高二下第一次月考
- 格式:doc
- 大小:244.00 KB
- 文档页数:6
高二下学期第一次月考数学试题一、单选题1.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数表示,则该()21s t t t =++物体在s 时的瞬时速度为( ) 1t =A .0m/s B .1m/s C .2m/s D .3m/s【答案】D【分析】根据瞬时速度的概念即可利用平均速度取极限求解. 【详解】该物体在时间段上的平均速度为[]1,1t +∆,当无限趋近于0时,无限趋()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆Δt 3t +∆近于3,即该物体在s 时的瞬时速度为3m/s . 1t =故选:D2.曲线在点(1,-2)处的切线的倾斜角为( ) 43y x x =-A .B .C .D .6π4π3π23π【答案】B【分析】根据导数的几何意义求解.【详解】因为,所以,故所求切线的倾斜角为.343y x '=-11x y ='=4π故选:B .3.函数的单调递增区间为( )21=ln 22y x x -+A . B .C .D .()1,1-()0,1[)1,+∞()0,∞+【答案】C【分析】先对函数求导,然后令导函数大于0解出不等式,并结合函数的定义域,即可得到本题答案.【详解】因为,所以,21=ln 22y x x -+211x y x x x -'=-=令,得或,0y >'A A A A 1x <-1x >又函数的定义域为,所以函数的单调递增区间为, {}0x x >[1,)+∞故选:C4.若函数在区间上单调递增,则实数k 的取值范围是( )()331f x x kx =-+()1,+∞A . B . C . D .(),1-∞(],1-∞[)1,-+∞[)1,+∞【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值()f x (1,)+∞k 范围.【详解】由题意得,在区间上恒成立, 22()333()0f x x k x k '=-=-≥(1,)+∞即在区间上恒成立,2k x ≤(1,)+∞又函数在上单调递增,得, 2y x =(1,)+∞21x >所以,即实数的取值范围是. 1k ≤k (,1]-∞故选:B5.已知函数的导函数图象如下图所示,则原函数的图象是( )()y f x =()y f x '=()y f x =A .B .C .D .【答案】B【分析】根据函数的单调性与导数的关系以及导数的变化可得结果.【详解】由图可知,当时,,则函数在上为增函数, 11x -<<()0f x ¢>()f x ()1,1-当时,单调递增,故函数在上的增长速度越来越快,10x -<<()f x '()f x ()1,0-当时,单调递减,故函数在上的增长速度越来越慢. 01x <<()f x '()f x ()0,1B 选项中的图象满足题意. 故选:B.6.函数在区间上的最大值为( ) ()cos sin f x x x x =-[]π,0-A .1 B .C .D .π323π2【答案】B【分析】求出函数的导数,判断函数的单调性,即可求得答案. 【详解】由题意得, ()cos sin cos sin f x x x x x x x '=--=-当时,,,[]π,0x ∈-sin 0x ≤()0f x '≤所以在区间单调递减,故函数最大值为, ()f x []π,0-()ππf -=故选:B7.“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起,,A B C A 点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为( )C C AA .种B .种C .种D .种6122430【答案】C【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得A C 结果.【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到A B 326⨯=B C 时,在右侧可顺时针连接或逆时针连接,共有种选择,C 2以为起点,为终点时,共有种方法;∴A C 6212⨯=同理可知:以为起点,为终点时,共有种方法;C A 12完成该图“一笔画”的方法数为种.∴121224+=故选:C.8.过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有( ) A .24种 B .36种C .48种D .60种【答案】B【分析】根据特殊元素“失重飞行”进行位置分类方法计算,结合排列组合等计数方法,即可求得总的测试的安排方案种数.【详解】①若失重飞行安排在第一天则前庭功能安排第二天,则后面三天安排其他三项测试有种安排方法,33A 6=此情况跟失重飞行安排在第五天则前庭功能安排第四天安排方案种数相同;②若失重飞行安排在第二天,则前庭功能有种选择,超重耐力在第四、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法,22A 112222C C A 8=此情况与失重飞行安排在第四天方安排方案种数相同;③若失重飞行安排在第三天,则前庭功能有种选择,超重耐力在第一、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法;22A 112222C C A 8=故选拔测试的安排方案有种. 6282836⨯+⨯+=故选:B.二、多选题9.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则下列说法正确的有( )A .若不选择政治,选法总数为种25C B .若物理和化学至少选一门,选法总数为1225C C C .若物理和历史不能同时选,选法总数为种3164C C -D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为种 121244(C C C )-【答案】AC【分析】根据组合数性质判断A ;若物理和化学至少选一门,分物理和化学选一门和物理和化学都选,求出选法数,判断B ;物理和历史不能同时选,即六门课程中任意选3门减去物理和历史同时选的选法数,判断C ;物理和化学至少选一门,且物理和历史不同时选,分三种情况考虑,求得选法数,判断D.【详解】对于A, 若不选择政治,选法总数为种,正确;3255C C =对于B ,若物理和化学选一门,选法总数为, 1224C C 若物理和化学都选,则选法数有种,2124C C 故物理和化学至少选一门,选法总数为种,而,B 错误;12212424C C C C 16+=1225C C 20=对于C, 若物理和历史不能同时选,即六门课程中任意选3门有种选法,36C 减去物理和历史同时选的选法数,故选法总数为种,C 正确;14C 3164C C -对于D,当物理和化学中只选物理时,有种选法; 23C 当物理和化学中只选化学时,有种选法; 24C 当物理和化学中都选时,有种选法,13C 故物理和化学至少选一门,且物理和历史不同时选,选法总数为种,而,D 错误,221343C +C +C =12121244C C C 8-=故选:AC 10.下列等式正确的是( )A .B .()111A A m m n n n +++=()()!2!1n n n n =--C .D .A C !mm n nn =11A A m m n n n m+=-【答案】ABD【分析】利用排列数公式、组合数公式,逐项计算判断作答.【详解】对于A ,,A 正确;()11!(1)!(1)()![(1)(1)]!1A A mm n n n n n n n m n m +++=+⋅=-+-++=对于B ,,B 正确; ()()!(1)!(1)(2)!2!1(1)1n n n n n n n n n n n ⋅--⋅-===----对于C ,,而与不一定相等,则与不一定相等,C 不正确;A C !m m nnm =!m !n A !m n m A !m n n 对于D ,,D 正确. 111!!A A (1)!()!m m n n n n n m n m n m n m +⋅==-----=故选:ABD11.如图是函数的导函数的图像,则下列判断正确的是( )()y f x =()f x 'A .在区间上,单调递增 ()2,1-()f xB .在区间上,单调递增 ()1,2()f xC .在区间上,单调递增 ()4,5()f xD .在区间上,单调递增 ()3,2--()f x 【答案】BC【分析】当,则单调递增,当,则单调递减,据此可得答案. ()0f x ¢>()f x ()0f x '<()f x 【详解】由题图知当时,,()()1245,,,x x ∈∈()0f x ¢>所以在区间上,单调递增,BC 正确; ()()1245,,,()f x 当时,,当时,,所以在区间上,单调递减.()2,1x ∈--()0f x '<()1,1x ∈-()0f x ¢>()2,1--()f x 在上递增,A 错误;()1,1-当时,,所以在区间上,单调递减,D 错误; ()3,2x ∈--()0f x '<()3,2--()f x 故选:BC12.已知函数,则( ) 321()()3f x x ax x a =+-∈R A .当时,函数的极大值为0a =()f x 23-B .若函数图象的对称中心为,则 ()f x (1,(1))f 1a =-C .若函数在上单调递增,则或 ()f x R 1a ≥1a ≤-D .函数必有3个零点 ()f x 【答案】BD【分析】根据函数极大值的定义,结合函数的导数的性质、函数零点的定义逐一判断即可.【详解】A 项:当时,,则,所以在单调递增,在0a =31()3f x x x =-2()1f x x '=-()f x (,1)-∞-单调递减,在单调递增,所以极大值为,故错误; (1,1)-(1,)+∞()f x 12(1)133f -=-+=B 项:因为函数图象的对称中心为,()f x (1,(1))f所以有,故正确;()()()()21121101f x f x f a x a ++-=⇒+=⇒=-C 项:恒成立,显然必有两根,则2()210f x x ax =+-≥'()0f x '=()121212,,10x x x x x x <⋅=-<()f x 在递减,故错误;()12,x x D 项:必有2相异根,且非零,()2221111001010333f x x ax x x x ax x ax ⎛⎫=+-=⇒=+-=+-= ⎪⎝⎭或,故必有3个零点,故正确. ()f x 故选择:BD三、填空题13.已知函数,则在处的切线方程为___________.()e sin 2xf x x =-()f x ()()0,0f 【答案】10x y +-=【分析】由导数的几何意义求切线的斜率,利用点斜式求切线方程.【详解】因为,()e sin 2xf x x =-所以,,()00e sin 01f =-=()e 2cos 2xf x x =-'所以,()00e 2cos 01f =-=-'切线方程为, 即. ()10y x -=--10x y +-=故答案为:.10x y +-=14.函数有极值,则实数的取值范围是______.()322f x x x ax a =-++a 【答案】1(,3-∞【分析】求出函数的导数,再利用存在变号零点求出a 的范围作答.()f x '()f x '【详解】函数定义域为R ,求导得:,()322f x x x ax a =-++2()32f x x x a '=-+因为函数有极值,则函数在R 上存在变号零点,即有两个不等实根, ()f x ()f x '()0f x '=即有方程有两个不等实根,于是得,解得,2320x x a -+=4120a ∆=->13a <所以实数的取值范围是.a 1(,)3-∞故答案为:1(,)3-∞15.某公司新开发了4件不同的新产品,需放到三个不同的机构A ,B ,C 进行测试,每件产品只能放到一个机构里,则所有测试的情况有________种(结果用具体数字表示). 【答案】81【分析】利用分步乘法原理求解即可【详解】由题意可知,每一个新产品都有3种放法,所以由分步乘法原理可得 4件不同的新产品共有种放法, 333381⨯⨯⨯=故答案为:8116.已知,则_________.233A C 0!4m -+=m =【答案】2或3【分析】利用排列数公式,组合数公式进行计算即得.【详解】,233A C 0!4m -+= ,又,3A 6m∴=323216⨯=⨯⨯=所以或. 2m =3m =故答案为:2或3.四、解答题17.求下列函数的导数. (1); ln(21)y x =+(2); sin cos xy x=(3). 1()23()()y x x x =+++【答案】(1) 221y x '=+(2) 21cos y x'=(3) 231211y x x =++'【分析】利用导数的运算法则求解. 【详解】(1)解:因为, ln(21)y x =+所以; 221y x '=+(2)因为, sin cos xy x=所以; ()2222cos sin 1cos cos x xy xx +'==(3)因为, 1()23()()y x x x =+++,326116x x x =+++所以.231211y x x =++'18.已知函数.()322f x x ax b =-+(1)若函数在处取得极小值-4,求实数a ,b 的值; ()f x 1x =(2)讨论的单调性.()f x 【答案】(1) 33a b =⎧⎨=-⎩(2)答案不唯一,具体见解析【分析】(1)根据求导和极值点处导数值为0即可求解;(2)求导,分类讨论的取值即可求解. a 【详解】(1),则 ()262f x x ax '=-()()1014f f ⎧=⎪⎨=-'⎪⎩即解得,经验证满足题意,62024a a b -=⎧⎨-+=-⎩33a b =⎧⎨=-⎩(2)()()26223f x x ax x x a '=-=-令解得或 ()0f x '=0x =3a x =1°当时,在上单调递增0a =()f x ()∞∞-,+2°当时,在,上单调递增,上单调递减a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0∞,+,03a ⎛⎫ ⎪⎝⎭3°当时,在,(上单调递增,上单调递减0a >()f x ()0∞-,,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭19.已知函数.()e 2x f x ax a =++(1)若为的一个极值点,求实数a 的值并此函数的极值; 0x =()f x (2)若恰有两个零点,求实数a 的取值范围. ()f x 【答案】(1),极小值为,无极大值12a =-12(2) ,⎛-∞ ⎝【分析】(1)由求得,结合函数的单调性求得的极值. ()00f '=a ()f x (2)由分离常数,利用构造函数法,结合导数求得的取值范围. ()0f x =a a 【详解】(1),依题意,()e 2x f x a '=+()10120,2f a a =+==-'此时,所以在区间递减;()e 1xf x '=-()f x ()()(),0,0,f x f x '-∞<在区间递增. ()()()0,,0,f x f x '+∞>所以的极小值为,无极大值. ()f x ()110122f =-=(2)依题意①有两个解,()e 20x f x ax a =++=,所以不是①的解,121e 02f -⎛⎫-=> ⎪⎝⎭12x =-当时,由①得,12x ≠-e 21xa x =-+构造函数,()e 1212x g x x x ⎛⎫=-≠- ⎪+⎝⎭,()()()()22e 212e 21e 2121x xx x x g x x x +--'=-=-⋅++所以在区间递增;()()111,,,,0,222g x g x ⎛⎫⎛⎫'-∞--> ⎪ ⎪⎝⎭⎝⎭在区间递减.()()1,,0,2g x g x ⎛⎫'+∞< ⎪⎝⎭当时,;当时,,12x <-()0g x >12x >-()0g x <与的图象有两个交点, 121e 22g ⎛⎫=-= ⎪⎝⎭y a =()y g x =则需a <综上所述,的取值范围是. a ,⎛-∞ ⎝【点睛】根据极值点求参数,要注意的是由求得参数后,要根据函数的单调区间进行验()00f x '=证,因为导数为零的点,不一定是极值点.利用导数研究函数的零点,可以考虑分离常数法,通过分离常数,然后利用构造函数法,结合导数来求得参数的取值范围.20.已知一条铁路有8个车站,假设列车往返运行且每个车站均停靠上下客,记从车站上车到A B 车站下车为1种车票().A B ≠(1)该铁路的客运车票有多少种?(2)为满足客运需要,在该铁路上新增了个车站,客运车票增加了54种,求的值.n n 【答案】(1)56(2)3【分析】根据条件利用排列公示建立方程就可以解决.【详解】(1)铁路的客运车票有.288756A =⨯=(2)在新增了个车站后,共有个车站,因为客运车票增加了54种,则, n 8n +285654n A +-=所以,解得.28(8)(7)110n A n n +=++=3n =21.现有如下定义:除最高数位上的数字外,其余每一个数字均比其左边的数字大的正整数叫“幸福数”(如346和157都是三位“幸福数”).(1)求三位“幸福数”的个数;(2)如果把所有的三位“幸福数”按照从小到大的顺序排列,求第80个三位“幸福数”.【答案】(1)个84(2)589【分析】(1)由幸福数的定义结合组合公式求解即可;(2)分类讨论最高位数字,由组合公式结合分类加法计数原理得出第80个三位“幸福数”.【详解】(1)根据题意,可知三位“幸福数”中不能有0,故只需在数字1,2,3,…,9中任取3个,将其从小到大排列,即可得到一个三位“幸福数”,每种取法对应1个“幸福数”,则三位“幸福数”共有个.39C 84=(2)对于所有的三位“幸福数”,1在最高数位上的有个, 28C 28=2在最高数位上的有个,27C 21=3在最高数位上的有个,2615C =4在最高数位上的有个,25C 10=5在最高数位上的有个.24C 6=因为,28211510680++++=所以第80个三位“幸福数”是最高数位为5的最大的三位“幸福数”,为589.22.为响应国家提出的“大众创业万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业,生产某小型电子产品.经过市场调研,生产该小型电子产品需投入年固定成本2万元,每生产x 万件,需另投入流动成本万元.已知在年产量不足4万件时,,在年产量不小()W x ()3123W x x x =+于4万件时,.每件产品售价6元.通过市场分析,小王生产的产品当年能全部售()64727W x x x=+-完.(1)写出年利润(万元)关于年产量(万件)的函数解析式.(年利润=年销售收入-年固定成()P x x 本-流动成本.)(2)年产量为多少万件时,小王在这一产品的生产中所获年利润最大?最大年利润是多少? 【答案】(1); ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当年产量为8万件时,所获年利润最大,为9万元.【分析】(1)分以及,分别求解得出表达式,写成分段函数即可;04x <<4x ≥()P x (2)当时,求导得出.然后根据基本不等式求出时,的最值,04x <<()max 10()23P x P ==4x ≥()P x 比较即可得出答案.【详解】(1)由题意,当时,;当时,04x <<()33116224233x x x x x P x ⎛⎫=--+=-+- ⎪⎝⎭4x ≥. ()64646272725P x x x x x x ⎛⎫=--+-=-- ⎪⎝⎭所以. ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,令,解得.04x <<()24P x x '=-+()0P x '=2x =易得在上单调递增,在上单调递减,所以当时,()P x ()0,2()2,404x <<. ()max 10()23P x P ==当时,, 4x ≥()6425259P x x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当,即时取等号. 64x x=8x =综上,当年产量为8万件时,所获年利润最大,为9万元.。
高二第二学期第一次月考总结1000字8篇篇1随着春风拂面,高二第二学期的第一次月考也已经落下帷幕。
本次考试不仅是对学生们学习成果的一次检验,更是对班级整体学习氛围和教学成果的全面评估。
在此,我将对本次月考进行全面而深入的总结。
一、考试概况本次月考共涉及九门学科,包括语文、数学、英语等核心科目以及物理、化学、生物等自然科学。
考试时间为三天,形式为闭卷考试。
全体高二学生参加,总体考试情况良好,但也暴露出一些问题。
二、成绩分析1. 总体成绩:本次月考平均成绩较上学期有所提高,反映出学生们在寒假期间进行了有效的复习和预习。
尤其是数学和英语成绩提升明显,显示出学生们在基础学科上的扎实功底和持续进步。
2. 学科差异:在学科之间,成绩存在差异。
语文、历史等人文科目的成绩相对稳定,而物理、化学等自然科学科目则呈现出较大的波动。
这可能与学科特点和教学方法有关,需要在后续教学中加以关注和调整。
3. 学生表现:部分优秀学生表现出色,成绩稳定在班级前列。
然而,也有部分学生在某些科目上表现不佳,需要找到原因并采取措施加以改进。
三、存在问题1. 心态问题:部分学生在考试前存在过度紧张现象,影响正常发挥。
建议加强心理辅导,引导学生树立正确的学习态度。
2. 复习方法:一些学生复习方法不够科学,导致效率低下。
老师需要指导学生们制定合理的复习计划,提高学习效率。
3. 知识掌握:部分学生在自然科学科目上表现出知识掌握不牢的现象,需要在日常教学中加强基础知识的巩固和深化。
四、改进措施1. 加强心理辅导:组织专题心理辅导活动,帮助学生缓解考试压力,调整心态。
2. 优化教学方法:针对不同学科特点,调整教学策略,提高教学效果。
3. 提高课堂效率:加强课堂管理,确保课堂效率。
老师需要关注每位学生的学习情况,及时解答疑惑。
4. 加强基础训练:针对自然科学科目,加强基础知识的训练和巩固,提高学生知识掌握程度。
5. 家校合作:加强与家长的沟通与合作,共同关注学生的学习情况,形成家校共同促进的良好氛围。
2022-2023尤溪五中高二语文下学期第一次月考试卷一、现代文阅读(35分)(一)现代文阅读Ⅰ(17分)材料一:作诗一定是“情动于中而形于言”。
中国古典诗歌自始即以其能予人直接的感发之力量为最基本的特色。
“情动于中而形于言”,即看到外界的景、物、情、事使内心感动,然后用诗歌表达出来。
钟嵘在《诗品序》中说:“嘉会寄诗以亲,离群托诗以怨。
至于楚臣去境,汉妾辞宫。
或骨横朔野,魂逐飞蓬。
或负戈外戍,杀气雄边。
或士有解佩出朝,一去忘返。
凡斯种种,感荡心灵,非陈诗何以展其义?非长歌何以骋其情?”可见钟嵘所认识的诗歌,其本质乃是心物相感应之下发自性情的产物。
使人心动的,除了外在的、大自然的景物外,人世间的死生离别更加使人心动。
如杜甫写在天宝乱世年间的诗歌:“朱门酒肉臭,路有冻死骨。
”当你看到沿途有饿死、冻死的人,难道不会去关心吗?所以,作诗的真正动机和兴起,可以使人对宇宙万物、社会产生一种关怀。
诗歌的吟诵是中华民族所独有的。
诗词是一种美文,它包括了形、音、义等几个方面,所以诗词的声音是非常重要的。
中国的语言有四声——平、上、去、入,这种单音独体是我们中国语言的特色。
因此,诗歌有平仄和结构,有一种独特的声调。
而这不是古人生编硬派给我们的,而是自然而然形成的。
《诗经》大多是四个字一句,就是因为我们独体单音的语言,四个字一句才能够表现出仄仄平平、平平仄仄的声调和节奏。
《诗经》里的第一首是:“关关雎鸠,在河之洲,窈窕淑女,君子好逑。
”两字一停顿,才有节奏,而这个节奏是我们中华民族语言的基本节奏。
不管是五言诗还是七言诗,原则上是两个字一个停顿,如“国破山河在”,是二二一的停顿。
“相见时难别亦难”,是二二三的停顿。
这种停顿,是诗词最基本的节奏。
中国的传统诗歌吟诵是结合中华民族的语言文字特色,经过了必然的、自然而然的演化过程所形成的一种音调,它是中华民族所独有的。
读词背诗,要懂得它所隐藏的深厚内涵。
我们来欣赏一首李白的作品《忆秦娥》。
高二年级2022~2023学年第二学期第一次月考英语(答案在最后)全卷满分150分,考试时间120分钟。
第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。
1. When are the speakers going to meet?A. At 9:30.B. At 12:30.C. At 12:45.2. Which dish is most suitable for Paul?A. Beef steak.B. Roast chicken.C. Salad.3. What are the speakers mainly talking about?A. A meeting.B. An exhibition.C. A lecture.4. What will the man probably do this weekend?A. Visit a professor.B. Take a class.C. Have a big dinner.5. Why does the woman want to learn Chinese?A. To learn Chinese music.B. To be a teacher in college.C. To attend college in China.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2022-2023学年浙江省杭州重点大学附属中学高二下期第一次月考语文试卷1. 下列句中加点词的解释,不正确的一项是()A. 方其系燕父子以组组:丝带、丝绳,这里泛指绳索。
B. 其意气之盛,可谓壮哉壮:雄壮。
C. 抑本其成败之迹抑:或者。
D. 逸豫可以亡身身:身体。
2. 下列句子中加点词的用法与其他三项不相同的一项是()A. 天下云集响应B. 席卷天下C. 履至尊而制六合D. 赢粮而景从3. 下列句子中对加点词的解释全都正确的一项是()A. ①才能不及中人(平常的人)②流血漂橹(船桨)B. ①蹑足行伍之间(小心翼翼地行走)②不爱珍器重宝肥饶之地(吝惜)C. ①赢粮而景从(担负)②非抗于九国之师也(匹敌,相当)D. ①委命下吏(下达命令)②以致天下之士(招引,招致)4. 选出“举世混浊,何不随其流而扬其波”翻译正确一项是()A. 整个世道都是混浊的,您为什么不随着流水去推波助澜呢?B. 整个世界都污浊不清,您为什么不随着流水去推波助澜呢?C. 整个世界都污浊不清,您为什么不随波逐流并推波助澜呢?D. 整个世界都是混浊的,您为什么不像流水那样推波助澜呢?阅读下面这首诗,完成小题。
书愤陆游早岁那知世事艰,中原北望气如山。
楼船夜雪瓜洲渡,铁马秋风大散关。
塞上长城[注]空自许,镜中衰鬓已先斑。
出师一表真名世,千载谁堪伯仲间。
【注】塞上长城:《南史》载,宋文帝要杀名将檀道济,檀大怒道:“乃坏汝万里长城。
”5. 下列对这首诗的理解和分析,不正确的一项是()A. 首联,表现了诗题中的“愤”字,形成了全诗的感情基调。
B. 颔联将诗人的报国愿望渲染得更加鲜明,再次突出理想与现实的矛盾,与首联相比,悲愤之情更加强烈。
C. 颈联从现实到回忆,诗意转为悲凉,一“空”一“已”互为映衬,有着无限沉痛与悲愤。
D. 尾联诗人以诸葛亮自况,矢志北伐,死而后已,悲愤中蕴藉着豪壮之情。
6. 下列对这首诗的理解和分析,不正确的一项是()A. 首句写诗人早年不懂世事之艰难,既表现年轻时的意气风发,又暗示今日的意志消沉。
南通市2021-2022学年(下)高二第一次月考真题卷数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数21()9ln 2f x x x =-的单调递减区间是A.()0,3 B.(,3)-∞ C.(3,)+∞ D.()3,3-2.函数()sin x f x e x =+在点(0,1)处的切线与直线210x ay -+=互相垂直,则实数a 等于()A.2- B.4- C.12-D.23.拉格朗日中值定理是微分学中的基本定理之一,定理内容是:如果函数()f x 在闭区间[],a b 上的图象连续不间断,在开区间(),a b 内的导数为()f x ',那么在区间(),a b 内至少存在一点c ,使得()()()()f b f a f c b a '-=-成立,其中c 叫做()f x 在[],a b 上的“拉格朗日中值点”.根据这个定理,可得函数()33f x x x =-在[]22-,上的“拉格朗日中值点”的个数为()A .3B.2C.1D.04.下列说法中正确的是()①设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()5316P X ==②已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<=③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点互不相同”,事件B =“小赵独自去一个景点”,则()29P A B =;④()()2323E X E X +=+;()()2323D X D X +=+.A.①②③B.②③④C.②③D.①③5.函数f (x )=22ax +(1﹣2a )x ﹣2ln x 在区间1,32⎛⎫ ⎪⎝⎭内有极小值,则a 的取值范围是()A.12,3⎛⎫-- ⎪⎝⎭B.12,2⎛⎫--⎪⎝⎭C.112,,33⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭D.112,,22⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭6.若对1x ∀、()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-,则m 的最小值是()A.1eB.eC.1D.3e7.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为()A.1- B.0C.1D.28.已知函数()f x 是定义域为R 的奇函数,且当x <0时,函数()1x f x xe =+,若关于x 的函数[]2()()(1)()F x f x a f x a =-++恰有2个零点,则实数a 的取值范围为A.1,1e ⎛⎫-∞- ⎪⎝⎭B.()(),11,-∞-+∞U C.111,11,1e e ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭D.(][),11,-∞-+∞ 二、多项选择题:本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题 目要求,全部选对得5 分,部分选对得2 分,有项选错得0 分.9. 为了防止受到核污染的产品影响民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则下列说法正确的是()A.该产品能销售的概率为34B.若ξ表示一箱产品中可以销售的件数,则34,4B ξ⎛⎫ ⎪⎝⎭~C.若ξ表示一箱产品中可以销售的件数,则()()7403120P X P ξ====;D.()2780128P X =-=10.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是()A.若0a ≤,则函数()f x 没有极值B.若0a >,则函数()f x 有极值C.若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D.若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭11.已知函数()2exax x a f x ++=(a为常数),则下列结论正确的有()A.当0a =时,()f x 有最小值1eB.当0a ≠时,()f x 有两个极值点C.曲线()y f x =在点()()0,0f 处的切线方程为()10a x y a -+-=D.当e 102a -<≤时,()ln f x x x ≤-12.对于函数()ln xf x x=,下列说法错误的是()A.f (x )在(1,e )上单调递增,在(e ,+∞)上单调递减B.若方程()1fx k +=有4个不等的实根1234,,,x x x x,则12344x x x x +++=-C.当1201x x <<<时,1221ln ln x x x x <D.设()2g x x a =+,若对12,(1,)x R x ∀∈∃∈+∞,使得()()12g x f x =成立,则ea ≤三、填空题:本题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.盒中放有12个乒乓球,其中9个是新的,第一次比赛时从中任取3个来使用,比赛后仍放回盒中.第二次比赛时再从中任取3个球,则第二次取出的球都是新球的概率为___________.14.已知函数()cos xf x e x =+,则使得()()21f x f x ≤-成立的x 范围是_______.15.已知函数()ln xf x x =.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.16.已知()3ln 44x f x x x=-+,()224g x x ax =--+,若对(]10,2x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥成立,则a 的取值范围是______.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.已知函数()()330f x x ax b a =-+>的极大值为16,极小值为-16.(1)求a 和b 的值;(2)若过点()1,M m 可作三条不同的直线与曲线()y f x =相切,求实数m 的取值范围.18.某公司对项目A 进行生产投资,所获得的利润有如下统计数据表:项目A 投资金额x (单位:百万元)12345所获利润y (单位:百万元)0.30.30.50.91(1)请用线性回归模型拟合 y 与 x 的关系,并用相关系数加以说明;(2)该公司计划用 7 百万元对 A 、B 两个项目进行投资.若公司对项目 B 投资x (1 ≤x ≤6)百万元所获得的利润y 近似满足:0.490.160.491y x x =-++,求A 、B 两个项目投资金额分别为多少时,获得的总利润最大?附.①对于一组数据()11,x y 、()22,x y 、……、(),n n x y ,其回归直线方程ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:121ˆˆˆ,niii nii x ynx y bay bx xnx==-⋅==--∑∑.②线性相关系数iinx ynx yr -⋅=∑.一般地,相关系数r 的绝对值在0.95以上(含0.95)认为线性相关性较强;否则,线性相关性较弱.参考数据:对项目A投资的统计数据表中5521111, 2.1iii i i x yy ====≈∑∑.19.甲、乙两队进行排球比赛,每场比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).比赛排名采用积分制,积分规则如下:比赛中,以3:0或3:1取胜的球队积3分,负队积0分;以3:2取胜的球队积2分,负队积1分,已知甲、乙两队比赛,甲每局获胜的概率为23.(1)甲、乙两队比赛1场后,求甲队的积分X 的概率分布列和数学期望;(2)甲、乙两队比赛2场后,求两队积分相等的概率.20.已知函数()e (ln 1)(R)ax f x x a =+∈,()f x '为()f x 的导数.(1)设函数()()eaxf xg x '=,求()g x 的单调区间;(2)若()f x 有两个极值点,1212,()x x x x <,求实数a 的取值范围21.已知函数2()ln (2)f x a x x a x =+-+,其中.a R ∈(1)讨论函数()f x 的单调性;(2)若函数()f x 的导函数()'f x 在区间()1,e 上存在零点,证明:当()1,e x ∈时,()2e .f x >-22.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x <南通市2021-2022学年(下)高二第一次月考真题卷数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数21()9ln 2f x x x =-的单调递减区间是A.()0,3 B.(,3)-∞C.(3,)+∞ D.()3,3-【答案】A 【解析】【分析】求出函数的定义域,求出函数的导函数,令导函数小于0求出x 的范围,写出区间形式即得到函数21()9ln 2f x x x =-的单调递减区间.【详解】函数的定义域为x >0,∵9()f x x x'=-,令90x x-<,由于x >0,从而得0<x <3,∴函数21()9ln 2f x x x =-的单调递减区间是(0,3).故选:A .【点睛】本题考查利用导数研究函数的单调性,考查导数的应用,要注意先确定函数定义域,属于基础题.2.函数()sin x f x e x =+在点(0,1)处的切线与直线210x ay -+=互相垂直,则实数a 等于()A.2-B.4- C.12-D.2【答案】B 【解析】【分析】由导数的几何意义得函数()sin x f x e x =+在点(0,1)处的切线的斜率为2,进而221a⨯=-即可得答案.【详解】解:因为()'cos xf x e x =+,()'0112f =+=,所以函数()sin x f x e x =+在点(0,1)处的切线的斜率为2,因为切线与直线210x ay -+=互相垂直,21y x a a=+,所以221a⨯=-,解得4a =-.故选:B.【点睛】本题解题的关键在于根据导数的几何意义求得函数在(0,1)处的切线的斜率为2,考查运算求解能力,是基础题.3.拉格朗日中值定理是微分学中的基本定理之一,定理内容是:如果函数()f x 在闭区间[],a b 上的图象连续不间断,在开区间(),a b 内的导数为()f x ',那么在区间(),a b 内至少存在一点c ,使得()()()()f b f a f c b a '-=-成立,其中c 叫做()f x 在[],a b 上的“拉格朗日中值点”.根据这个定理,可得函数()33f x x x =-在[]22-,上的“拉格朗日中值点”的个数为()A.3B.2C.1D.0【答案】B 【解析】【分析】根据题中给出的“拉格朗日中值点”的定义分析求解即可.【详解】函数3()3f x x x =-,则()()()222,22,33f f f x x '=-=-=-,由()()()()2222f f f c '--=+,得()1f c '=,即2331c -=,解得[]232,23c =±∈-,所以()f x 在[2-,2]上的“拉格朗日中值点”的个数为2.故选:B.4.下列说法中正确的是()①设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()5316P X ==②已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<=③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点互不相同”,事件B =“小赵独自去一个景点”,则()29P A B =;④()()2323E X E X +=+;()()2323D X D X +=+.A.①②③ B.②③④C.②③D.①③【答案】A 【解析】【分析】根据题意条件,利用二项分布、正态分布、条件概率、期望与方程的定义与性质等对每一项进行逐项分析.【详解】解:命题①:设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()3336115312216P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭,正确;命题②:∵ξ服从正态分布()22,N σ,∴正态曲线的对称轴是2x =,()()()40.9400.1P X P X P X <=⇒>=<= ,()()02240.4P X P X ∴<<=<<=,正确;命题③:设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()()34443!43,44P AB P B ⨯⨯==,所以()()()29P AB P A B P B ==,正确;命题④:()()2323E X E X +=+正确,()()232D X D X +=错误,应该为()()234D X D X +=,故不正确.故选:A【点睛】本题考查了二项分布、正态分布、条件概率、期望与方程的定义与性质等;若命题正确,则应能给出证明;若错误,则应能给出反例.5.函数f (x )=22ax +(1﹣2a )x ﹣2ln x 在区间1,32⎛⎫ ⎪⎝⎭内有极小值,则a 的取值范围是()A.12,3⎛⎫-- ⎪⎝⎭B.12,2⎛⎫--⎪⎝⎭C.112,,33⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭D.112,,22⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】【分析】求出函数的导数,然后令导数等于零,求出方程的两个根,通过讨论根的范围可得a 的取值范围.【详解】解:由2()(12)2ln 2ax f x a x x =+--,得2'2(12)2(2)(1)()(12)ax a x x ax f x ax a x x x+---+=+--==,(1)当0a =时,'2()x f x x-=,当02x <<时,'()0f x <,当2x >时,'()0f x >,所以2x =为函数的一个极小值点,(2)当0a ≠时,令'()0f x =,则2x =或1x a=-,①当0a >时,当02x <<时,'()0f x <,当2x >时,'()0f x >,所以2x =为函数的一个极小值点,②当0a <时,i)若12a ->,即102a -<<时,02x <<时,'()0f x <,当12x a <<-时,'()0f x >,所以2x =为函数的一个极小值点,ii)若12a -=,即12a =-时,当(0,)x ∈+∞时,'()0f x <,函数无极值;iii)若1122a <-<,即122a -<<-时,当10x a<<-时,'()0f x <,当12x a -<<时,'()0f x >,所以1x a =-为1,32⎛⎫⎪⎝⎭上的极小值点,综上a 的取值范围是112,,22⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭,故选:D【点睛】此题考查了函数的极值,考查了分类讨论思想,属于中档题.6.若对1x ∀、()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-,则m 的最小值是()A.1eB.eC.1D.3e【答案】C 【解析】【分析】由题意可得122121ln ln x x x x x x -<-,变形得出1212ln 1ln 1x x x x ++>,构造函数()ln 1x g x x+=,可知函数()y g x =在区间(),m +∞上单调递减,利用导数求得函数()y g x =的单调递减区间,由此可求得实数m 的最小值.【详解】对1x ∀、()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-,可得122121ln ln x x x x x x -<-,1212ln 1ln 1x x x x ++∴>,构造函数()ln 1x g x x+=,则函数()y g x =在区间(),m +∞上单调递减,()2ln xg x x'=-,令()0g x '<,解得1x >,即函数()y g x =的单调递减区间为()1,+∞,()(),1,m ∴+∞⊆+∞,则m 1≥,因此,实数m 的最小值为1.故选:C.【点睛】本题考查利用函数在区间上的单调性求参数,将问题转化为函数的单调性是解答的关键,考查计算能力,属于中等题.7.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为()A.1- B.0C.1D.2【答案】A 【解析】【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可.【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥,所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-,所以sin cos m x x x ≥+对于[0,]x π∈有解,令()sin cos g x x x x =+,只需()min m g x ≥,则()sin cos sin cos g x x x x x x x '=+-=,当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增,当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减,()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-,所以1m ≥-,整数m 的最小值为1-,故选:A.【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.8.已知函数()f x 是定义域为R 的奇函数,且当x <0时,函数()1x f x xe =+,若关于x 的函数[]2()()(1)()F x f x a f x a =-++恰有2个零点,则实数a 的取值范围为A.1,1e ⎛⎫-∞- ⎪⎝⎭B.()(),11,-∞-+∞U C.111,11,1e e ⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭ D.(][),11,-∞-+∞ 【答案】C【解析】【分析】由F (x ) =0 得 f (x ) =1或 f (x ) =a ,而x <0 时, f (x ) =1无解,需满足 f (x ) =a 有两个解.利用导数求得()f x 在0x <时的性质,由奇函数得0x >时的性质,然后可确定出a 的范围.【详解】()(()1)(())0F x f x f x a =--=,()1f x =或()f x a =,0x <时,()11x f x xe =+<,()(1)x f x x e '=+,1x <-时,()0f x '<,()f x 递减,10x -<<时,()0f x '>,()f x 递增,∴()f x 的极小值为1(1)1f e-=-,又()1f x <,因此()1f x =无解.此时()f x a =要有两解,则111a e-<<,又()f x 是奇函数,∴0x >时,()1f x =仍然无解,()f x a =要有两解,则111x e-<<-.综上有111,11,1a e e ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】关键点点睛:本题考查函数的奇偶性与函数的零点,考查导数的应用.首先方程化为()1f x =或()f x a =,然后用导数研究0x <时()f x 的性质,同理由奇函数性质得出0x >廛()f x 的性质,从而得出()1f x =无解,()f x a =有两解时a 范围.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有项选错得0分.9.为了防止受到核污染的产品影响民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则下列说法正确的是()A.该产品能销售的概率为34B.若ξ表示一箱产品中可以销售的件数,则34,4B ξ⎛⎫ ⎪⎝⎭~C.若ξ表示一箱产品中可以销售的件数,则()()7403120P X P ξ====;D.()2780128P X =-=【答案】ABD 【解析】【分析】根据题意先求出该产品能销售的概率,从而选项A 可判断,由题意可得3~4,4B ξ⎛⎫ ⎪⎝⎭可判断选项B ,根据独立重复事件的概率问题可判断C ,D 选项.【详解】选项A.该产品能销售的概率为113116104⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭,故选项A 正确;选项B.由A 可得每件产品能销售的概率为34一箱中有4件产品,记一箱产品获利X 元,则3~4,4B ξ⎛⎫⎪⎝⎭,故选项B 正确;选项C.由题意()334312734464P C ξ⎛⎫==⨯⨯= ⎪⎝⎭,故选项C 不正确;选项D.由题意80X =-,即4件产品中有2件能销售,有2件产品不能销售,所以()222427128318044P X C ⎛⎫⎛⎫=-=⨯= ⎪ ⎪⎝⎭⎝⎭,故选项D 正确.故选:ABD.10.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是()A.若0a ≤,则函数()f x 没有极值B.若0a >,则函数()f x 有极值C.若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D.若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭【答案】ABD 【解析】【分析】先对()f x 进行求导,再对a 进行分类讨论,根据极值的定义以及零点的定义即可判断.【详解】解:由题意得,函数()f x 的定义域为(0,)+∞,且11()ax f x a x x'-=-=,当0a ≤时,()0f x '<恒成立,此时()f x 单调递减,没有极值,又 当x 趋近于0时,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于-∞,∴()f x 有且只有一个零点,当0a >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 单调递减,在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>,()f x 单调递增,∴当1x a=时,()f x 取得极小值,同时也是最小值,∴min 1()1ln f x f a a ⎛⎫==+⎪⎝⎭,当x 趋近于0时,ln x 趋近于-∞,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于+∞,当1ln 0a +=,即1a e=时,()f x 有且只有一个零点;当1ln 0a +<,即10a e<<时,()f x 有且仅有两个零点,综上可知ABD 正确,C 错误.故选:ABD .【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[]a b ,上是连续不断的曲线,且()()·0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.11.已知函数()2e xax x a f x ++=(a为常数),则下列结论正确的有()A.当0a =时,()f x 有最小值1eB.当0a ≠时,()f x 有两个极值点C.曲线()y f x =在点()()0,0f 处的切线方程为()10a x y a -+-=D.当e 102a -<≤时,()ln f x x x ≤-【答案】BCD 【解析】【分析】对于A ,求导后通过求出函数的单调区间,从而可求出其最值,对于B ,分0a >和0a <两种情况求函数的极值,对于C ,利用导数的几何意义求解,对于D ,由已知可得()()22e 12e 1e 2e x x x x ax x af x -++-++=≤,构造函数()()2e 12e 12exx x g x -++-=,利用导数求得其()()max 11g x g ==⎡⎤⎣⎦,构造函数()ln h x x x =-,利用导数求得()()min 11h x h ==⎡⎤⎣⎦,从而可得结论【详解】对于A 选项,当0a =时,()exx f x =,求导得()1e x xf x -'=,令()0f x '=,解得x =1.当x <1时,f (′x > )0,f (x )在,∞−(1 )上单调递增;当x >1时,f (′x < )0,f (x )在(1)∞+,上单调递减,所以当x =1时, f (x )有最大值1e,故选项 A 错误;对于 B 选项,当a ≠0时,对 f (x )求导得()f x '=()()()211211e e xxx ax a ax a x a---⎡⎤---+⎣⎦-=-,当0a >时,令()0f x '=,解得111x a=-,21x =且12x x <,当1,1x a ⎛⎫∈-∞-⎪⎝⎭时,()0f x '<,当11,1x a ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当()1,x ∈+∞时,()0f x '<,所以()f x 在11x a=-时取极小值,在1x =时取极大值.当0a <时,令()0f x '=,解得11x =,211x a=-且12x x <,当(),1x ∈-∞时,()0f x '>,当11,1x a ⎛⎫∈-⎪⎝⎭时,()0f x '<,当11,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在1x =时取极大值,在11x a=-时取极小值,所以当0a ≠时,()f x 有两个极值点,故选项B 正确;对于C 选项,因为()()2211exax a x af x ---+'=-,所以()01f a '=-,又()0f a =,所以曲线()y f x =在点()()0,0f 处的切线方程为()()10y a a x -=--,即()10a x y a -+-=,故选项C 正确;对于D 选项,当e 102a -<≤时,()()22e 12e 1e 2ex xx x ax x a f x -++-++=≤,令()()2e 12e 12e xx x g x -++-=,()0,x ∈+∞,则()()()2e 12e 2e 32e xx x g x ---+-'=-()()()1e 1e 32e xx x ----⎡⎤⎣⎦=-,显然当0x >时,()()e 1e 30x --->,所以当01x <<时,()0g x '>,()g x 在()0,1上单调递增;当1x >时,()0g x '<,()g x 在()1,+∞上单调递减,所以()()max 11g x g ==⎡⎤⎣⎦,令()ln h x x x =-,求导得()111x h x x x-'=-=,当01x <<时,()0h x '<,()h x 在()0,1上单调递减;当1x >时,()0h x '>,()h x 在()1,+∞上单调递增,所以()()min 11h x h ==⎡⎤⎣⎦,所以()ln f x x x ≤-,故选项D 正确,故选:BCD.【点睛】关键点点睛:此题考查导数的应用,对于选项D 解题的关键是由e 102a -<≤时,()()22e 12e 1e 2e x x x x ax x af x -++-++=≤,然后构造()()2e 12e 12exx x g x -++-=,然后利用导数求出其最大值,再利用导数求出()ln h x x x =-的最小值即可,考查数学转化思想和计算能力,属于中档题12.对于函数()ln xf x x=,下列说法错误的是()A.f (x )在(1,e )上单调递增,在(e ,+∞)上单调递减B.若方程()1fx k +=有4个不等的实根1234,,,x x x x,则12344x x x x +++=-C.当1201x x <<<时,1221ln ln x x x x <D.设()2g x x a =+,若对12,(1,)x R x ∀∈∃∈+∞,使得()()12g x f x =成立,则ea ≤【答案】ACD 【解析】【分析】函数()ln xf x x=,(0x ∈,1)(1⋃,)∞+,2ln 1()ln x f x x -'=,利用导数研究函数的单调性和极值,画出图象.A .由上述分析即可判断出正误;.B .方程(|1|)f x k +=有4个不等的实根,结合函数奇偶性以及图象特点可知四个根两两关于直线1x =-对称,可判断出正误;.C .由函数()ln xf x x =在(0,1)x ∈单调递减,可得函数ln x y x=在(0,1)x ∈单调递增,即可判断出正误;D .设函数()g x 的值域为G ,函数()f x 的值域为E .若对1x R ∀∈,2(1,)x ∃∈+∞,使得12()()g x f x =成立,可得G E ⊆,即可判断出正误.【详解】函数()ln xf x x=,(0x ∈,1)(1⋃,)∞+.2ln 1()ln x f x x-'=,可得函数()f x 在(0,1)上单调递减,在(1,e)上单调递减,在(e,)+∞上单调递增,其大致图象如图:A .由上述分析可得A 不正确.B .函数(||)y f x =为偶函数,其图象关于y 轴对称,则(|1|)y f x =+的图象关于1x =-对称,故(|1|)f x k +=的有4个不等实根时,则这四个实根必两两关于1x =-对称,故12344x x x x +++=-,因此B 正确.C .由函数()ln xf x x =在(0,1)x ∈单调递减,可得函数ln x y x=在(0,1)x ∈单调递增,因此当1201x x <<<时,1212ln ln x x x x <,即1221ln ln x x x x >,因此C 不正确;D .设函数()()g x x R ∈的值域为G ,函数()((1f x x ∈,))+∞的值域为E ,2()g x x a =+,对x R ∀∈,[G a =,)∞+.(1,)x ∀∈+∞,[e E =,)∞+.2()g x x a =+,若对1x R ∀∈,2(1,)x ∃∈+∞,使得12()()g x f x =成立,则G E ⊆.e a ∴,因此D 不正确,故选:ACD .三、填空题:本题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.盒中放有12个乒乓球,其中9个是新的,第一次比赛时从中任取3个来使用,比赛后仍放回盒中.第二次比赛时再从中任取3个球,则第二次取出的球都是新球的概率为___________.【答案】4413025【解析】【分析】令i A 表示第一次任取3个球使用时,取出i 个新球(0,1,2,3)i =,B 表示第二次任取的3个球都是新球,求出()i P A ,再应用全概率公式求P (B )即可.【详解】令i A 表示第一次任取3个球使用时,取出i 个新球(0,1,2,3)i =,B 表示第二次任取的3个球都是新球,则3303121()220C P A C ==,2139131227()220C C P A C ==,12392312108()220C C P A C ==,39331284()220C P A C ==,根据全概率公式,第二次取到的球都是新球的概率为:00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++=3333987633331212121212710884441.2202202202203025C C C C C C C C ⨯+⨯+⨯+⨯=故答案为:4413025.14.已知函数()cos xf x e x =+,则使得()()21f x f x ≤-成立的x 范围是_______.【答案】11,3⎡⎤-⎢⎥⎣⎦【解析】【分析】分析出函数()f x 为偶函数,再利用导数分析出函数()f x 在区间[)0,+∞上为增函数,由()()21f x f x ≤-可得出()()21f x f x ≤-,进而得出21x x ≤-,进而可求得x 的取值范围.【详解】函数()f x 的定义域为R ,()()()cos cos xxf x e x e x f x --=+-=+=,所以,函数()f x 为偶函数,当0x ≥时,()cos x f x e x =+,则()sin 1sin 0x f x e x x '=-≥-≥,所以,函数()f x 在区间[)0,+∞为增函数,由()()21f x f x ≤-可得()()21fx f x ≤-,所以21x x ≤-,则有()2241x x ≤-,可得23210x x +-≤,解得113x -≤≤.因此,使得()()21f x f x ≤-成立的x 范围是11,3⎡⎤-⎢⎥⎣⎦.故答案为:11,3⎡⎤-⎢⎥⎣⎦.【点睛】利用偶函数的基本性质解不等式,可充分利用性质()()f x f x =,同时注意分析出函数()f x 在区间[)0,+∞上的单调性.15.已知函数()ln x f x x =.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.【答案】1【解析】【分析】利用导数可求得()f x 单调性和()max 1ef x =,将问题转化为()()max min 1ef x f x -≤;分别在e a ≥和0e a <<的情况下,确定最小值,由此构造不等式求得a 的范围,进而得到最小值.【详解】()21ln xf x x-'= ,∴当()0,e x ∈时,()0f x '>;当()e,x ∈+∞时,()0f x '<;()f x ∴在()0,e 上单调递增,在()e,+∞上单调递减,()()max 1e ef x f ∴==;若对任意[)12,,x x a ∞∈+,都有()()121e f x f x -≤成立,则()()max min 1e f x f x -≤;当e a ≥时,()0f x >恒成立,又()()max 1e e f x f ≤=,()()max min 1ef x f x ∴-≤恒成立;当0e a <<时,()f x 在[),e a 上单调递增,在()e,+∞上单调递减,则只需()ln 0af a a=≥即可,即1e a ≤<;综上所述:a 的取值范围为[)1,+∞;a ∴的最小值为1.故答案为:1.16.已知()3ln 44x f x x x=-+,()224g x x ax =--+,若对(]10,2x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥成立,则a 的取值范围是______.【答案】1[,)8-+∞【解析】【分析】根据对(]10,2x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥成立,只需()()min minf xg x ≥求解即可.【详解】因为()3ln 44x f x x x=-+,所以()()()222213113434444x x x x f x x x x x ---+-'=--==-,当01x <<时,()0f x '<,当12x <<时,()0f x '>,所以()()min 112f x f ==,因为()224g x x ax =--+开口方向向下,所以在区间[]1,2上的最小值的端点处取得,所以要使对(]10,2x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥成立,只需()()min min f x g x ≥,即()112g ≥或()122g ≥,即11242a ≥--+或14442a ≥--+,解得18a ≥-,所以a 的取值范围是1[,)8-+∞,故答案为:1[,)8-+∞四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.已知函数()()330f x x ax b a =-+>的极大值为16,极小值为-16.(1)求a 和b 的值;(2)若过点()1,M m 可作三条不同的直线与曲线()y f x =相切,求实数m 的取值范围.【答案】(1)4a =,0b =;(2)()12,11--.【解析】【分析】(1)求出导函数'()f x ,确定极大值和极小值,由题意可求得,a b ;(2)设切点()()00,P x f x ,切线方程为()()()000y f x f x x x '-=-,即()2300342y x x x =--,由切线过点()1,M m ,得()233200003422312m x x x x x =--=-+-,从而此方程有 3 个实数根,问题转化为函数g (x = )2x 3 −3x 2+m +12 有 3 个零点,再由导数研究g (x ) 的极大值和极小值可得出结论.【详解】(1)函数()()330f x x ax b a =-+>,()(2333f x x a x x '=-=+-.可得:函数()f x 在(,-∞,)+∞上单调递增,在(上单调递减.∴x =时函数()f x 取得极大值16,x =时函数()f x 取得极小值-16.∴(316f b =-=,316f b ==-,联立解得:4a =,0b =,(2)由(1)可知()312f x x x =-,设切点()()00,P x f x ,则切线方程为()()()000y f x f x x x '-=-,即()2300342y x x x =--,因为切线过点()1,M m ,所以()233200003422312m x x x x =--=-+-,由于有3条切线,所以方程有3个实数根,设()322312g x x x m =-++,则只要使()g x 有3个零点,令()2660g x x x '=-=,解得1x =或0x =,当(),0x ∈-∞,()1,+∞时,()0g x '>,()g x 单调递增;当()0,1x ∈时,()0g x '<,()g x 单调递减,所以0x =时,()g x 取极大值,1x =时,()g x 取极小值,所以要是曲线()g x 与x 轴有3个交点,当且仅当(0)0(1)0g g >⎧⎨<⎩,即120110m m +>⎧⎨+<⎩,解得1211m -<<-,即实数m 的取值范围为()12,11--.【点睛】本题考查用导数研究函数的极值,考查导数的几何意义,考查用导数研究函数零点个数问题,本题对计算能力的要求较高,属于难题.18.某公司对项目A 进行生产投资,所获得的利润有如下统计数据表:项目A 投资金额x (单位:百万元)12345所获利润y (单位:百万元)0.30.30.50.91(1)请用线性回归模型拟合y 与x 的关系,并用相关系数加以说明;(2)该公司计划用7百万元对A 、B 两个项目进行投资.若公司对项目B 投资()16x x ≤≤百万元所获得的利润y 近似满足:0.490.160.491y x x =-++,求A 、B 两个项目投资金额分别为多少时,获得的总利润最大?附.①对于一组数据()11,x y 、()22,x y 、……、(),n n x y ,其回归直线方程ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆˆˆ,ni ii n i i x ynx ybay bx x nx==-⋅==--∑∑.②线性相关系数1222211()()iii i i i i nn nx ynx yr x nx y n y ===-⋅=--∑∑∑.一般地,相关系数r 的绝对值在0.95以上(含0.95)认为线性相关性较强;否则,线性相关性较弱.参考数据:对项目A 投资的统计数据表中5521111, 2.24, 4.4 2.1iii i i x yy ====≈∑∑.【答案】(1)0.95r >,用线性回归方程ˆ0.2y x =对该组数据进行拟合合理;(2)对A 、B项目分别投资4.5百万元,2.5百万元时,获得总利润最大.【解析】【分析】(1)根据给定数表,计算出,x y ,再代入最小二乘法公式及线性相关系数公式计算即得;(2)由题设条件列出获得的总利润的函数关系,再借助均值不等式求解即得.【详解】(1)对项目A 投资的统计数据进行计算得:3x =,0.6y =,52155ii x==∑,于是得5512221511530.60.255535i ii i i x y x ybx x==-⋅-⨯⨯===-⨯-∑∑ ,ˆˆ0.60.230a y bx =-=-⨯=,所以回归直线方程为:ˆ0.2yx =,线性相关系数550.95340.95iix yx yr -⋅=>∑,这说明投资金额x 与所获利润y 之间的线性相关关系较强,用线性回归方程ˆ0.2yx =对该组数据进行拟合合理;(2)设对B 项目投资()16x x ≤≤百万元,则对A 项目投资()7x -百万元,所获总利润0.490.490.160.490.2(7) 1.930.04(1)11w x x x x x ⎡⎤=-++-=-++⎢⎥++⎣⎦1.93 1.65≤-=,当且仅当0.490.04(1)1x x +=+,即 2.5x =时取等号,所以对A 、B 项目分别投资4.5百万元,2.5百万元时,获得总利润最大.19.甲、乙两队进行排球比赛,每场比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).比赛排名采用积分制,积分规则如下:比赛中,以3:0或3:1取胜的球队积3分,负队积0分;以3:2取胜的球队积2分,负队积1分,已知甲、乙两队比赛,甲每局获胜的概率为23.(1)甲、乙两队比赛1场后,求甲队的积分X 的概率分布列和数学期望;(2)甲、乙两队比赛2场后,求两队积分相等的概率.【答案】(1)分布列见解析,18481;(2)11206561【解析】【分析】(1)随机变量X 的所有可能取值为0,1,2,3,再由独立事件的概率公式求得每个X 的取值所对应的概率即可得分布列,然后由数学期望的计算公式,得解;(2)设第i 场甲、乙两队积分分别为i X ,i Y ,则3i i X Y =-,1i =,2,由两队积分相等,可推出123X X +=,再分四种情况,并结合独立事件的概率公式,即可得解.【详解】(1)随机变量X 的所有可能取值为0,1,2,3,312312111(0)()()33339P X C ==+⋅⋅⋅=,22242118(1)()()33381P X C ==⋅⋅⋅=,222421216(2)()()33381P X C ==⋅⋅⋅=,2233212216(3)()()333327P X C ==⋅⋅⋅+=,所以X 的分布列为X0123P1988116811627所以数学期望181616184()0123981812781E X =⨯+⨯+⨯+⨯=.(2)记“甲、乙比赛两场后,两队积分相等”为事件A ,设第i 场甲、乙两队积分分别为i X ,i Y ,则3i i X Y =-,1i =,2,因两队积分相等,所以1212X X Y Y +=+,即1212(3)(3)X X X X +=-+-,则123X X +=,所以P (A )12121212(0)(3)(1)(2)(2)(1)(3)(0)P X P X P X P X P X P X P X P X ===+==+==+==1168161681611120927818181812796561=⨯+⨯+⨯+⨯=.20.已知函数()e (ln 1)(R)ax f x x a =+∈,()f x '为()f x 的导数.(1)设函数()()eaxf xg x '=,求()g x 的单调区间;(2)若()f x 有两个极值点,1212,()x x x x <,求实数a 的取值范围【答案】(1)当0a <时,()g x 的减区间为(0,)+∞,无增区间;当0a >时,()g x 的减区间为1(0,)a,增区间为1(,)a +∞(2)2(e ,).+∞【解析】【分析】(1)依题意,()f x 的定义域为(0,)+∞,且()1()ln e axf xg x a x a x'==++,则21()ax g x x-'=,再对a 进行分类讨论即可得到答案.(2)因为()f x 有两个极值点,所以()g x 有两个零点.由(1)知0a <时不合题意;当0a >时,min 1()((21)g x g a na a==-,接下来对a 进行讨论即可得到答案.【小问1详解】依题意,()f x 的定义域为(0,)+∞,e ()e (ln 1)axaxf x a x x'=++,则()1()ln e axf xg x a x a x'==++,则21().ax g x x -'=①当0a <时,()0g x '<在,()0x ∈+∞上恒成立,()g x 单调递减;②当0a >时,令()0g x '=得,1x a=,所以,当1(0,)x a ∈时,()0g x '<,()g x 递减;当1(,)x a∈+∞时,()0g x '>,()g x 递增;综上,当0a <时,()g x 的减区间为(0,)+∞,无增区间;当0a >时,()g x 的减区间为1(0,)a ,增区间为1(,).a+∞【小问2详解】因为()f x 有两个极值点,所以()g x 有两个零点,由(1)知0a <时不合;当0a >时,min 1()((21).g x g a na a==-当20e a <<时,1()(0g x g a>>,()g x 没有零点,不合题意;当2e a =时,1(0g a=,()g x 有一个零点1a,不合题意;当2e a >时,1()0g a <,21()(12ln )g a a a a=+-,设()12ln a a a ϕ=+-,2e a >,则2()10a aϕ'=->,所以22()(e )e 30a ϕϕ>=->,即21(0g a>,所以存在1211(,)x a a∈,使得1()0g x =;又因为1(e 0eg =>,所以存在211(,ex a ∈,使得2()0.g x =()f x 的值变化情况如下表:x 1(0,)x 1x 12(,)x x 2x 2(,)x +∞()'f x +0-0+()f x 递增极大值递减极小值递增所以当2e a >时,()f x 有两个极值点,综上,a 的取值范围是2(e ,).+∞21.已知函数2()ln (2)f x a x x a x =+-+,其中.a R ∈(1)讨论函数()f x 的单调性;(2)若函数()f x 的导函数()'f x 在区间()1,e 上存在零点,证明:当()1,e x ∈时,()2e .f x >-【答案】(1)答案不唯一,具体见解析(2)证明见解析【解析】。
2021-2022学年高二下学期第一次月考语文试题一、现代文阅读(一)论述类文本阅读阅读下面的文字,完成下列小题。
所谓“戏曲中国”,即戏曲所表现的中国,或者说,戏曲所表现的中国文化。
中国戏曲是“世界三大古老戏剧”中剧种最多、艺术生命力最强、剧目遗存最丰富的样式,但它为何比古希腊戏剧和古印度梵剧“晚出”呢?不少学者从外部条件和自身特征两个方面探讨戏曲晚熟,取得了一些成果,但亦不乏值得商榷之处。
例如,着眼于外部条件者所得出的“主要原因在于商品经济不发达”这一影响至巨的结论就值得商榷。
单就外部条件而言,戏曲创作的艰难与迟缓绝非经济因素一端所能解释。
人类文化史已反复证明,文化创造除了受经济基础的制约之外,还受社会结构、风俗习惯、文化传统、时代精神等框架的制约。
经济基础即使大体相仿,不同民族、社会的文化创造主体所面临的文化场合、文化情景也可能很不一样。
因此,从文化生态学角度来看,“戏曲何以晚出”在很大程度上是由于平民文化发展得不够充分。
中国戏曲建立在平民文化的基础上,所表现的中国文化以平民文化为主体。
文化的平民化不只是为戏曲的生成和发展提供了故事情节、表现形式,更为主要的是使文化发展的指向发生了重要变化——由朝而野,由雅而俗。
戏曲史上有一个引人瞩目的现象:许多取材于唐传奇、诗文的元代杂剧,其结局都变悲剧为团圆。
元代王实甫的《西厢记》,源于唐元稹《莺莺传》;元代白朴的《墙头马上》,源于白居易《井底引银瓶》,并非偶然,《莺莺传》和《井底引银瓶》都以悲剧结束,而《西厢记》和《墙头马上》则是大团圆的喜剧。
在这种不谋而合的共同现象背后,深层的原因何在?其实就在文化的平民化转向。
《莺莺传》中崔莺莺是名门闺秀,但没有勇气维护婚姻权利,预感张生有可能始乱终弃,她不是设法阻止这一结局的到来,而是向张生倾诉:“始乱之,终弃之,固其宜矣。
愚不敢恨。
”因为按照唐代上流社会习惯法,一个私订终身的女子是没有资格成为妻子的。
但上流社会的习惯法在平民社会中并不一定需要遵守。
2022-2023学年山东省聊城市颐中外国语学校高二(下)第一次月考英语试卷第一部分听力第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对仅读一遍。
1.(1.5分)Why does Linda learn Chinese songs?A.She is learning Chinese.B.She'll give a performance.C.She hopes to become a singer.2.(1.5分)What does Jason like doing now?A.Reading.B.Dancing.C.Watching movies.3.(1.5分)What does the man advise the woman to do?A.Enjoy the spring time.B.Do some indoor activities.C.Study hard for exams.4.(1.5分)When can the speakers meet?A.On Monday.B.On Tuesday.C.On Wednesday.5.(1.5分)What are the speakers talking about?A.A part-time job.B.House cleaning.C.The woman's father.第二节(共15 小题;每小题 1.5 分,满分22.5 分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
6.(3分)(1)What is Mrs.West doing?A.Shopping for groceries.B.Doing some baking.C.Having dinner.(2)What do Mrs.West's kids like best?A.Milk.B.Cheese.C.Homemade bread.7.(3分)(1)What is the relationship between the speakers?A.Classmates.B.Brother and sister.C.Teacher and student.(2)Who will be in charge of the introduction?A.Tom.B.John.C.Mary.8.(4.5分)(1)Where does the conversation probably take place?A.In the woman's house.B.In a newspaper office.C.In a publishing company.(2)Why is the man talking to the woman?A.To borrow her book.B.To ask for an article.C.To inform her of a meeting.(3)How does the woman sound at the end of the conversation?A.Serious.B.Excited.C.Annoyed.9.(6分)(1)What are the special boards used for?A.Keeping sunshine out.B.Covering buildings.C.Producing energy.(2)Where are the gardens?A.On the roofs.B.In the backyards.C.Next to the work stations.(3)How will Molly go home today?A.By bike.B.By bus.C.By car.(4)What does Molly say about BedZED?A.The public transportation is poor.B.There's much parking space.C.It is environment-friendly.10.(6分)(1)What is today's Art Review about?A.A report on an artistic film.B.An interview with an artist.C.An event in London National Museum.(2)When does The Vanishing Lady begin?A.At 7:30.B.At 8:00.C.At 9:30.(3)What is Porten?A.An actor.B.A playwright (剧作家).C.A director.(4)What are Peter Field's boats like?A.They are strongly built.B.They are huge.C.They are fast.第二部分阅读理解第一节阅读下列短文,从每题所给的A、B、C 和D四个选项中,选出最佳选项。
高2015级2014学年第一次月考数学试卷 (理科)
一、选择题:本大题共10小题,每小题5分,共50分
1.已知条件:12p x +>,条件2:56q x x ->,则p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
2.在命题“若抛物线2y ax bx c =++的开口向下,则{}
2|0x ax bx c φ++<≠”的 逆命题、否命题、逆否命题中结论成立的是( )
A .都真
B .都假
C .否命题真
D .逆否命题真
3.双曲线22
221(0,0)x y a b a b
-=>>的渐近线方程是20x y ±=,则其离心率为( ) A
B
C
D .5
4.若命题112],3,3[:0200≤++-∈∃x x x p ,则对命题p 的否定是( )
A .012],3,3[2>++-∈∀x x x
B. 012),,3()3,(2>+++∞⋃-∞∈∀x x x
C. 012),,3()3,(0200≤+++∞⋃-∞∈∃x x x
D. 012],3,3[0200<++-∈∃x x x
5.给定两个命题p 、q ,若p ⌝是q 的必要而不充分条件,则p 是q ⌝的( )
A 充分而不必要条件 B.必要而不充分条件 C 充要条件 D.既不充分也不必要条件
6.曲线5522=-ky x 的焦距为4,那么k 的值为( )
A 、 35
B 、31
C 、35或1-
D 、31或17
5- 7.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于( )
A .1
322或 B .23或2 C .12
或2 D .2332或 8.已知P 是椭圆19
2522=+y x 上的点,F 1、F 2分别是椭圆的左、右焦点,若121212||||PF PF PF PF ⋅=⋅,则△F 1PF 2的面积为( )
A .3 3
B .2 3
C . 3
D .33
9.已知椭圆)0(,116222>=+m y m x 和双曲线)0(,192
22>=-n y n
x 有相同的焦点21,F F ,点P 为椭圆和双曲线的一个交点,则21PF PF 的值为( )
A 、16
B 、25
C 、9
D 、不为定值
10.已知曲线C 方程为221x y -=,A,B 为左右顶点,P 为曲线C 在一象限内的动点,设α=∠PAB ,β=∠PBA ,γ=∠APB ,则( )
A 、tan tan tan 0αβγ++=
B 、tan tan tan 0αβγ+-=
C 、tan tan 2tan 0αβγ++=
D 、tan tan 2tan 0αβγ+-=
二、填空题:每小题5分,共25分
11.抛物线的焦点为椭圆14
92
2=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 12.椭圆22
1(0,0)94
x y x y +=≥≥与直线50x y --=的距离的最小值为__________ 13.已知曲线22:2(410)10200C x y kx k y k ++++++=,其中1k ≠-;C 过定点
14.已知c 是椭圆)0(,122
22>>=+b a b
y a x 的半焦距,则a c b +的取值范围为 15.以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若
1(),2OP OA OB =+则动点P 的轨迹为圆;③04πθ<<,则双曲线22122:1cos sin x y C θθ
-=与22
2222:1sin sin tan y x C θθθ
-=的离心率相同;④已知两定点12(1,0),(1,0)F F -和一动点P ,若212||||(0)PF PF a a ⋅=≠,则点P 的轨迹关于原点对称;
其中真命题的序号为 (写出所有真命题的序号)
高2015级2014学年第一次月考数学试卷 (理科)
二、填空题
11、 12、 13、 14、 15、
三、解答题
16、已知命题p :方程210x mx ++=有两个不相等的负实根,命题q :
,R x ∈∀01)2(442>+-+x m x 恒成立;若p 或q 为真,p 且q 为假,求实数m 的取值范围.
17、已知曲线C :12
+=x y ,定点)1,3(A ,B 为曲线C 上任一点,点P 在线段AB 上且有2:1||:||=PA BP ,当B 在曲线C 上运动时,求点P 的轨迹方程.
18、是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)焦点在y 轴上的双曲线渐近线方程为20,20x y x y +=-=;
(2)点(5,0)A 到双曲线上动点P .
19、已知中心在原点的双曲线C 的右焦点为)0,2(,实轴长32
(1)求双曲线的方程
(2)若直线2:+=kx y l 与双曲线恒有两个不同的交点A,B,且AOB ∠为锐角(其中O 为原点),求k 的取值范围
20.已知椭圆的对称中心在坐标原点,一个顶点为A (0,2),焦点在x 轴上,若x 轴正半
轴上的焦点到直线0x y -+= 的距离为4
(1)求椭圆的方程
(2)设椭圆与直线(0)y kx m k =+≠相交与不同的两点M 和N ,当A M A N =时,求m 的取值范围.
21、如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,离心率e =12
,直线l 的方程为x =4. AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M 。
(1)求椭圆C 的方程;
(2)若直线AB 的斜率为1,求此时ABP S ∆
(3)若记P A 、PB 、PM 的斜率分别为k 1、k 2、k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.。