(λa )⊗b =|λa |·|b |sina ,b,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin a ,b=0,故a ⊗b =0恒成立,④a =λb ,且λ>0,则a+b=(1+λ)b,(a+b)⊗c=|1+λ||b|·|c|sin b,c,(a⊗c)+(b⊗c)=|λb|·|c|sin b,c+|b|·|c|sin b,c=|1+λ||b|·|c|sin b,c,故(a+b)⊗c=(a⊗c)+(b⊗c)恒成立.答案:①③④。
高三数学三角函数图象变换试题答案及解析1.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.【答案】.【解析】将函数的图象上的所有点向右平移个单位,得到函数的图象,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,故所得的图象的函数解析式为.【考点】三角函数图象变换.2.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.3. (2014·大同模拟)为了得到函数y=3sin的图象,只要把函数y=3sin的图象上所有的点()A.向右平行移动个单位长度B.向左平行移动个单位长度C.向右平行移动个单位长度D.向左平行移动个单位长度【答案】C【解析】因为y=3sin=3sin,所以要得到函数y=3sin的图象,应把函数y=3sin的图象上所有点向右平行移动π个单位长度.4.将函数的图像向左平移个单位,再向上平移个单位后得到的函数对应的表达式为,则函数的表达式可以是()A.B.C.D.【答案】C【解析】由可化为.依题意等价于将函数向下平移一个单位得到,再向右平移个单位即可得到.【考点】1.三角函数的平移.2.三角函数诱导公式.5.要得到函数的图象,只需将函数的图象上所有的点()A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度【答案】C【解析】将函数的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),得到,然后向左平移个单位得到函数,选C.6.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】C【解析】依题意,把函数左右平移各单位长得函数的图象,即函数的图象,∴,解得,故选C.7.如图是函数y=Asin(x+)(x∈R)在区间[-,]上的图象,为了得到这个函数图象,只要将y=sinx(x∈R)的图象上所有点( )A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】由图像可得: -+=0且+=="2," =∵函数的最大值为1,∴y=sin(2x+)8.设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是()A.B.C.D.3【答案】C【解析】由题意可得最小正周期T=,所以===.故选C9.已知函数向左平移个单位后,得到函数,下列关于的说法正确的是( )A.图象关于点中心对称B.图象关于轴对称C.在区间单调递增D.在单调递减【答案】C【解析】函数向左平移个单位后,得到函数即令,得,不正确;令,得,不正确;由,得即函数的增区间为减区间为故选.【考点】三角函数图象的平移,三角函数的图象和性质.10.已知函数的图象经过点.(1)求实数的值;(2)设,求函数的最小正周期与单调递增区间.【答案】(1);(2)最小正周期为,单调递增区间为.【解析】(1)将点代入函数的解析式即可求出实数的值;(2)根据(1)中的结果,先将函数的解析式进行化简,化简为或,再根据周期公式计算函数的最小正周期,再利用整体法对施加相应的限制条件,解出的取值范围,即可求出函数的单调递增区间.试题解析:(1)由于函数的图象经过点,因此,解得,所以;(2),因此函数的最小正周期,由,解得,故函数的单调递增区间为.【考点】1.二倍角公式;2.三角函数的周期性与单调性11.将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f(x)的图象,则f(-π)等于( )A.B.C.D.-【答案】D【解析】因为将函数的图像上所有的点向右平行移动个单位长度,得到的函数解析式为.再把函数各点的横坐标伸长到原来的2倍(纵坐标不变)得到.所以.【考点】1.三角函数的左右平移.2.三角函数的伸缩变换.12.要得到函数y=cos(2x+1)的图像,只要将函数y=cos 2x的图像()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位【答案】C【解析】把函数y=cos 2x的图像向左平移个单位,得y=cos 2的图像,即y=cos(2x +1)的图像,因此选C.13.函数y=cos(2x+φ)(-π≤φ≤π)的图象向右平移个单位后,与函数y=sin的图象重合,则φ=________.【答案】π【解析】y=cos(2x+φ)的图象向右平移个单位,得函数y=cos(2x+φ-π)的图象.又y=sin=cos=cos,依题意,φ-π=2kπ-,k∈Z.由于-π≤φ≤π,因此φ=π.14.为了得到函数y=sin 的图象,只需把函数y=sin 的图象().A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】注意到把y=sin 的图象向右平移个单位长度得到y=sin [2(x-)+]=sin 的图象,故选B.15.函数f(x)=A sin (ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin 3x的图象,只需将f(x)的图象().A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图象可知A=1,,即T==,所以ω=3,所以f(x)=sin (3x+φ),又f=sin =sin =-1,所以+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,又|φ|<所以φ=,即f(x)=sin,又g(x)=sin 3x=sin=sin ,所以只需将f(x)的图象向右平移个单位长度,即可得到g(x)=sin 3x的图象.16.把函数的图象按向量=(-,0)平移,所得曲线的一部分如图所示,则,的值分别是()A.1,B.2,-C.2,D.1,-【答案】B【解析】把函数的图象按向量=(-,0)平移,得.由图得函数的周期.又.选B.【考点】三角函数图象的变换.17.下列函数中,图像的一部分如右图所示的是()A.B.C.D.【答案】C.【解析】由函数图像知函数的周期为,则,排除A、D,当时,函数值为1,则C正确.【考点】三角函数的图像及其性质.18.函数的部分图像如图,其中,且,则f(x)在下列哪个区间中是单调的()A.B.C.D.【答案】B【解析】当图像过原点时,即时,,在上为减函数,上为增函数当图像的最高点在轴上时,,在上是减函数,上为增函数,所以在上是单调的.【考点】1.三角函数的单调区间;2.三角函数图像.19.为了得到函数的图像,只需将函数的图像()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】D【解析】由于,所以,为了得到函数的图像,只需将函数的图像,向左平移个单位,选D.【考点】三角函数图像的平移20.已知向量,设函数的图象关于直线对称,其中常数(Ⅰ)求的最小正周期;(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由向量的数量积的坐标表示将表示出来,并利用正弦和余弦的二倍角公式将其表示为的形式,再由对称轴为,所以在处函数值取到最大值或最小值,从而得,代入并结合求的值,再利用和的关系,求;(Ⅱ)用代换得,先由,确定,从中取特殊点,,,,,再计算相应的自变量和函数值,列表,描点连线,即得在给定区间的图象.试题解析:(Ⅰ),;(Ⅱ)0-2020【考点】1、向量数量积的坐标表示;2、正弦和余弦的二倍角公式;3、五点作图法.21.已知函数(其中)的部分图象如图所示,为了得到的图象,则只需将的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】A【解析】由图可知,则,,所以,而,所以,因而,要想得到,只需将向右平移个单位,故选择A.【考点】1.根据函数图像确定函数解析式;2.三角函数图像的平移.22.若函数的图象上每一点的纵坐标保持不变,横坐标缩小到原来的,再将整个图象向右平移个单位,沿轴向下平移个单位,得到函数的图象,则函数是()A.B.C.D.【答案】A【解析】将的图象向上平移1个单位得,再将整个图象向左平移个单位,得,然后将横坐标扩大到原来的2倍得,,选A.【考点】三角函数图象平移变换.23.将函数图象上所有点的横坐标伸长到原来的2倍,再向右平移个单位长度,得到函数的图象,则图象的解析式是()A.B.C.D.【答案】C【解析】将函数图象上所有点的横坐标伸长到原来的2倍得到函数的图像,将函数图象上所有点再向右平移个单位长度得到函数的图像.【考点】三角函数的周期变换和平移变换.24.将函数的图像上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是 ( )A.B.C.D.【答案】A【解析】将函数的图像上各点的横坐标伸长到原来的3倍,得函数的图象;再向右平移个单位,得到的函数为.由得:.结合选项知,它的一个对称中心是,选 A.【考点】1、三角函数图象的变换;2、三角函数的对称中心.25.将函数的图像平移后所得的图像对应的函数为,则进行的平移是()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】B【解析】,因此需将函数的图像向左平移个单位.【考点】三角函数的图像变换.26.将函数图像上所有的点向左平行移动个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图像的解析式为()A.B.C.D.【答案】B【解析】将函数的图像向左平移个单位长度,得到,横坐标扩大为原来的2倍,得,故选B.【考点】三角函数图像的平移.27.已知的图象与的图象的两相邻交点间的距离为,要得到的图象,只须把的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】C【解析】,,由于函数的图象与的图象的两相邻交点的距离为,即函数的最小正周期为,,,故得到函数的图象,只需将函数的图象向左平移个单位.【考点】辅助角变换、三角函数周期、三角函数图象变换28.将函数的图像向左平移个单位,得到的图像,则的解析式为 () A.B.C.D.【答案】A【解析】将图像向左平移个单位,得到.【考点】三角函数图像的平移.29.设把的图象按向量 (>0)平移后,恰好得到函数=()的图象,则的值可以为()A.B.C.πD.【答案】D【解析】利用三角函数图象变换规律,以及利用函数求导得出 y=- sin(x-φ-)与f′(x)=-sinx-cosx=-sin(x+)为同一函数.再利用诱导公式求解.解:f(x)=cosx-sinx=-sin(x-),f′(x)=-sinx-cosx=-sin(x+),把y=f(x)的图象按向量(φ>0)平移,即是把f(x)=cosx-sinx的图象向右平移φ 个单位,得到图象的解析式为y=-sin(x-φ-),由已知,与f′(x)=-sinx-cosx=-sin(x+)为同一函数,所以-φ-=2kπ+,取k=-1,可得φ=故选D.【考点】三角函数图象变换点评:本题考查了三角函数图象变换,函数求导,三角函数的图象及性质.30.函数(其中A>0,)的图象如图所示,为了得到的图象,则只需将g(x)=sin2x的图象A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位【答案】B【解析】由已知中函数f(x)=Asin(ωx+φ)的图象,我们易分析出函数的周期、最值,进而求出函数f(x)=Asin(ωx+φ)的解析式,设出平移量a后,根据平移法则,我们可以构造一个关于平移量a的方程,解方程即可得到结论。
一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合,时,必需注意到“极端”环境:或;求集合的子集时能否注意到是任何集合的子集、是任何非空集合的真子集.3.对待含有个元素的无限集合,其子集、真子集、非空子集、非空真子集的个数依次为4.“交的补等于补的并,即”;“并的补等于补的交,即”.5.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命题”的真假特性是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“‘逆’者‘交流’也”、“‘否’者‘否认’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假定、推矛、得果.注意:听说三角函数。
命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”?.8.充要条件二、函数1.指数式、对数式,,,2.(1)映照是“‘具体射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可以或许没有,事实上知识点。
也可大肆个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至少一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.枯燥性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,听听反三角函数表。
则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相同.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有:.(2)若奇函数定义域中有0,则必有.即的定义域时,是为奇函数的必要非充满条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、判断)、导数法;在挑选、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)既奇又偶函数有无量多个(,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“异性得增,想知道三角函数。
三角函数向量平移三角函数和向量平移是数学中非常重要的概念,它们在几何、物理、工程等领域中都有广泛的应用。
本文将介绍三角函数和向量平移的基本概念及其应用。
我们来了解一下三角函数。
三角函数是指正弦函数、余弦函数、正切函数等函数,它们是以角度为自变量的函数。
在三角函数中,最常用的是正弦函数和余弦函数。
正弦函数表示一个角的对边与斜边的比值,而余弦函数表示一个角的邻边与斜边的比值。
这些函数在几何中有广泛的应用,例如计算三角形的面积、角度等。
接下来,我们来了解一下向量平移。
向量平移是指将一个向量沿着指定的方向和距离移动。
在向量平移中,我们需要知道向量的起点和终点,以及向量的方向和长度。
向量平移在物理、工程等领域中有广泛的应用,例如计算物体的位移、速度等。
三角函数和向量平移之间有着密切的联系。
在向量平移中,我们需要用到三角函数来计算向量的方向和长度。
例如,如果我们要将一个向量沿着x轴方向平移,那么我们需要计算出向量的x分量和y 分量,然后再将x分量加上平移的距离。
在这个过程中,我们需要用到正弦函数和余弦函数来计算向量的方向和长度。
除了向量平移,三角函数还有其他的应用。
例如,在计算机图形学中,我们可以用三角函数来绘制各种图形,例如圆、椭圆等。
在物理中,三角函数可以用来描述波动、振动等现象。
在工程中,三角函数可以用来计算机械的运动、力学等问题。
三角函数和向量平移是数学中非常重要的概念,它们在几何、物理、工程等领域中都有广泛的应用。
通过学习三角函数和向量平移,我们可以更好地理解和应用数学知识,为我们的工作和生活带来更多的便利和效益。
------精品文档!值得拥有!------第三章 三角函数、三角恒等变换及解三角形第9课时 三角函数的综合应用(对应学生用书(文)、(理)57~59页)ac =、题改编1. (必修5P 例题4)设△ABC 的三个内角AB 、C 所对的边分别是a 、b ,、c ,且9sinCcosA =________.则A π 答案: 4πacaaca. ==,即sinAcosA ,所以A ,得=解析:由,==4cosAsinAcosAsinCsinCsinAy2. (必修个单位后,得到函数)φ<2sinx 将函数题改编)y =的图象向左平移φ(0≤π第习题4P1.3845π?? .φ=________的图象,则=sin -x ??611 答案:π 611=.只有+=个单位得到函数π≤向左平移=将函数解析:ysinx φ(0φ<2)ysin(x φ)φπ时有=y6??11π????πx +sin. sin =-x ??6 ??6------值得收藏!!珍贵文档------ ------------精品文档!值得拥有!π1 -=________.3. (必修4P 习题3.3第6(2)题改编)tan 10912πtan 12 -32答案:??ππππ??-22sincos-sincos??12121212解析:原式=-=ππππcossinsincos12121212πcos-63. ==-2π1sin62π1??2上在区间cosx+(x∈R),则4. (必修4P复习题第13题改编)已知函数f(x)f(x)=3sinxcosx-,0??11524 的值域是________.31??答案:,-??22π??????π13πππ31????????.∈,故值域为-时,解析:f(x)=sin2x-cos2x=sin2x.当x∈,-,2x--0,??62222 ??????4366 .BC上的高为°,则边2,B=60________5. 在△ABC中,AC=7,BC =33答案:23322BC上的高h=,所以边3sin60°=.3-2c-=0,解得c=得解析:由余弦定理,7=c2c+4-,即c32sinα22α=1,tanα=1. 同角三角函数的基本关系式:sin.α+cos cosααsinβ,cos(α±β)cos=cosαcos βsinα2. 两角和与差的正弦余弦和正切公式:sin(α±β)=sincosβ±βtantanα±.=,tan(α±β)αsinββtantanα12222=αα,1-1=-2sintan2αcosα3. 二倍角公式:sin2=2sinαα,cos2=cosα-sinα=2cosαα2tan.2α-tan1 4. 三角函数的图象和性质5. 正弦定理和余弦定理:cba .为三角形外接圆的半径==2R(R)=正弦定理:(1) sinCsinAsinB------值得收藏!!珍贵文档------------值得拥有!------精品文档!222=+ccosA-余弦定理:(2) a2bccosA=b,222a-+cb .2bc题型1三角恒等变换πππ27????.,例1已知sinA∈=,A+????10244 (1) 求cosA的值;5 =cos2x+sinAsinx的值域.(2) 求函数f(x)2πππππ3????272ππ????cos,且sin=-.=,所以<A+<,解:(1) 因为<A<+AA+102441042????44??π??π??所以cosA=cos??-+A4????4ππ????ππ????sin=cos+sincos+A+A44????44322227=.·+·=-10210254(2) 由(1)可得sinA=.55所以f(x)=cos2x+sinAsinx221313??2-sinx2+2sinx2sinx=-sinx=时,f(x)取最大值;=1-,sinx+,x∈R.因为∈[-1,1]所以,当??2222当sinx=-1时,f(x)取最小值-3.3??,3-的值域为所以函数f(x). ??2备选变式(教师专享)12(2013·上海卷)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)=________.232答案:31解析:由题意得cos(x-y)=,sin2x+sin2y=sin[(x+y)+(x-y)]+sin[(x+y)-(x-y)]=2sin(x+y)cos(x222sin(x+y)y)-==. 33题型2三角函数的图象与性质------值得收藏!!珍贵文档------------!值得拥有!------精品文档ππ??分Qf(x)的部分图象如图所示,P、A>0,0<φ<f(x)例2已知函数=Asin,y=,,x∈Rφx+??23 .的坐标为(1,A)别为该图象的最高点和最低点,点P 的值;求f(x)的最小正周期及φ(1)π2 的值.=,求AR的坐标为(1,0),∠PRQ(2) 若点3π26.T==解:(1) 由题意得π3??π??的图象上,,A)在y=Asin因为P(1φx+??3??π??sin所以=1.φ+??3ππ=.因为0<φ<,所以φ62A).Q的坐标为(x,-(2) 设点0π3ππ,,得x=4由题意可知x+=00263.Q(4,-A)所以π2PRQ=,由余弦定理得连结PQ,在△PRQ中,∠3222222)+-(RQ9-PQ4AA+9+ARP +=∠PRQ==cos RQ2RP·2+A2A·912=3.又A>0A,所以A=3. ,解得-2备选变式(教师专享)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.(1) 求函数f(x)的表达式;------值得收藏!!珍贵文档------------!值得拥有!------精品文档π??12sin+-2α??42 的值.f(α)=,求(2) 若sinα+3αtan1+∵φ=0,又,即2sinωxcosφ=0恒成立,∴cosφ)解:(1) ∵f(x)为偶函数,∴sin(-ωx+φ)=sin(ωx+ππ,T=20≤φ≤π,∴φ=. 又其图象上相邻对称轴之间的距离为π,∴2f(x)=cosx. ∴ω=1,∴1α-cos2α+sin242ααcos+2sinαcosα=,即2sinα+(2) ∵原式==2sinαcosα,又∵sincosα=,∴193αtan1+55.,故原式=-=-99 正弦定理、余弦定理的综合应用题型33b. =a、b、c,且2asinB中,内角例3(2013·浙江)在锐角△ABCA、B、C的对边分别为的大小;(1) 求角A 的面积.b+c=8,求△ABC(2) 若a=6,π3ba=.=.因为A是锐角,所以解:(1) 由2asinB=3b及正弦定理=,得sinAA3sinB2sinA2822222.,所以bc==-bc=36.又ba(2) 由余弦定理+=bc+c-2bccosA,得b8+c3371.ABC由三角形面积公式S=bcsinA,得△的面积为32备选变式(教师专享)π3.=,△5ABC的面积为10,C中,角A,B,的对边分别为a,b,cC=,a在△ABC 3 (1) 求b,c的值;π??求cos的值.(2) -B??3π1,S=,a=5,因为=absinC由已知,解:(1) C△ABC23π1,解得b8.=·10即3=b5sin32π27.c49, 80cos64+=由余弦定理可得:c25-=所以=3------值得收藏!!珍贵文档------------------精品文档!值得拥有!6425+49-3142,所以B=是三角形的内角,易知sinB1=-cos(2) 由(1)有cosB==,由于B 7707ππ??13343π11??.==cosBcos+cossinBsin=×+×-B14337227??3 题型4三角函数、平面向量、解三角形的综合应用1??,sinA=A是△ABC的内角.例4已知向量与nm=(3,sinA+3cosA)共线,其中??2 的大小;(1) 求角A 的形状.,求△ABC面积S的最大值,并判断S 取得最大值时△ABC(2) 若BC=2∥nm,解:(1) 因为30.所以sinA·(sinA+3cosA)-=2cos2A-133,+所以sin2A-=022213即1,sin2A-cos2A=22??π??即sin1.=-2A??6π??ππ11??.2A-∈因为A∈(0,π),所以,-6??66πππ=,A=.故2A-36222bc.c(2) 由余弦定理,得4=b-+31,=bc又S=bcsinA△ABC4222),4(当且仅当b=c+c时等号成立≥42bcbc+≥2bcbc≤而b313=3.bc≤×4bcsinA所以S==△ABC442当△ABC的面积取最大值时,b=c.π又A=,故此时△ABC为等边三角形.3备选变式(教师专享)已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,------值得收藏!!珍贵文档------------值得拥有!------精品文档!a-2).∥n,求证:△ABC为等腰三角形;(1) 若mπ⊥,边长c=2,角C=,求△ABC(2) 若m的面积.p3ba∥ABC △a=b.∴∴n,∴asin A=bsin B,即a·=b·,其中R是△ABC 外接圆半径,证明:(1) ∵m2R2R为等腰三角形.22=+babab(a-2)=0.∴+b=ab.由余弦定理可知,4=a-+m·(2) 解:由题意可知p=0,即a(b-2)22,=-1)3ab,即(ab)ab-3ab-4=0,∴=4(舍去(a+b)ab-π113.sin =∴S=absin C=×4×322在已知值求角中,应合理选择三角函数形式进行求解,避免增根.分)【示例】(本题模拟高考评分标准,满分14105 +β,sinβ的值.=,且α、β若sinα均为锐角,求=α105 学生错解:522.α为锐角,∴cosα=1-sin=解:∵α51032. cos β=1-sin=又ββ为锐角,∴102=αsin βsinαcosβ+cos=,∵sin(α+β)2 β<90°,<90°,0°<α由于0°< 180°,°<α+β<∴0.°=45°或135β故α+在已知值求角中,角的范围常常被忽略或不能发现隐含的角的大小关系而出现增根不能审题引导:排除.要避免上述情况的发生,应合理选择三角函数形式进行求解,根据计算结果,估算出角的较精确的取值范围,并不断缩小角的范围,在选择三角函数公式时,一般已知正切函数值,选正切函数,已知正余??ππ??,则一般选正弦函数.弦函数值时,若角在(0,π)时,一般选余弦函数,若是,-??22252.(2=分) -=cosα∵解:规范解答:为锐角,∴α1sinα5------值得收藏!!珍贵文档------------值得拥有!------精品文档!1032) β=又β为锐角,∴cosβ.(4=1-sin分102=sinββ-sinα,(10分) 且cos(α+β)=cosαcos2ππ,所以0<α+β<π,由于0<α<,0<β<22π][π0,)α因为y=cosx在+.(14分β=上是单调递减函数,故4没有注意挖掘题目中的隐含条件,忽视了对角的范围的限制,造成出错.错因分析:152,α135°是正确的,但题设中sin=β<<α+180°而得到α+事实上,仅由sin(α+β)=β=45°或,0°<225110°,故上述结论是错误的.在已知值求角中,应60°<α+β<0<α<30°,°<β<30°从而0,使得0°<=sinβ210][在cosx,因为y=合理选择三角函数形式进行求解,避免增根.本题中0<α+β<ππ,0上是单调函数,不易出错.+β)cos所以本题先求(α)1π(x-πx .coscos的最小正周期为________1. (2013·常州期末)函数f(x)=22答案:2πxπx2πxπ(x-1)π12.T===cos·sinsinπx,最小正周期为解析:f(x)=coscos=22222π1ππ??????1-,的值域是f(x),若,其中sin,则a的2. (2013·北京期末)已知函数f(x)=x∈a-x+,??????236 ________.取值范围是??π??答案:,π??3π7πππππππ??1π??,所以==-或x+=时,sin+≤解析:若-≤x≤a,则-x+≤a+,因为当x+x266366666??6ππ7ππ??1π????1,-的值域是aa≤π,即的取值范围是要使f(x). ≤a,则有≤+≤,即,π??23662??3 .________3cosC=,则△ABC的面积为sinC1,=中,)3. (2013·北京期末已知△ABCAB3BC =,3答案:2------值得收藏!!珍贵文档------------------值得拥有!精品文档!πABBC,.根据正弦定理可得解析:由sinC3cosC=,得tanC==3>0,所以C=sinCsinA3ππ113,所以三角形为直角B=因为即==2,所以sinA=.AB>BC,所以A<C,所以A=,即22sinA63231.×1三角形,所以S==×3△ABC22 ________.f(x)4. (2013·新课标Ⅰ卷)设当x=θ时,函数=sinx-2cosx取得最大值,则cosθ=52答案:-5552??5.=sinx-2cosx解析:∵=f(x)cosxsinx-??55552=sinφ=-,则f(x)令cosφ=,55φ),cosx)=5sin(x+5(sinxcosφ+sin φπππ+2k-φ,x当+φ=2kπ+,k∈Z,即x=22π∈Z,π+k∈Z时,f(x)取最大值,此时θ=2k-φ,k2??5π2??.∴cosθ=cos=sinφ=-φ2kπ+-5??2n cosB)、b、c.向量m=(1,,B(2014·1. 扬州期末)在锐角△ABC中,角A、、C所对的边长分别为a⊥.=(sinB,-3),且mn的大小;(1) 求角B ,求此三角形周长.ABC面积为103,b=7(2) 若△n m·=,0 解:(1) m·n=sinB-3cosB,∵m⊥n,∴cosB≠,0ABCsinB∴-3cosB=0.∵△为锐角三角形,∴ππB=.=∴tanB3.∵0<B<,∴3231322222ca,得49=+2accosBa由=,得10ac==acsinB∵(2) Sac,由题设=3ac40.7=+c-△ABC244------值得收藏!!珍贵文档------------------精品文档!值得拥有!22213=,169.∴a-ac,∴(a+c)+=(ac+cac)-+3ac=49+120=20.三角形周长是∴2sinC. =,2+2且sinA+、2. 在△ABC中,a、bc分别是角A、B、C的对边,△ABCsinB的周长为c的长;(1) 求边1 C的度数.(2) 若△ABC的面积为sinC,求角3c=2ca+b+c∵解:(1) 在△ABC中,sinA+sinB+=2sinC,由正弦定理,得a+b =2c ,∴2. =2=1)c(2++=,c2. a+b=2∴11△ABC中,S,absinC=sinC=(2) 在△ABC32211.ab=∴ab=,即332222222ab+b)a-+b-c-(a1ABC△,又在cosC===又a+b=2,在△ABC中,由余弦定理,得22ab2ab,∈(0,π)中∠C.C=60°∴∠1. =+C)、A、BC对应的边分别是a、b、c.已知cos2A-3cos(B湖北卷3. (2013·)在△ABC中,角A的大小;(1) 求角sinBsinC的值.(2) 若△ABC的面积S==53,b5,求12∠,解得cosA=,∴A=60°.,∴解:(1) 由已知条件得:cos2A+3cosA=1 2cos2A+3cosA-=0225bc1a22.sinBsinC,∴=53==(2R)c=4,由余弦定理,得a=21,==28bcsinA(2) S=2274Rsin2AA. ∠B=2ABC北京卷)在△中,a=3,b=26,∠4. (2013·求cosA的值;(1) 求c的值.(2)2sinAcosA263所以A.所以在△ABC中,由正弦定理得=.2ba解:(1) 因为=3,=62,∠B=∠sinAsinAsin2A626.故. =cosA=33362.A=-1=(1)(2) 由知cosAsinA,所以=cos33------值得收藏!!珍贵文档------------值得拥有!------精品文档!22122cos所以.sinB==B. 1=∠又因为B=2∠A,所以cosB2cos-A-1=3335=. cosAsinBsinAcosB+中,sinC=sin(A+B)=在△ABC9a sin C=5. 所以c=sin A1. 三角变换的基本策略是化异为同,即将函数名称、角、次数等化异为同.2. 对于函数y=Asin(ωx+φ)+B,常用“五点法”画图象,运用整体思想研究性质.3. 求三角函数的单调区间、周期,及判断函数的奇偶性,要注意化归思想的运用,通过恒等变换转化为基本三角函数类型,注意变形前后的等价性.4. 解三角函数的综合题时应注意:(1) 与已知基本函数对应求解,即将ωx+φ视为一个整体X;(2) 将已知三角函数化为同一个角的一种三角函数,如y=Asin(ωx+φ)+B或y=asin2x+bsinx +c;(3) 换元方法在解题中的运用.请使用课时训练(B)第9课时(见活页).[备课札记]------值得收藏!!珍贵文档------。
2010年高考数学冲刺复习——归纳归纳总结高考题型解题策略(共分五大专题)专题一:三角与向量的交汇题型分析及解题策略【命题趋向】三角函数与平面的向量的综合主要体现为交汇型,在高考中,主要出现在解答题的第一个试卷位置上,其难度中等偏下,分值一般为12分,交汇性主要体现在:三角函数恒等变换公式、性质与图象与平面的向量的数量积及平面向量的平行、垂直、夹角及模之间都有着不同程度的交汇,在高考中是一个热点.如08年安徽理科第5题(5分),考查三角函数的对称性与向量平移、08年山东文第8题理第15题(5分)考查两角和与差与向量垂直、08福建文理第17题(12分)考查三角函数的求值与向量积、07的天津文理第15题(4分)考查正余弦定理与向量数量积等.根据2009年考纲预计在09年高考中解答题仍会涉及三角函数的基本恒等变换公式、诱导公式的运用、三角函数的图像和性质、向量的数量积、共线(平行)与垂直的充要条件条件.主要考查题型:(1)考查纯三角函数函数知识,即一般先通过三角恒等变换公式化简三角函数式,再求三角函数的值或研究三角函数的图象及性质;(2)考查三角函数与向量的交汇,一般是先利用向量知识建立三角函数关系式,再利用三角函数知识求解;(3)考查三角函数知识与解三角形的交汇,也就是将三角变换公式与正余弦定理交织在一起.【考试要求】1.理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.2.掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.4.理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A,ω,φ的物理意义.5.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.掌握向量的加法和减法.掌握实数与向量的积,理解两个向量共线的充要条件.7.了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.8.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.9.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.【考点透视】向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换.而三角函数是以“角”为自变量的函数,函数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切的联系.同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.主要考点如下:1.考查三角式化简、求值、证明及求角问题.2.考查三角函数的性质与图像,特别是y=Asin(ωx+ϕ)的性质和图像及其图像变换.3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.6.考查利用正弦定理、余弦定理解三角形问题.【典例分析】题型一三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的值依次为( ) A .π12,-3B .π3,3C .π3,-3D .-π12,3【分析】 根据向量的坐标确定平行公式为⎩⎪⎨⎪⎧x =x '+π6y =y '+3,再代入已知解读式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解读式,经对照即可作出选择.【解读1】 由平移向量知向量平移公式⎩⎪⎨⎪⎧x '=x -π6y '=y -3,即⎩⎪⎨⎪⎧ x =x '+π6y =y '+3,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C. 【解读2】由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试卷综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin2B +cos C -3B2的最大值.【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin2A =34,又A 为锐角,所以sinA =32,则A =π3. (Ⅱ)y =2sin2B +cos C -3B2=2sin2B +cos (π-π3-B)-3B2=2sin2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B=32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,ymax =2.【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值; (Ⅱ)求cos(α2+π3)的值.【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果.【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα), 故→a ·→b =6sin2α+5sinαcosα-4cos2α=0.由于cosα≠0,∴6tan2α+5tanα-4=0.解之,得tanα=-43,或tanα=12.∵α∈(3π2,2π),tanα<0,故tanα=12(舍去).∴tanα=-43.(Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255,∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试卷中同时出现“切函数与弦函数”关系问题常用方法.题型四 三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】(Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=-35.(Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π,由cos(α-β)=-35,得sin(α-β)=45,又sin β=-513,∴cos β=1213,∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365.点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx , 由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1.(Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1,当sin(x +π4)=-1时,f(x)的最小值为1- 2.点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试卷,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A 2,sin A2),→n=(cos A 2,sin A 2),a =23,且→m·→n =12.(Ⅰ)若△ABC 的面积S =3,求b +c 的值. (Ⅱ)求b +c 的取值范围.【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12,∴-cos2A 2+sin2A 2=12,即-cosA =12,又A ∈(0,π),∴A =2π3.又由S △ABC =12bcsinA =3,所以bc =4,由余弦定理得:a2=b2+c2-2bc·cos 2π3=b2+c2+bc ,∴16=(b +c)2,故b +c =4.(Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3,∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4].[点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.【专题训练】 一、选择题1.已知→a =(cos40︒,sin40︒),→b =(cos20︒,sin20︒),则→a ·→b =( )A .1B .32C .12D .222.将函数y =2sin2x -π2的图象按向量(π2,π2)平移后得到图象对应的解读式是( )A .2cos2xB .-2cos2xC .2sin2xD .-2sin2x3.已知△ABC 中,AB →=a →,AC →=b →,若a →·b →<0,则△ABC 是 ( )A .钝角三角形B .直角三角形C .锐角三角形D .任意三角形 4.设→a =(32,sin α),→b =(cos α,13),且→a ∥→b ,则锐角α为( )A .30︒B .45︒C .60︒D .75︒5.已知→a =(sinθ,1+cosθ),→b =(1,1-cosθ),其中θ∈(π,3π2),则一定有( )A .→a ∥→bB .→a ⊥→bC .→a 与→b 夹角为45°D .|→a |=|→b |6.已知向量a →=(6,-4),b →=(0,2),c →=a →+λb →,若C 点在函数y =sinπ12x 的图象上,实数λ= ( ) A .52B .32C .-52D .-327.由向量把函数y =sin(x +5π6)的图象按向量→a =(m ,0)(m >0)平移所得的图象关于y 轴对称,则m 的最小值为( )A .π6B .π3C .2π3D .5π68.设0≤θ≤2π时,已知两个向量OP1→=(cosθ,sinθ),OP2→=(2+sinθ,2-cosθ),则向量P1P2→长度的最大值是 ( )A . 2B . 3C .3 2D .2 39.若向量→a =(cos α,sin α),→b =(cos β,sin β),则→a 与→b 一定满足( )A .→a 与→b 的夹角等于α-βB .→a ⊥→bC .→a ∥→bD .(→a +→b )⊥(→a -→b )10.已知向量→a =(cos25︒,sin25︒),→b =(sin20︒,cos20︒),若t 是实数,且→u =→a +t →b ,则|→u |的最小值为 ( ) A . 2B .1C .22D .1211.O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:→OP =→OA +λ(→AB +→AC),λ∈(0,+∞),则直线AP 一定通过△ABC 的 ( )A .外心B .内心C .重心D .垂心12.对于非零向量→a 我们可以用它与直角坐标轴的夹角α,β(0≤α≤π,0≤β≤π)来表示它的方向,称α,β为非零向量→a 的方向角,称cos α,cos β为向量→a 的方向余弦,则cos2α+cos2β=( ) A .1 B .32C .12D .0二、填空题13.已知向量→m =(sin θ,2cos θ),→n =(3,-12).若→m ∥→n ,则sin2θ的值为____________.14.已知在△OAB(O 为原点)中,→OA =(2cos α,2sin α),→OB =(5cos β,5sin β),若→OA·→OB =-5,则S △AOB的值为_____________.15.将函数f(x)=tan(2x +π3)+1按向量a 平移得到奇函数g(x),要使|a|最小,则a =____________.16.已知向量→m =(1,1)向量→n 与向量→m 夹角为3π4,且→m ·→n =-1.则向量→n =__________.三、解答题17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若→AB·→AC =→BA·→BC =k(k ∈R).(Ⅰ)判断△ABC 的形状;(Ⅱ)若c =2,求k 的值.18.已知向量→m =(sinA,cosA),→n =(3,-1),→m·→n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数f(x)=cos2x +4cosAsinx(x ∈R)的值域.19.在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量→m =(1,2sinA),→n =(sinA ,1+cosA),满足→m ∥→n ,b +c =3a.(Ⅰ)求A 的大小;(Ⅱ)求sin(B +6)的值.20.已知A 、B 、C 的坐标分别为A (4,0),B (0,4),C (3cosα,3sinα).(Ⅰ)若α∈(-π,0),且|→AC|=|→BC|,求角α的大小;(Ⅱ)若→AC ⊥→BC ,求2sin2α+sin2α1+ta nα的值.21.△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,→m =(2b -c ,a),→n =(cosA ,-cosC),且→m ⊥→n .(Ⅰ)求角A 的大小;(Ⅱ)当y =2sin2B +sin(2B +6)取最大值时,求角B 的大小.22.已知→a =(cosx +sinx ,sinx),→b =(cosx -sinx ,2cosx),(Ⅰ)求证:向量→a 与向量→b 不可能平行;(Ⅱ)若f(x)=→a ·→b ,且x ∈[-π4,π4]时,求函数f(x)的最大值及最小值.【专题训练】参考答案一、选择题1.B 解读:由数量积的坐标表示知→a ·→b =cos40︒sin20︒+sin40︒cos20︒=sin60︒=32. 2.D 【解读】y =2sin2x -π2→y =2sin2(x +π2)-π2+π2,即y =-2sin2x. 3.A 【解读】因为cos ∠BAC =AB →·AC →|AB →|·|AC →|=a →·b →|a →|·|b →|<0,∴∠BAC 为钝角. 4.B 【解读】由平行的充要条件得32×13-sin αcos α=0,sin2α=1,2α=90︒,α=45︒. 5.B 【解读】→a ·→b =sinθ+|sinθ|,∵θ∈(π,3π2),∴|sinθ|=-sin θ,∴→a ·→b =0,∴→a ⊥→b . 6.A 【解读】c →=a →+λb →=(6,-4+2λ),代入y =sinπ12x 得,-4+2λ=sin π2=1,解得λ =52. 7.B 【解读】考虑把函数y =sin(x +5π6)的图象变换为y =cosx 的图象,而y =sin(x +5π6)=cos(x +π3),即把y =cos(x +π3)的图象变换为y =cosx 的图象,只须向右平行π3个单位,所以m =π3,故选B. 8.C 【解读】|P1P2→|=(2+sinθ-cosθ)2+(2-cosθ-sinθ)2=10-8cosθ≤3 2.9.D 【解读】→a +→b =(cos α+cos β,sin α+sin β),→a -→b =(cos α+cos β,sin α-sin β),∴(→a +→b )·(→a -→b )=cos2α-cos2β+sin2α-sin2β=0,∴(→a +→b )⊥(→a -→b ).10.C 【解读】|→u |2=|→a |2+t2|→b |2+2t →a ·→b =1+t2+2t(sin20︒cos25︒+cos20︒sin25︒)=t2+2t +1=(t +22)2+12,|→u |2 min =12,∴|→u |min =22.11.C 【解读】设BC 的中点为D ,则→AB +→AC =2→AD ,又由→OP =→OA +λ(→AB +→AC),→AP =2λ→AD ,所以→AP 与→AD 共线,即有直线AP 与直线AD 重合,即直线AP 一定通过△ABC 的重心.12.A 【解读】设→a =(x,y),x 轴、y 轴、z 轴方向的单位向量分别为→i =(1,0),→j =(0,1),由向量知识得cos α=→i ·→a |→i |·|→a |=x x2+y2,cos β=→j ·→a |→j |·|→a |=y x2+y2,则cos2α+cos2β=1. 二、填空题 13.-8349【解读】由→m ∥→n ,得-12sin θ=23cos θ,∴tan θ=-43,∴sin2θ=2sin θcos θsin2θ+cos2θ=2tan θtan2θ+1=-8349. 14.532 【解读】→OA·→OB =-5⇒10cos αco βs +10sin αsin β=-5⇒10cos(α-β)=-5⇒cos(α-β)=-12,∴sin ∠AOB =32,又|→OA|=2,|→OB|=5,∴S △AOB =12×2×5×32=532. 15.(π6,-1) 【解读】要经过平移得到奇函数g(x),应将函数f(x)=tan(2x +π3)+1的图象向下平移1个单位,再向右平移-kπ2+π6(k ∈Z)个单位.即应按照向量→a =(-kπ2+π6,-1) (k ∈Z)进行平移.要使|a|最小,16.(-1,0)或(0,-1) 【解读】设→n =(x ,y),由→m·→n =-1,有x +y =-1 ①,由→m 与→n 夹角为3π4,有→m·→n =|→m|·|→n |cos 3π4,∴|→n |=1,则x2+y2=1 ②,由①②解得⎩⎨⎧ x=﹣1y=0或⎩⎨⎧ x =0y =-1∴即→n =(-1,0)或→n =(0,-1) .三、解答题17.【解】(Ⅰ)∵→AB·→AC =bccosA ,→BA·→BC =cacosB ,又→AB·→AC =→BA·→BC ,∴bccosA =cacosB ,∴由正弦定理,得sinBcosA =sinAcosB ,即sinAcosB -sinBcosA =0,∴sin(A -B)=0∵-π<A -B <π,∴A -B =0,即A =B ,∴△ABC 为等腰三角形.(Ⅱ)由(Ⅰ)知b a =,∴→AB·→AC =bccosA =bc·b2+c2-a22bc =c22, ∵c =2,∴k =1.18.【解】(Ⅰ)由题意得→m·→n =3sinA -cosA =1,2sin(A -π6)=1,sin(A -π6)=12, 由A 为锐角得A -π6=π6,A =π3.(Ⅱ)由(Ⅰ)知cosA =12,所以f(x)=cos2x +2sinx =1-2sin2x +2sinx =-2(sinx -12)2+32, 因为x ∈R ,所以sinx ∈[-1,1],因此,当sinx =12时,f(x)有最大值32. 当sinx =-1时,f(x)有最小值-3,所以所求函数f(x)的值域是[-3,32]. 19.【解】(Ⅰ)由→m ∥→n ,得2sin2A -1-cosA =0,即2cos2A +cosA -1=0,∴cosA =12或cosA =-1. ∵A 是△ABC 内角,cosA =-1舍去,∴A =π3. (Ⅱ)∵b +c =3a ,由正弦定理,sinB +sinC =3sinA =32, ∵B +C =2π3,sinB +sin(2π3-B)=32, ∴32cosB +32sinB =32,即sin(B +π6)=32. 20.【解】(Ⅰ)由已知得:(3cosα-4)2+9sin2α=9cos2α+(3sinα-4) 2,则sinα=cosα,因为α∈(-π,0),∴α=-3π4. (Ⅱ)由(3cosα-4)·3cosα+3sinα·(3sinα-4)=0,得sinα+cosα=34,平方,得sin2α=-716. 而2sin2α+sin2α1+tanα=2sin2αcosα+2sinαcos2αsinα+cosα=2sinαcosα=sin2α=-716. 21.【解】(Ⅰ)由→m ⊥→n ,得→m ·→n =0,从而(2b -c)cosA -acosC =0,由正弦定理得2sinBcosA -sinCcosA -sinAcosC =0∴2sinBcosA -sin(A +C)=0,2sinBcosA -sinB =0,∵A 、B ∈(0,π),∴sinB≠0,cosA =12,故A =π3. (Ⅱ)y =2sin2B +2sin(2B +π6)=(1-cos2B)+sin2Bcos π6+cos2Bsin π6=1+32sin2B -12 cos2B =1+sin(2B -π6). 由(Ⅰ)得,0<B <2π3,-π6<2B -π6<7π6, ∴当2B -π6=π2,即B =π3时,y 取最大值2. 22.【解】(Ⅰ)假设→a ∥→b ,则2cosx(cosx +sinx)-sinx(cosx -sinx)=0,∴2cos2x +sinxcosx +sin2x =0,2·1+cos2x 2+12sin2x +1-cos2x 2=0, 即sin2x +cos2x =-3,∴2(sin2x +π4)=-3,与|2(sin2x +π4)|≤2矛盾,故向量→a 与向量→b 不可能平行.(Ⅱ)∵f(x)=→a ·→b =(cosx +sinx)·(cosx -sinx)+sinx·2cosx=cos2x -sin2x +2sinxcosx =cos2x +sin2x =2(22cos2x +22sin2x)=2(sin2x +π4), ∵-π4≤x≤π4,∴-π4≤2x +π4≤3π4,∴当2x +π4=π2,即x =π8时,f(x)有最大值2; 当2x +π4=-π4,即x =-π4时,f(x)有最小值-1. 专题二:函数与导数的交汇题型分析及解题策略【命题趋向】函数的观点和方法既贯穿了高中代数的全过程,又是学习高等数学的基础,是高考数学中极为重要的内容,纵观全国及各自主命题省市近三年的高考试卷,函数与导数在选择、填空、解答三种题型中每年都有试卷,分值26分左右,如08年福建文11题理12题(5分)为容易题,考查函数与导函数图象之间的关系、08年江苏14题(5分)为容易题,考查函数值恒成立与导数研究单调性、08年北京文17题(12分)为中档题考查函数单调性、奇偶性与导数的交汇、08年湖北理20题(12分)为中档题,考查利用导数解决函数应用题、08年辽宁理22题(12分)为中档题,考查函数利用导数确定函数极值与单调性问题等.预测2009年关于函数与导数的命题趋势,仍然是难易结合,既有基本题也有综合题,函数与导数的交汇的考查既有基本题也有综合题,基本题以考查基本概念与运算为主,考查函数的基础知识及函数性质及图象为主,同时考查导数的相关知识,知识载体主要是三次函数、指数函数与对数函数综合题.主要题型:(1)利用导数研究函数的单调性、极值与最值问题;(2)考查以函数为载体的实际应用题,主要是首先建立所求量的目标函数,再利用导数进行求解.【考试要求】1.了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.2.了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.3.掌握有理指数幂的运算性质.掌握指数函数的概念、图象和性质.4.掌握对数的运算性质;掌握对数函数的概念、图像和性质.5.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.6.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.7.熟记基本导数公式(c ,xm (m 为有理数),sinx ,cosx ,ex ,ax ,lnx ,logax 的导数);掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.8.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.【考点透视】高考对导数的考查主要以工具的方式进行命题,充分与函数相结合.其主要考点:(1)考查利用导数研究函数的性质(单调性、极值与最值);(2)考查原函数与导函数之间的关系;(3)考查利用导数与函数相结合的实际应用题.从题型及考查难度上来看主要有以下几个特点:①以填空题、选择题考查导数的概念、求函数的导数、求单调区间、求函数的极值与最值;②与导数的几何意义相结合的函数综合题,利用导数求解函数的单调性或求单调区间、最值或极值,属于中档题;③利用导数求实际应用问题中最值,为中档偏难题.【典例分析】题型一导函数与原函数图象之间的关系如果原函数定义域内可导,则原函数的图象f(x)与其导函数f'(x)的图象有密切的关系:1.导函数f'(x)在x轴上、下方图象与原函数图象上升、下降的对应关系:(1)若导函数f'(x)在区间D上恒有f'(x)>0,则f(x)在区间D上为增函数,由此进一步得到导函数f'(x)图象在x轴上方的图象对应的区间D为原函数图象中的上升区间D;(2)若导函数f'(x)在区间D上恒有f'(x)<0,则f(x)在区间D上为减函数,由此进一步得到导函数f'(x)图象在x轴下方的图象对应的区间为原函数图象中的下降区间.2.导函数f'(x)图象的零点与原函数图象的极值点对应关系:导函数f'(x)图象的零点是原函数的极值点.如果在零点的左侧为正,右侧为负,则导函数的零点为原函数的极大值点;如果在零点的左侧为负,右侧为正,则导函数的零点为原函数的极小值点.【例1】如果函数y=f(x)的图象如右图,那么导函数y=f'(x)的图象可能是()【分析】根据原函数y=f(x)的图象可知,f(x)有在两个上升区间,有两个下降区间,且第一个期间的上升区间,然后相间出现,则反映在导函数图象上就是有两部分图象在x轴的上方,有两部分图象在x轴的下方,且第一部分在x轴上方,然后相间出现.【解】由原函数的单调性可以得到导函数的正负情况依次是正→负→正→负,只有答案A满足.【点评】本题观察图象时主要从两个方面:(1)观察原函数f(x)的图象哪些的上升区间?哪些下降区间?;(2)观察导函数f'(x)的图象哪些区间在大于零的区间?哪些部分昌小于零的区间?【例2】设f'(x)是函数f(x)的导函数,y=f'(x)的图象如图所示,则y=f(x)的图象最有可能是()【分析】先观察所给出的导函数y=f'(x)的图象的正负区间,再观察所给的选项的增减区间,二者结合起来即可作出正确的选择.本题还可以通过确定导函数y=f'(x)的图象零点0、2对应原函数的极大或极小值点来判断图象.【解法1】由y=f'(x)的图象可以清晰地看出,当x∈(0,2)时,y=f'(x)<0,则f(x)为减函数,只有C 项符合,故选C.【解法2】在导函数f'(x)的图象中,零点0的左侧函数值为正,右侧为负,由可知原函数f(x)在x =0时取得极大值.又零点2的左侧为负,右侧为正,由此可知原函数f(x)在x=0时取得极小值,只有C 适合,故选C.【点评】(1)导函数值的符号决定函数的单调性为“正增、负减”,导函数的零点确定原函数的极值点;(2)导函数的增减性与函数增减性之间没有直接的关系,但它刻画函数图象上的点的切线斜率的变化趋势.题型二利用导数求解函数的单调性问题若f(x)在某区间上可导,则由f'(x)>0(f'(x)<0)可推出f(x)为增(减)函数,但反之则不一定,如:函数f(x)=x3在R上递增,而f'(x)≥0.f(x)在区间D内单调递增(减)的充要条件是f'(x0)≥0(≤0),且f'(x)在(a,b)的任意子区间上都不恒为零.利用导数求解函数单调性的主要题型:(1)根据函数解读式,求函数的单调区间;(2)根据函数的单调性函数求解参数问题;(3)求解与函数单调性相关的其它问题,如函数图象的零点、不等式恒成立等问题.【例3】(08全国高考)已知函数f(x)=x3+ax2+x+1,a∈R.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)设函数f(x)在区间(-23,-13)内是减函数,求a 的取值范围. 【分析】 第(Ⅰ)小题先求导函数f '(x),由于含有参数a ,根据判别式确定对a 的分类规范,进而确定单调区间;第(Ⅱ)小题根据第(Ⅰ)小题的结果,建立关于a 的不等式组,由此可确定a 的范围.【解】 (Ⅰ)由f(x)=x3+ax2+x +1,求导得f '(x)=3x2+2ax +1,当a2≤3时,△=4(a2-3)≤0,f '(x)≥0,f(x)在R 上递增,当a2>3,f '(x)=求得两根为x =-a±a2-33,则 函数f(x)在区间(-∞,-a -a2-33)上递增,在区间(-a -a2-33,-a +a2-33)上递减, 在区间(-a -a2-33,+∞)上递增. (Ⅱ)由(Ⅰ)得⎩⎪⎨⎪⎧ -a -a2-33≤-23-a +a2-33≥-13,且a2>3,解得a≥2. 【点评】 本题是利用导数求解函数单调性问题的两类最典型的题型.由于函数解读式中含有字母参数a ,因此解答第(Ⅰ)小题时注意分类讨论.第(Ⅱ)小题的解答是根据第(Ⅰ)小题的结果,利用集合集合间的关系建立不等式来求解的.第(Ⅱ)小题还是利用函数在已知区间上减函数建立不等式⎩⎨⎧ f '(-23)≤0f '(-13)≤0来求解. 题型三 求函数的极值问题极值点的导数一定为0,但导数为0的点不一定是极值点,同时不可导的点可能是极值点.因此函数的极值点只能在导数为0的点或不可导的点产生.利用导数求函数的极值主要题型:(1)根据函数解读式求极值;(2)根据函数的极值求解参数问题.解答时要注意准确应用利用导数求极值的原理求解.【例4】 (08·四川)设x =1和x =2是函数f(x)=x5+ax3+bx +1的两个极值点.(Ⅰ)求a 和b 的值;(Ⅱ)略.【分析】 先求导函数f '(x),然后由x =1和x =2是f '(x)=0的两个根建立关于a 、b 的方程组求解.【解】 因为f '(x)=5x4+3ax2+b ,由x =1和x =2是函数f(x)=x5+ax3+bx +1的两个极值点,所以f '(1)=0,且f '(2)=0,即⎩⎨⎧ 5×14+3a×12+b =05×24+3a×22+b =0,解得a =253,b =20. 【点评】 解答本题要明确极值点与导函数方程之间的关系:对于三次函数极值点的导数一定为0,但导数为0的点不一定是极值点.本题解得充分利用上述关系,通过建立方程组求得了a 和b 的值.【例5】 (08陕西高考)已知函数f(x)=kx +1x2+c(c >0,且c≠1,k ∈R )恰有一个极大值点和一个极小值点,其中一个是x =-c .(Ⅰ)求函数f(x)的另一个极值点;(Ⅱ)求函数f(x)的极大值M 和极小值m ,并求M -m≥1时k 的取值范围.【分析】 先求导函数f '(x),然后令f '(-c)=0及一元二次方程根与系数的关系可解决第(Ⅰ)小题;而解答第(Ⅱ)小题须对k 与c 进行分类讨论进行解答.【解】 (Ⅰ)f '(x)=k(x2+c)-2x(kx +1)(x2+c)2=-kx2-2x +ck (x2+c)2, 由题意知f '(-c)=0,即得c2k -2c -ck =0,即c =1+2k(*) ∵c≠0,∴k≠0.由f '(0)=0,得-kx2-2x +ck =0,由韦达定理知另一个极值点为x =1.(Ⅱ)由(*)式得c =1+2k,当c >1时,k >0;当0<c <1时,k <-2. (ⅰ)当k >0时,f(x)在(-∞,-c)和(1,+∞)内是减函数,在(-c ,1)内是增函数.f(1)=k +1c +1=k 2>0,m =f(-c)=-kc +1c2+c =-k22(k +2)<0, 由M -m =k 2+k22(k +2)≥1及k >0,解得k≥ 2. (ⅱ)当k <-2时,f(x)在(-∞,-c)和(1,+∞)内是增函数,在(-c ,1)内是减函数.∴M =f(1)=-k22(k +2)>0,m =k +1c +1=k 2<0,而M -m =-k22(k +2)-k 2=1-(k +1)2+1k +2≥1恒成立. 综上可知,所求k 的取值范围为(-∞,-2)∪[2,+∞).【点拨】 第(Ⅰ)小题解答的关键是利用一元二次方程的韦达定理.第(Ⅱ)小题的是与极值相关的解决恒成立问题,因此求函数在定义域上的极值是解答的关键.题型四 求解函数的最值问题函数在闭区间上的最值是比较所有极值点与端点的函数值所得结果,因此函数在闭区间[a ,b]上的端点函数值一定不是极值,但它可能是函数的最值.同时,函数的极值不一定是函数的最值,最值也不一定是极值.另外求解函数的最值问题,还可以直接结合函数的单调性来求解.利用导数求解函数最值问题的主要题型:(1)根据函数的解读式求函数的最大值;(2)根据函数在一个区间上的最值情况求解参数问题.【例6】 (08浙江高考)已知a 是实数,函数f(x)=x2(x -a).(Ⅰ)略;(Ⅱ)求f(x)在区间[0,2]上的最大值.【分析】 首先求函数f '(x),再解方程f '(x)=0,得两个根,而两根含有参数,但不知两根的大小,因此须分类讨论讨论函数f(x)的单调区间,进而确定f(x)在给定区间上的最大值.【解】 (Ⅱ)f '(x)=3x2-2ax .令f '(x)=0,解得x1=0,x2=2a 3. 当2a 3≤0,即a≤0时,f(x)在[0,2]上单调递增,从而f(x)max =f(2)=8-4a .。
题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的值依次为 ( )A .π12,-3B .π3,3C .π3,-3D .-π12,3 【分析】 根据向量的坐标确定平行公式为⎩⎨⎧ x =x '+π6y =y '+3,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】 由平移向量知向量平移公式⎩⎨⎧ x '=x -π6y '=y -3,即⎩⎨⎧ x =x '+π6y =y '+3,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C. 【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin 2A =34, 又A 为锐角,所以sinA =32,则A =π3. (Ⅱ)y =2sin 2B +cos C -3B 2=2sin 2B +cos (π-π3-B)-3B 2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B =32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2. 【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值. 【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果. 【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0.由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12. ∵α∈(3π2,2π),tanα<0,故t anα=12(舍去).∴tanα=-43. (Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255, ∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.题型四 三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=-35. (Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π, 由cos(α-β)=-35,得sin(α-β)=45, 又sin β=-513,∴cos β=1213, ∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365. 点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx ,由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1. (Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1, 当sin(x +π4)=-1时,f(x)的最小值为1- 2. 点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),a =23,且→m·→n =12. (Ⅰ)若△ABC 的面积S =3,求b +c 的值.(Ⅱ)求b +c 的取值范围.【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12, ∴-cos 2A 2+sin 2A 2=12,即-cosA =12, 又A ∈(0,π),∴A =2π3. 又由S △ABC =12bcsinA =3,所以bc =4, 由余弦定理得:a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4. (Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3, ∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4]. [点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.。