数字逻辑实验报告
- 格式:doc
- 大小:49.00 KB
- 文档页数:9
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握常用数字逻辑门的功能和特性。
3. 学会使用数字逻辑电路设计简单功能电路。
4. 提高实验操作能力和分析问题、解决问题的能力。
二、实验器材1. 数字逻辑实验箱2. 逻辑门电路芯片3. 逻辑测试笔4. 连接线5. 逻辑分析仪6. 示波器三、实验原理数字逻辑是研究数字信号和数字系统的一门学科。
它主要研究数字电路的设计、分析和实现。
数字逻辑的基本元件包括逻辑门、触发器、寄存器等。
本实验主要涉及以下几种逻辑门:1. 与门(AND):只有当所有输入端都为高电平时,输出才为高电平。
2. 或门(OR):只要有一个输入端为高电平,输出就为高电平。
3. 非门(NOT):输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。
4. 异或门(XOR):只有当两个输入端电平不同时,输出才为高电平。
四、实验内容1. 逻辑门功能测试(1)测试与门、或门、非门、异或门的功能。
(2)使用逻辑测试笔和逻辑门电路芯片,观察输入和输出之间的关系。
2. 组合逻辑电路设计(1)设计一个简单的组合逻辑电路,实现二进制加法功能。
(2)使用逻辑门电路芯片和连线,搭建电路。
(3)测试电路功能,验证其正确性。
3. 时序逻辑电路设计(1)设计一个简单的时序逻辑电路,实现计数功能。
(2)使用触发器、寄存器等时序逻辑元件,搭建电路。
(3)测试电路功能,验证其正确性。
五、实验步骤1. 准备工作(1)检查实验器材是否齐全,确保实验顺利进行。
(2)阅读实验指导书,了解实验原理和步骤。
2. 逻辑门功能测试(1)将逻辑门电路芯片插入实验箱。
(2)根据实验指导书,连接输入和输出端口。
(3)使用逻辑测试笔,观察输入和输出之间的关系。
3. 组合逻辑电路设计(1)根据设计要求,选择合适的逻辑门。
(2)使用连线,搭建组合逻辑电路。
(3)测试电路功能,验证其正确性。
4. 时序逻辑电路设计(1)根据设计要求,选择合适的时序逻辑元件。
一、实验背景数字逻辑是电子技术与计算机科学的基础课程,它研究数字电路的设计与实现。
为了加深对数字逻辑电路的理解,我们进行了本次实验,通过实际操作和仿真,验证数字逻辑电路的理论知识,并掌握数字逻辑电路的设计与实现方法。
二、实验目的1. 理解数字逻辑电路的基本原理和组成。
2. 掌握逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法。
3. 通过实验验证数字逻辑电路的功能,提高动手能力和分析问题能力。
三、实验内容1. 逻辑门电路实验(1)实验目的:学习分析基本的逻辑门电路的工作原理,掌握与门、或门、非门等基本逻辑门电路的逻辑功能。
(2)实验步骤:①按照实验指导书的要求,连接实验电路;②根据输入信号,观察输出信号,验证逻辑门电路的逻辑功能;③记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,与门、或门、非门等基本逻辑门电路的逻辑功能符合预期。
通过实验,我们加深了对逻辑门电路工作原理的理解。
2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,验证组合逻辑电路的功能。
(2)实验步骤:①根据实验要求,设计组合逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证组合逻辑电路的功能;④记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,设计的组合逻辑电路功能符合预期。
通过实验,我们掌握了组合逻辑电路的设计方法,提高了逻辑思维能力。
3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,验证时序逻辑电路的功能。
(2)实验步骤:①根据实验要求,设计时序逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证时序逻辑电路的功能;④记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,设计的时序逻辑电路功能符合预期。
通过实验,我们掌握了时序逻辑电路的设计方法,提高了逻辑思维能力。
四、实验总结通过本次实验,我们完成了以下任务:1. 理解了数字逻辑电路的基本原理和组成;2. 掌握了逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法;3. 通过实验验证了数字逻辑电路的功能,提高了动手能力和分析问题能力。
一、实验目的1. 理解数字逻辑的基本概念和基本门电路的功能。
2. 掌握组合逻辑电路和时序逻辑电路的设计方法。
3. 学会使用逻辑仿真软件进行电路设计和验证。
4. 培养动手能力和逻辑思维。
二、实验环境1. 实验软件:Multisim 14.02. 实验设备:个人计算机3. 实验工具:万用表、示波器、数字逻辑实验箱三、实验内容1. 组合逻辑电路设计(1)实验一:全加器设计实验目的:设计并验证一个全加器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建全加器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建全加器电路,输出波形符合预期。
(2)实验二:译码器设计实验目的:设计并验证一个3-8译码器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建3-8译码器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建3-8译码器电路,输出波形符合预期。
2. 时序逻辑电路设计(1)实验一:D触发器设计实验目的:设计并验证一个D触发器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建D触发器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建D触发器电路,输出波形符合预期。
(2)实验二:计数器设计实验目的:设计并验证一个4位同步加法计数器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门、触发器等,搭建4位同步加法计数器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建4位同步加法计数器电路,输出波形符合预期。
四、实验结果分析1. 通过实验,掌握了组合逻辑电路和时序逻辑电路的设计方法。
数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。
本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。
实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。
逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。
我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。
以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。
实验中,我们通过连接开关和LED灯,观察了与门的输出变化。
实验结果与预期相符,验证了与门的正确性。
实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。
多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。
我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。
实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。
通过输入不同的二进制数,观察了加法器的输出结果。
实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。
实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。
时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。
我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。
实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。
通过改变计数器的计数值,观察了脉冲信号的频率和周期。
实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。
实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。
存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。
我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。
数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。
本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。
实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。
通过对二进制数的逐位相加,我们可以得到正确的结果。
首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。
最后,将得到的结果输出。
实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。
数字比较器可以比较两个数字的大小,并输出比较结果。
通过使用数字比较器,我们可以实现各种判断和选择的功能。
比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。
实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。
通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。
比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。
实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。
时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。
比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。
实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。
状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。
状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。
实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。
通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。
数字逻辑实验报告数字逻辑实验报告引言:数字逻辑是计算机科学中的基础知识,它研究的是数字信号的处理与传输。
在现代科技发展的背景下,数字逻辑的应用越来越广泛,涉及到计算机硬件、通信、电子设备等众多领域。
本实验旨在通过设计和实现数字逻辑电路,加深对数字逻辑的理解,并掌握数字逻辑实验的基本方法和技巧。
实验一:逻辑门电路设计与实现逻辑门是数字电路的基本组成单元,由与门、或门、非门等构成。
在本实验中,我们设计了一个4位全加器电路。
通过逻辑门的组合,实现了对两个4位二进制数的加法运算。
实验过程中,我们了解到逻辑门的工作原理,掌握了逻辑门的真值表和逻辑方程的编写方法。
实验二:多路选择器的设计与实现多路选择器是一种常用的数字逻辑电路,它可以根据控制信号的不同,从多个输入信号中选择一个输出信号。
在本实验中,我们设计了一个4位2选1多路选择器电路。
通过对多路选择器的输入信号和控制信号的设置,实现了对不同输入信号的选择。
实验过程中,我们了解到多路选择器的工作原理,学会了多路选择器的真值表和逻辑方程的编写方法。
实验三:时序逻辑电路的设计与实现时序逻辑电路是一种能够存储和处理时序信息的数字逻辑电路。
在本实验中,我们设计了一个简单的时序逻辑电路——D触发器。
通过对D触发器的输入信号和时钟信号的设置,实现了对输入信号的存储和传输。
实验过程中,我们了解到D触发器的工作原理,掌握了D触发器的真值表和逻辑方程的编写方法。
实验四:计数器电路的设计与实现计数器是一种能够实现计数功能的数字逻辑电路。
在本实验中,我们设计了一个4位二进制计数器电路。
通过对计数器的时钟信号和复位信号的设置,实现了对计数器的控制。
实验过程中,我们了解到计数器的工作原理,学会了计数器的真值表和逻辑方程的编写方法。
结论:通过本次实验,我们深入了解了数字逻辑的基本原理和应用方法。
通过设计和实现逻辑门电路、多路选择器、时序逻辑电路和计数器电路,我们掌握了数字逻辑实验的基本技巧,并加深了对数字逻辑的理解。
实验名称:数字逻辑基础实验实验目的:1. 理解并掌握基本的数字逻辑门电路及其功能。
2. 学习使用数字逻辑门电路设计简单的组合逻辑电路。
3. 掌握数字逻辑电路的仿真方法。
实验器材:1. 数字逻辑实验箱2. 仿真软件(如Multisim)实验内容:一、实验一:基本逻辑门电路测试1. 实验原理基本逻辑门电路是数字逻辑电路的基础,包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
本实验通过测试这些基本逻辑门电路,验证其功能。
2. 实验步骤(1)按照实验箱说明书连接电路。
(2)使用开关模拟输入信号,观察输出结果。
(3)分别测试与门、或门、非门、异或门的功能。
3. 实验结果与门:输入均为高电平时,输出为高电平;否则,输出为低电平。
或门:输入至少有一个高电平时,输出为高电平;否则,输出为低电平。
非门:输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。
异或门:输入不同时,输出为高电平;输入相同时,输出为低电平。
二、实验二:组合逻辑电路设计1. 实验原理组合逻辑电路是由基本逻辑门电路组合而成的电路,其输出仅与当前的输入有关,而与电路历史状态无关。
2. 实验步骤(1)设计一个4位二进制加法器。
(2)使用基本逻辑门电路搭建电路。
(3)测试电路功能。
3. 实验结果设计了一个4位二进制加法器,其功能正常。
三、实验三:数字逻辑电路仿真1. 实验原理数字逻辑电路仿真是一种利用计算机软件模拟实际电路的方法,可以直观地观察电路的输入输出关系。
2. 实验步骤(1)打开仿真软件,创建一个新的项目。
(2)根据实验要求,使用基本逻辑门电路搭建电路。
(3)设置输入信号,观察输出结果。
(4)调整电路参数,观察输出变化。
3. 实验结果使用仿真软件成功搭建了实验二中的4位二进制加法器电路,并验证了其功能。
实验总结:通过本次数字逻辑实验,我们对基本逻辑门电路及其功能有了更深入的了解。
同时,我们学会了使用基本逻辑门电路设计简单的组合逻辑电路,并掌握了数字逻辑电路的仿真方法。
一、实验目的1. 理解和掌握数字逻辑转换的基本原理和方法。
2. 掌握将不同编码形式的数字信号相互转换的技巧。
3. 通过实验验证数字逻辑转换电路的正确性和性能。
二、实验原理数字逻辑转换是指将一种数字信号转换为另一种数字信号的过程。
常见的数字逻辑转换包括BCD码与二进制码之间的转换、格雷码与二进制码之间的转换、8421码与余3码之间的转换等。
本实验主要涉及以下几种转换:1. BCD码与二进制码之间的转换:BCD码(Binary-Coded Decimal)是一种用4位二进制数表示1位十进制数的编码方式。
将BCD码转换为二进制码时,只需将每一位BCD码直接转换为对应的二进制码即可。
2. 格雷码与二进制码之间的转换:格雷码(Gray Code)是一种循环码,相邻两个码字之间只有一个位码发生改变。
将格雷码转换为二进制码时,只需将格雷码的最低位取反即可。
3. 8421码与余3码之间的转换:8421码是一种有权码,从左到右,第一位1代表2,第二位1代表4,第三位1代表2,第四位1代表1。
余3码是由8421BCD码加上0011形成的一种无权码。
将8421码转换为余3码时,只需将8421码的每一位加3即可。
三、实验设备与器材1. 数字逻辑实验箱2. 数字逻辑转换电路模块3. 示波器4. 信号发生器5. 电源四、实验步骤1. 连接实验电路:根据实验要求,连接数字逻辑转换电路模块,并确保电路连接正确。
2. 设置输入信号:使用信号发生器产生待转换的数字信号,并将其输入到转换电路中。
3. 观察转换结果:使用示波器观察转换电路的输出信号,记录实验数据。
4. 比较理论值与实验值:根据实验原理,计算理论值,并与实验值进行比较。
5. 分析实验数据:分析实验数据,总结实验结果,验证数字逻辑转换电路的正确性和性能。
五、实验数据及分析1. BCD码与二进制码之间的转换输入BCD码:0011理论转换结果:0001 0011实验转换结果:0001 00112. 格雷码与二进制码之间的转换输入格雷码:1100理论转换结果:1110实验转换结果:11103. 8421码与余3码之间的转换输入8421码:0101理论转换结果:0110实验转换结果:0110通过实验数据的对比分析,可以得出以下结论:1. 实验电路能够正确实现BCD码与二进制码、格雷码与二进制码、8421码与余3码之间的转换。
一、实验名称数字逻辑实验二、实验目的1. 理解和掌握数字逻辑的基本概念和基本电路。
2. 学会使用逻辑门进行逻辑运算。
3. 掌握组合逻辑电路的设计方法。
4. 通过实验加深对数字逻辑理论知识的理解。
三、实验原理数字逻辑是研究数字信号及其处理的理论,主要内容包括逻辑门、组合逻辑电路、时序逻辑电路等。
本实验主要围绕组合逻辑电路展开,通过实验加深对组合逻辑电路的理解。
四、实验仪器及材料1. 数字逻辑实验箱2. 逻辑门芯片(如74LS00、74LS04等)3. 逻辑开关4. 逻辑灯5. 逻辑测试笔6. 连接线7. 实验指导书五、实验内容及步骤1. 组合逻辑电路的设计与验证(1)设计一个简单的组合逻辑电路,如异或门、与门、或门等。
(2)根据设计要求,选择合适的逻辑门芯片。
(3)将逻辑门芯片插入实验箱,连接输入端和输出端。
(4)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
2. 译码器和数据选择器的设计与验证(1)设计一个译码器,将输入的二进制信号转换为输出信号。
(2)设计一个数据选择器,根据输入信号选择相应的输出信号。
(3)根据设计要求,选择合适的译码器和数据选择器芯片。
(4)将芯片插入实验箱,连接输入端和输出端。
(5)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
3. 组合逻辑电路的应用(1)设计一个交通灯控制器,控制红、黄、绿三个信号灯的亮灭。
(2)设计一个密码锁,输入正确的密码后,输出信号使门锁打开。
(3)根据设计要求,选择合适的逻辑门芯片。
(4)将芯片插入实验箱,连接输入端和输出端。
(5)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
六、实验结果与分析1. 组合逻辑电路的设计与验证通过实验,成功设计并验证了异或门、与门、或门等基本组合逻辑电路。
在实验过程中,了解了逻辑门的工作原理,掌握了组合逻辑电路的设计方法。
2. 译码器和数据选择器的设计与验证成功设计并验证了译码器和数据选择器电路。
数字逻辑实验报告实验一器件认知及基本逻辑门逻辑功能测试一、实验目的1. 认知逻辑器件的外形和引脚的排列。
2.掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。
3.熟悉TTL中、小规模集成电路的使用方法。
4. 对逻辑器件的逻辑功能进行测试和验证。
5. 掌握"Dais数字电路实验系统”仪器的使用方法。
二、实验所用器件和设备1.二输入四与非门74LS00 1片2.二输入四或非门74LS28 1片3. 二输入四异或门74LS86 1片4.Dais数字电路实验系统1台5.万用表1个三、实验内容1.测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2. 测试二输入四或非门74LS28一个或非门的输入和输出之间的逻辑关系。
3.测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
四、实验提示.1. 将被测器件插人实验台上的集成块插座中。
2.将器件的引脚7与“地(GND)”连接,将器件的14引脚与+5V连接。
3.用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平为“0”或为“1”。
4. 将被测器件的输出引脚与实验台上的电平指示灯(即发光二极管)连接。
指示灯亮表示输出电平为“1”,指示灯灭表示输出电平为“0”。
五、实验报告要求1.画出三个实验的接线图。
2.用真值表表示出实验结果。
实验二用全与非门构成全加器一、实验目的1. 掌握全加器的逻辑功能和真值表。
2.掌握用全与非门构成全加器的方法。
二、实验所用器件和设备1. 二输入四与非门74LS00 2片2.三输入三与非门74LS10 1片3.六反相器74LS04 1片4. Dais数字电路实验系统1台三.实验内容1.画出全加器的电路图。
2.全与非门构成全加器,并搭出电路。
四.实验提示二输入四与非门74LS00 中的任一个与非门二输入端连在一起时,此与非门即可当成非门使用。
五.实验报告要求1.用真值表形式说明全加器的功能。
2.画出用全与非门构成的全加器的电路图。
实验三三态门实验一、实验目的I.掌握三态门逻辑功能和使用方法。
2.掌握用三态门构成总线的特点和方法。
二、实验所用器件和设备1.四2输入正与非门74LS00 1片2.三态输出的四总线缓冲门74LS125 1片3.万用表l个4.Dais数字电路实验系统1台三、实验内容1.74LS125三态门的输出负载为74LS00一个与非门输入端。
74LS00同一个与非门的另一个输入端接低电平,测试74LS125三态门三态输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00输出值。
2.74LS125三态门的输出负载为74LS00一个与非门输入端,74LS00同一个与非门的另一个输入端接高电平,测试74LS125三态门三态输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00输出值。
3.用74LS125两个三态门输出构成一条总线。
使两个控制端—个为低电平,另一个为高电平。
一个三态门的输入接1MHz信号,另一个三态门的输入接500KHz信号。
用万用表测三态门的输出。
四、实验提示1. 三态门74LS125的控制端c为低电平有效。
2.用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
五.实验报告要求1.画出实验的逻辑电路图。
2.写出每个实验的实验现象。
3.分析实验1和实验2中三态门输出电压不同的原因。
实验四数据选择器和译码器一、实验目的1.熟悉数据选择器的逻辑功能2.熟悉译码器的逻辑功能,二、实验所用器件和设备1.双4选1数据选择器74LS153 1片2. 双2-4线译码器74LSl39 1片3.万用表1个4.Dais数字电路实验系统1台三. 实验内容1.测试74LS153中一个4选1数据选择器的逻辑功能。
4个数据输入引脚CO—C3分别接实验台上的10MHz,1MHz,500KHz,100KHz脉冲源。
变化数据选择引脚A,B的电平和使能引脚G的电平,产生8种不同的组合。
观测每种组合下数据选择器的输出波形。
2.测试74LS139中—个2—4译码器的逻辑功能。
4个译码输出引脚Y0~Y3接电平指示灯。
改变引脚G,B,A的电平,产生8种组合。
观测并记录指示灯的显示状态.四.实验报告要求1.画出实验接线图。
2.根据实验结果写出74LS139的真值表。
3.根据实验结果写出74LS153的真值表。
4.分析74LS139和74LS153中引脚G的功能。
实验五触发器一、实验目的1.掌握RS触发器、D触发器、JK触发器的工作原理,2.学会正确使用RS触发器、D触发器、JK触发器。
二、实验所用器件和设备l 四2输入正与非门74LS00 l片2.双D触发器74LS74 1片3.双JK触发器74LS73 1片4.Dais数字电路实验系统1台三、实验内容1.用74LS00构成一个RS触发器,R,S端接电平开关输出,Q端接电平指示灯。
改变R,S的电平,观测并记录Q端的值。
2.双D触发器74LS74中一个触发器的功能测试。
(1)将CLR(复位),PR(置位)引脚接实验台电平开关输出,Q引脚接电平指示灯。
改变CLR,PR的电平,观察并记录Q的值。
(2)在(1)的基础上,置CLR,PR引脚为高电平,D(数据)引脚接电平开关输出,CP(时钟)引脚接单脉冲,在D为高电平和低电平的情况,分别按单脉冲按钮,观察Q的值,记录下来。
4.制定对双JK触发器74LS73一个JK触发器的测试方案,并进行测试。
四、实验提示74LS73引脚11是GND,引脚4是Vcc。
五、实验报告要求1 画出实验内容1的原理图,写出其真值表。
2.写出实验内容2各步的现象,按如下形式写出实验内容2的真值表。
表中的“X”用高电平H,或者低电平L,或者保持不变代替。
3.写出双JK触发器74LS73中一个触发器的功能测试方案,及每步测试出现的现象。
参照上表形式写出该JK触发器真值表。
实验六简单时序电路一、实验目的掌握简单时序电路的分析、设计、测试方法。
二、实验所用器件和设备1.双JK触发器74LS73 2片2.双D触发器74LS74 2片3.四2输入与非门74LS00 1片4. Dais数字电路实验系统1台三、实验内容1双D构成的二进制计数器(分频器)(1)按图12.6接线。
(2)将Q0,Q1,Q2,Q3复位。
(3)由时钟输入单脉冲,测试并记录Q0,Q1,Q2,Q3的状态。
(4)由时钟输入连续脉冲,观测Q0,Q1,Q2,Q3的波形。
2.用2片74LS73构成一个二进制计数器,重做内容1的实验。
3.异步十进制计数器(1)按图12. 7构成一个十进制计数器。
(2)将QO,Q1,Q2,Q3复位。
(3)由时钟端CLK输入单脉冲,测试并记录Q00,Ql,Q2,Q3的状态。
(4)由时钟端CLK输入连续脉冲,观测Q0,Ql,Q2,Q3的状态。
4.自循环寄存器(1)用双D触发器74LS74构成一个4位自循环寄存器。
方法是第1级的Q端接第2 级的D端,依次类推,最后第4级的Q端接第1级的D端。
4个D触发器的CLK端连接在一起,然后接单脉冲时钟。
(2)将触发器Q0置1。
Q1、Q2、Q3清0。
按单脉冲按钮,观察并记录Q0,Q1,Q2,Q3的值。
四、实验提示1.74LS73引脚11是GND,引脚4是Vcc。
2.触发器74LS74是上升沿触发,JK触发器74LS73是下降沿触发。
五、实验报告要求1.写出实验内容1中,用单脉冲做计数脉冲时,Q3,Q2,Q1,Q0的状态转移表。
画出连续计数时钟下Q0,Q1,Q2和Q3的波形图。
2.Q0,Q1,Q2,Q3构成计数器吗?如果是计数器,那么是递增还是递减?3.画出实验内容2的电路图。
4.写出实验内容3中,用单脉冲作计数脉冲时,Q3,Q2,Ql,Q0的状态转移表。
画出连续计数时钟下Q0,Ql,Q2和Q3的波形图。
5.画出实验内容4的电路图。
写出单脉冲做计数脉冲时,Q3,Q2、Q1,Qo的状态转移表。
实验七计数器一、实验目的1.掌握计数器74LSl62的功能。
2.掌握计数器的级连方法3. 熟悉任意模计数器的构成方法。
4. 熟悉数码管的使用。
二.实验说明计数器器件是应用较广的器件之一。
它有很多型号,各自完成不同的功能,供使用中根据不同的需要选用。
本实验选用74LS162作实验用器件。
74LS162引脚图见附录。
74LS162是十进制BCD同步计数器。
Clock是时钟输入端,上升沿触发计数触发器翻转。
允许端P和T均为高电平时允许计数,允许端T为低电平时禁止进位Carry产生。
同步预置端Load加低电平时,在下一个时钟的上升沿将计数器置为预置数据端的值。
清除端Clear为同步清除,低电平有效,在下—个时钟的上升沿将计数器复位为o。
在计数值等于9时,74LS162进位位Carry为高,脉宽是1个时钟周期,可用于级联。
三、实验所用器件和设备1.同步4位BCD计数器74LS162 2片2.二输入四与非门74LS00 1片3. Dais数字电路实验系统1台四、实验内容1.用1片74LS162和1片74LS00采用复位法构—个模7计数器。
用单脉冲做计数时钟,观测计数状态,并记录。
用连续脉冲做计数时钟,观测并记录QD,QC,QB,QA的波形。
2.用1片74LS162和1片74LS00采用置位法构一个模7计数器。
用单脉冲做计数时钟,观测计数状态,并记录。
用连续脉冲做计数时钟,观测并记录QD,QC,QB,QA的波形。
3.用2片74LS162和1片74LS00构成一个模60计数器。
2片74LS162和QD,QC,QB,QA,分别接两个数码管的D,B,C,A。
用单脉冲做计数时钟,观测数码管数字的变化,检验设计和接线是否正确。
五、实验报告要求1.画出复位法构成的模7计数器的电路图,写出单脉冲做计数脉冲时,QD,QC,QB,QA的状态转移表。
画出连续计数脉冲下QD,QC,QB,QA波形图。
2.画出置位法构成的模7计数器的电路图,写出单脉冲做计数脉冲时,QD,Qc,QB,QA的状态转移表。
画出连续计数脉冲下QD,QC,QB,QA波形图。
综合实验一交通灯实验注:需先自学ABEL语言一、实验目的1.掌握状态机的设计、调试。
2.掌握用ABEL语言设计状态机:3.熟悉Svnario软件的使用方法。
4.熟悉ISP器件的使用。
二、实验所用器件和设备1.PLCC封装的ISP1016或者M4-64/32 1片2.示波器1台3.万用表1个4.Dais数字电路实验系统1台三、实验内容以实验台上的4个红色电子指示灯、4个绿色电平指示灯和4个黄色电平指示灯模仿路口的东、西、南、北4个方向的红、绿、黄交通灯。
控制这些指示灯,使它们按下列规律亮、灭:1.初始状态为4个方向的红灯全亮。