武汉轻轨1号线线路同心圆设计
- 格式:pdf
- 大小:966.49 KB
- 文档页数:2
河南科技Henan Science and Technology电气与信息工程总第877期第6期2024年3月收稿日期:2023-09-12作者简介:李谋思(1991—),男,硕士,工程师,研究方向:岩土工程监测及测量。
轨道交通GNSS 控制网的建立及数据分析处理李谋思1 刘志锋2(1.武汉市勘察设计有限公司,湖北 武汉 430022;2.广州地铁设计研究院股份有限公司,广东 广州 510010)摘 要:【目的】研究城市轨道交通平面首级GNSS 控制网的布设方法及数据分析处理,总结项目经验。
【方法】结合城市轨道交通平面首级GNSS 控制测量的规范要求及工程实际情况,以某市轨道交通四号线GNSS 控制网的建立及数据处理过程为例,采用框架网、线路网的分级布设,介绍了地铁GNSS 控制网的主要精度要求、测点布设原则、外业采集过程、数据处理流程、质量检验等方法。
【结果】控制网布设时应与相邻线路控制网重合点进行联测;点位选取除须符合规范要求外,还应与线路走向及施工相配合,与相邻线路控制点联测,保证点位精度;数据处理过程中需特别注意同步环及异步环精度,针对长基线、车站附近控制点等重要位置应采用测量机器人进行边长观测及修正。
【结论】城市轨道交通平面首级GNSS 控制网的布设是一个费时费力的过程,数据分析处理对技术人员经验要求较高,该控制网测设,能够很好地满足生产要求,对类似工程具有一定的借鉴意义。
关键词:GNSS 控制网布设;框架网;线路网;数据处理;轨道交通中图分类号:TG333 文献标志码:A 文章编号:1003-5168(2024)06-0011-05DOI :10.19968/ki.hnkj.1003-5168.2024.06.002Establishment and Data Analysis of GNSS Control Network of Rail TransitLI Mousi 1 LIU Zhifeng 2(1.Wuhan Geotechnical Engineering and Surveying Co., LTD, Wuhan 430022, China; 2.Guangzhou Metro De⁃sign & Research Institute Co. Ltd, Guangzhou 510000, China)Abstract: [Purposes ] This paper aims to study the layout method and data analysis and processing of thefirst level GNSS control network for urban rail transit, thus summarizing project experience. [Methods ] Combined with the specification requirements of the first-level GNSS control measurement of urban railtransit plane and the actual situation of the project, and taking the establishment and data processing of the GNSS control network for Line 4 of a certain city's rail transit as an example, the hierarchical layoutof the frame network and the line network is adopted. The main accuracy requirements of the subway GNSScontrol network, the principle of measuring point layout, the field collection process, data processing flow,quality inspection and other methods are introduced. [Findings ] When laying out the control network, it is advisable to conduct joint measurement with the overlapping points of the adjacent line control network. The selection of point positions should not only comply with the requirements of the specifications, but also be coordinated with the line direction and construction, and should be connected with the adjacent line control points to ensure the accuracy of point positions; During the data processing process, special attention should be paid to the accuracy of synchronous and asynchronous loops. For important partssuch as long baselines and control points near stations, measurement robots can be used for edge lengthobservation and correction. [Conclusions] The layout of the first level GNSS control network for urban rail transit is a time-consuming and laborious process, and data analysis and processing require high ex⁃perience from technical personnel. The control network measurement can well meet production require⁃ments and has certain guiding significance for similar projects.Keywords:GNSS control network deployment; frame network; line network; data process; rail transit0 引言近年来,国内各大城市的在建地铁线路快速增加,线路之间穿越、交叉越来越频繁,超长站间距也越来越普遍。
地铁线路平面曲线设计相关参数的确定摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。
关键词地铁线路曲线设计参数确定地铁线路平面曲线设计涉及行车速度、圆曲线半径、缓和曲线长度、外轨超高、线间距加宽等多个参数, 各参数相互关联制约。
1993 年发布的现行《地下铁道设计规范》( GB50157 92) (以下简称《设规》) 中有关规定尚不尽完善,而地铁又有其不同于一般铁路的自身特点,既有的铁路设计手册等技术资料也不完全适用, 因此,设计中常需自行计算合理确定这些参数,以期取得地铁线路较好的技术条件和节省部分工程投资。
1 曲线半径选择曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。
地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。
地铁《设规》规定:“最小曲线半径一般情况300 m ,困难情况250 m。
” 在实际设计中,对250 m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300 m。
例如,天津地铁1 号线南段,因受津萍大厦桩基(地下线) 和城市干道交叉口及地铁设站位置(高架线) 控制,经多次研究比选,设计了3 处300 m 半径曲线,最终经市建委审批确定。
2 曲线超高与限速计算列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。
列车通过曲线的最大允许速度(通常简称曲线限速),根据曲线外轨超高和旅客舒适度计算确定。
列车在曲线上运行时产生惯性离心力使乘客有不适感。
因此,通常以设置外轨超高产生向心力,以达到平衡离心力的目的。
从理论上分析,车体重力P 产生的离心力为:J= Pv 2/gR (1)由于设置外轨超高使车体向曲线内侧倾斜产生的车体重力P 和轨道对车辆的反力Q 的合力形成向心力(图1) 为Fn= P h/s (2) 当Fn =J 时,可得h = Sv2/gR = 11. 8 V2/R (3)式中g 重力加速度,9. 8 m/ s2 ;r 曲线半径,m;s 内外轨头中心距离,取1 500 mm; v 、V 行车速度, v 单位为m/ s , V 单位为km/ h ; h 所需外轨超高度,mm。
浅析地铁曲线站设计作者:陈艳平来源:《城市建设理论研究》2013年第35期摘要:曲线地铁车站是一种非常规的车站形式,与常规的直线站不同,曲线车站主体结构形式部分或全部为曲线,设计时,土建、设备等专业均不能采用常规的设计方法,应该根据实际情况,具体问题具体分析,以保证所设计的曲线站能够满足使用要求。
文中以天津地铁6号线工程南翠屏站为例,从设计思路及设计原则、车站设计、放线原则等方面介绍了曲线站的设计过程,分析了曲线站的优缺点及应当注意的问题,对类似曲线车站的设计具有一定的指导和借鉴意义。
关键词:曲线;地铁车站;车站设计;放线原则中图分类号:U231+.2文献标识码:A0 引言在一般的地铁车站设计中,通常认为车站的站台应当选择在线路的直线段上,因为站台上有大量旅客活动,直线站台的通视条件好,有利于行车安全;而且地铁多为高站台,曲线站台与车辆间的踏步距离不均匀,不利于旅客上下车和乘车安全[1]。
但是在规划选择线路时,往往受多方面条件的限制,一方面应沿着主客流方向且通过中心城区的某些客流量大的集散点,另一方面还受到建筑物(包括地上和地下)、文物遗址保护、地形地质、管线等的影响,不可避免的要采用曲线过渡。
在线路条件困难的情况下,为了能够最大限度地吸引客流和方便乘客,车站选址就有可能位于线路的曲线段上,当曲线未入侵有效站台时,对车站的影响较小;当曲线入侵有效站台时,相应的站台也为曲线站台。
曲线站形式分很多种情况,本文所指曲线站为有效站台为曲线的车站。
目前国有很多曲线站的实例,已建成的有北京八通线的双桥站、天津1号线西北角站,武汉2号线循礼门站、上海2号线陆家嘴站等。
研究曲线站的文献不多,基本上都是分析曲线站设计中的某一个方面,欧阳全裕、王至培、姜传治[2]对曲线车站建筑限界计算问题进行了研究,焦丽莉[3]分析了缓和曲线进站以及小半径曲线进站对设计和施工的影响,冯金涛[4]总结了曲线站台及缓和曲线站台屏蔽门系统的测量安装经验,为有关系统设计和施工人员提供参考。
浅谈悬挂式单轨交通线路设计的几个关键问题王恺发布时间:2021-12-13T18:03:07.122Z 来源:《建筑模拟》2021年第10期作者:王恺[导读] 悬挂式单轨交通作为一种新制式轨道交通,凭借其线路适应性强、建设成本低、建设周期短、安全可靠性高、环境适应性好、观景效果好的优势,引起了全国范围内多个城市的关注,但目前国内尚无开通运营的线路,设计单位也缺乏相关设计经验。
本文作者从韩城市悬挂式单轨交通一期工程的实践经验出发,对悬挂式单轨线路设计中遇到的几个关键问题进行了阐述,创新出“中线贯通、三线设计”的线路设计方法,解决了悬挂式单轨线路同心圆设计的问题,提出了曲线段模块化设计的理念和线路平、纵组合设计的要点,为其他学者的研究、同类项目的设计提供了参考。
中铁二院成都勘察设计研究院有限责任公司四川成都 610036摘要:悬挂式单轨交通作为一种新制式轨道交通,凭借其线路适应性强、建设成本低、建设周期短、安全可靠性高、环境适应性好、观景效果好的优势,引起了全国范围内多个城市的关注,但目前国内尚无开通运营的线路,设计单位也缺乏相关设计经验。
本文作者从韩城市悬挂式单轨交通一期工程的实践经验出发,对悬挂式单轨线路设计中遇到的几个关键问题进行了阐述,创新出“中线贯通、三线设计”的线路设计方法,解决了悬挂式单轨线路同心圆设计的问题,提出了曲线段模块化设计的理念和线路平、纵组合设计的要点,为其他学者的研究、同类项目的设计提供了参考。
关键词:悬挂式单轨交通;线路设计;同心圆设计;模块化设计;线路平、纵组合设计;悬挂式单轨交通系统(又称为“空轨”)是一种中小运量的单轨交通制式,车辆走行部及转向架位于轨道梁内,车体悬挂在轨道梁下行驶[1]。
悬挂式单轨一般采用钢结构高架桥,桥墩多采用倒L型墩或Y型墩,可方便的布设在绿化带、人行道等城市空间中,节约了宝贵的城市用地,成为解决城市交通拥堵问题的有效手段[2]。
目前已有诸多学者开展了悬挂式单轨交通线路设计及相关研究,郭臣对悬挂式单轨交通线路设计关键技术开展了研究,提出了平面技术标准和纵断面技术标准的研究成果[3]。
武汉规划部门公布2013-2049版武汉轨道交通线网规划的两个初步方案,2013年8月28日两套方案亮相市民之家。
(这是最新版,内含两幅高清原图,下载另存桌面即可) 《武汉2049年远景战略发展规划》【初步方案一】【初步方案二】轨道线网方案一技术指标表线路名称起点止点线路长度(km)基本网1号线径河汉口北 402号线金银潭佛祖岭 373号线文岭三金潭 324号线新汉阳火车站武汉火车站 36 5号线青山郑店 466号线体育中心吴家山 457号线前川、机场纸坊 858号线盘龙城大桥新区 43机场线金银潭天河机场 209号线磨山左岭 3910号线常福阳逻 7811号线蔡甸葛店 7012号线武汉火车站武汉火车站 57 13号线金银潭左岭 5614号线走马岭后湖 4315号线武汉火车站阳逻北 2916号线径河龙泉山 6817号线径河豹澥 5718号线阳逻邾城 2619号线阳逻双柳 1620号线青菱金口 2221号线国博中心纱帽 36合计 981为打造“国家综合交通枢纽”示范城市,助力“建设国家中心城市”,武汉市开始第三轮轨道交通线网规划修编,规划到2049年,建成“一环串三镇,十射联新城”的轨道交通。
昨日,两套方案在市民之家亮相,广征民意。
■ 深远意义助力“建设国家中心城市”打造“国家综合交通枢纽”第三次修编规划到2049年近年来,武汉经济社会迅猛发展,轨道交通建设也进入了高速发展时期。
为建设成为国家中心城市,武汉要求进一步强化主城区城市功能,实施“三镇三城”发展战略,全面构建“1+6”城市发展新格局,着力打造“国家综合交通枢纽”示范城市。
在此背景下,武汉市国土规划局会同市发改委、交委、地铁集团等部门,开展了第三轮《武汉市轨道交通线网规划修编》工作。
根据《武汉2049年远景战略发展规划》,到2049年,武汉人口到2020年将达到1150万-1200万,到2030年将达到1300万-1400万,到2049年将达到1600万-1800万。
地铁线路平面曲线设计相关参数的确定摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。
关键词地铁线路曲线设计参数确定地铁线路平面曲线设计涉及行车速度、圆曲线半径、缓和曲线长度、外轨超高、线间距加宽等多个参数,各参数相互关联制约。
1993 年发布的现行《地下铁道设计规范》( GB50157 92) (以下简称《设规》) 中有关规定尚不尽完善,而地铁又有其不同于一般铁路的自身特点,既有的铁路设计手册等技术资料也不完全适用,因此,设计中常需自行计算合理确定这些参数,以期取得地铁线路较好的技术条件和节省部分工程投资。
1 曲线半径选择曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。
地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。
地铁《设规》规定:“最小曲线半径一般情况300 m ,困难情况250 m。
” 在实际设计中,对250 m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300 m。
例如,天津地铁1 号线南段,因受津萍大厦桩基(地下线) 和城市干道交叉口及地铁设站位置(高架线) 控制,经多次研究比选,设计了3 处300 m 半径曲线,最终经市建委审批确定。
2 曲线超高与限速计算列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。
列车通过曲线的最大允许速度(通常简称曲线限速),根据曲线外轨超高和旅客舒适度计算确定。
列车在曲线上运行时产生惯性离心力使乘客有不适感。
因此,通常以设置外轨超高产生向心力,以达到平衡离心力的目的。
从理论上分析,车体重力P 产生的离心力为:J= Pv 2/gR (1)由于设置外轨超高使车体向曲线内侧倾斜产生的车体重力P 和轨道对车辆的反力Q 的合力形成向心力(图1) 为Fn= P h/s (2) 当Fn =J 时,可得h = Sv 2/gR = 11.8 V2/R (3)式中g 重力加速度,9. 8 m/ s2 ;r 曲线半径,m;s 内外轨头中心距离,取1 500 mm; v 、V 行车速度, v 单位为m/ s , V 单位为km/ h ; h 所需外轨超高度,mm。
城市轨道交通工程施工设计方案优化相对于传统建筑业,城市轨道交通工程的深化设计管理,对于参建人员工程经验和技术水平提出了更高的要求,其施工受外界影响因素多、干扰大,必须适时优化施工设计方案,减少外界因素的影响,加快施工进度。
本文以武汉城市轨道交通21号线一期工程为例,详细阐述了城市轨道交通工程施工设计方案优化及其重要性,可为同类工程施工提供参考。
前言相对于传统建筑业,城市轨道交通工程的深化设计管理向前移动至补充初步设计(方案)阶段,管理跨度有所增加,对于参建人员工程经验和技术水平提出了更高的要求。
城市轨道交通工程施工所受外界影响因素多、干扰大,必须把握行业特点,从工程技术角度出发,结合实际情况,适时优化施工设计方案,减少外界因素对施工的影响,加快工程施工进度。
设计阶段的变更代价相对较低、对于项目的建设性相对较高。
深化设计机会代价曲线如图1所示。
城市轨道交通工程施工招标后,会进行详细地质勘查和补充地质勘探,历时约4~6月,待详勘和补堪完成后,设计院在此基础上编制完成主体围护结构施工图。
施工招标至施工图提供前,是城市轨道交通行业深化设计(方案优化)的黄金时间,有经验的承包商会充分发挥其技术优势,紧紧抓住此次机会,在现场调查、现场核实的基础上,列出施工方案优化设计清单,提出设计方案优化意见或建议,积极协调地勘、设计、业主等相关单位,确保取得预期效果。
图1 深化设计机会代价曲线图一、工程概况武汉轨道交通21号线一期工程起于江岸区后湖大道,止于新洲区金台,线路全长35.175公里,设站15座,其中地下站5座,高架站10座。
工程共划分三个标段,我局以融投资模式承建第一标段,含4个地下车站与4.5区间,分别为后湖大道站、后湖大道站~百步亭花园路站区间、百步亭花园路站、百步亭花园路站~新荣站区间、新荣站~黄埔新城站区间、黄埔新城站、黄埔新城站~谌家矶站区间、谌家矶站、谌家矶站~武湖大道站隧道区间。
全长约 9.70公里,区间长度为8358米(双线延米)。
武汉站选址及站区规划刘一平;周天杰;叶文卓【摘要】武汉地处国家铁路网的"天元"位置,是全国六大路网性客运中心之一,新建武汉站既是武汉铁路枢纽"三主两辅"客运系统的重要组成部分,也是城市重要的公共性基础设施和对外"窗口".对武汉站选址决策过程进行回顾,并对站区规划进行系统研究,充分体现新时期大型铁路客运站建设"以人为本、方便旅客"的根本宗旨.【期刊名称】《铁道标准设计》【年(卷),期】2010(000)001【总页数】5页(P156-159,199)【关键词】武广铁路客运专线;客站;选址;规划【作者】刘一平;周天杰;叶文卓【作者单位】中铁第四勘察设计院集团有限公司,武汉,430063;中铁第四勘察设计院集团有限公司,武汉,430063;中铁第四勘察设计院集团有限公司,武汉,430063【正文语种】中文【中图分类】U238;U2911 武汉站概况武汉站位于武汉市青山地区,是北京—广州—香港客运专线的重要始发终到站,同时也是武汉—九江客运专线的起点站、武汉“1+8”城市圈城际铁路网的主要枢纽站。
武汉站按20条到发线、11座旅客站台规模一次建成,并列等高布置客专、普速两个车场,西侧客专场设到发线15条、旅客站台8座,东侧普速场设到发线5条、旅客站台3座(图1),总投资超过40亿元,2006年开建,2009年底建成启用。
2 武汉枢纽客运系统规划2.1 武汉枢纽概况武汉是我国中部地区的特大中心城市,地理上“扼东西南北之要冲”,居于中国经济、交通版图的“天元”位置,自古有“九省通衢”之美誉,是我国内陆最大的交通枢纽、国家经济地理的“心脏”,在路网上具有承东启西、沟通南北、维系四方的重要作用。
图1 武汉站股道布置示意武汉枢纽现有京广铁路贯穿南北,处于京广全线居中位置,武九线、武康线分别自东、西方向引入,京九铁路麻汉联络线自东北方向引入在横店站接轨,枢纽内主要客站(武昌站、汉口站)、编组站(江岸西、武昌南)及货运设施均集中在京广铁路两侧,已形成以京广铁路和长江大桥为主轴的客货运输格局。
都市快轨交通#第18卷第5期2005年10月土建技术武汉轻轨高架车站设计熊朝辉1姚春桥2(1.铁道第四勘察设计院武汉430063;2.武汉市轨道交通有限公司武汉430022)摘要结合武汉轨道交通1号线一期工程高架车站的设计实践和通车运营后的情况,阐述道路中间修建高架车站的基本思路与方法,同时重点探讨高架车站设计中的一些焦点问题,提出高架线路在用地规划控制之初就应考虑布设于道路一侧的观点。
关键词轨道交通高架车站设计武汉市轨道交通1号线一期工程,于2004年7月底通车试运营,它采用全封闭全高架方式敷设,预测远期高峰小时断面客流2.69万人次,属于轻轨交通范畴,俗称/武汉轻轨0。
该工程运营线路列车采用4辆编组,国产铝合金车体,4轴B型车,轴重不超过14t,整列车长78m,直流750V三轨下部授电。
1号线工程线路全部位于汉口地区,一期工程全长10.24km,主要沿原京汉铁路(已废弃)的走廊修建,共设有车站10座,平均站间距1083m,全部高架(见图1)。
图1武汉市轨道交通1号线一期工程平面示意图1车站建设环境和设计指导思想京汉铁路走廊移交地方政府后,改建成为城市次干道,新建的道路红线总宽40m,包括道路中央绿化收稿日期:20050516修回日期:20050718作者简介:熊朝辉,男,工程硕士,副总工程师、高级工程师,从事城市轨道交通工程设计与研究工作,tsyxz h@si na.co m带宽4m,两侧车行道宽12m、人行道宽6m(见图2、图3)。
考虑到京汉大道地处汉口中心城区,为减少高架线路运营对两侧密集建筑物的影响,线路主要走行(立墩)于道路中央的绿化带上空。
特定的工程建设环境条件,决定了本线车站工程的建筑特征:①高架车站设置于城市道路中间,路中地面层必须架空;②区间桥梁立墩于道路中央,线间距难以扩大,车站以侧站台形式为主。
图2京汉大道道路横断面图图3武汉轻轨由于武汉同其他内地中西部城市一样,是在孱弱的财力状况下建设轨道交通,对建设者们形成了巨大的挑战。