第四章稳定性
- 格式:ppt
- 大小:1.17 MB
- 文档页数:38
第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。
稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。
李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。
稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。
稳定性可以分为两种类型:渐近稳定性和有界稳定性。
渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。
李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。
李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。
通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。
在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。
其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。
如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。
李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。
李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。
如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。
李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。
该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。
这个定理为李雅普诺夫方法的应用提供了重要的理论依据。
总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。
稳定性当系统承受这种干扰之后,能否稳妥地保持预定的运动轨迹或者工作状态,这就是稳定性。
使问题简化,而不得不忽略某些次要因素。
近似的数学模型能否如实反映实际的运动,在某种意义上说,也是稳定性(鲁棒性)问题。
平衡状态(4-2)受扰运动:平衡状态:(4-5)0 x t t"³?是李雅普诺夫意义下稳定的。
李雅普诺夫稳定性就是要研究微分方程的解在tÎ[t,+¥)上的有界性。
1. 此处d 随着e 、t 0而变化;时有‖x (t ;t 0,x 0)‖<e "t ≥t 0成立初值变化充分小时,解的变化(t ≥ t 0)可任意小(不是无变化);(t 0,e )£e 。
edt0x (t 0)d (t 0,e )x 0x (t )李雅普诺夫意义下稳定的几何意义(t 0)‖一致稳定:(4-9)00(,,)0(,,)T t T t m d m d >()S e ()H e 0x x()S d ()S e 0x ()x t T()S d t固定的吸引区,不是<m ,t >t 0+ T(m ,t 0,x 0)t 0mt 0+ T(m , t 0, x 0)e00lim (,,)0®¥=t x t t x数量吸引区局部幸好,就我们所讨论的线性系统而言,全局和局部是一致的。
可见,即使初始值很大地偏离了平衡状态,系统最终0x1otl nx 非线性系统的解,),<。
故系统是李氏稳定的。
又与t d ddx xdt tttd<,,故其零解一致稳定。
又0t t 0t t()S e 0x ()x t ()S d cx ()e指数渐近稳定稳定渐近稳定一致渐近稳定一致稳定第一方法线性化的间接第二方法直接判断直接法李雅普诺夫第二方法目前仍是研究非线性、时变系统最有效的方法,是许多系统控制律设计李雅普诺夫第二法的主要定理(4-16)李雅普诺夫函数充分条件4-17)),则称系统原点平衡状态为大范围一致渐近稳定。