线段的定比分点
- 格式:pptx
- 大小:194.11 KB
- 文档页数:15
线段中点坐标公式和定比分点坐标公式线段中点坐标公式和定比分点坐标公式是几何学中常用的计算坐标的公式,用于确定线段上点的位置。
它们在许多实际应用中都有重要的作用,如建筑设计、工程测量等。
本文将分别介绍线段中点坐标公式和定比分点坐标公式,并举例说明其应用。
设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),则线段AB的中点C的坐标可通过以下公式计算:Cx=(x1+x2)/2Cy=(y1+y2)/2其中,Cx和Cy分别代表中点C的横坐标和纵坐标。
例如,若给定线段AB的两个端点分别为A(4,2)和B(8,6),则线段AB的中点C的坐标可通过以下计算得到:Cx=(4+8)/2=12/2=6Cy=(2+6)/2=8/2=4因此,线段AB的中点C的坐标为(6,4)。
线段中点坐标公式的应用十分广泛。
例如,在建筑设计中,我们常常需要确定一个房间或一个场地的中心点,以便布置家具或进行其他相应的规划工作。
在这种情况下,我们可以利用线段中点坐标公式计算出房间或场地的中心点的坐标。
除了线段的中点,我们还经常需要确定线段上的其他分点位置。
这时,我们可以使用定比分点坐标公式。
定比分点坐标公式:设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),若在AB上有一点P将AB分为内部比例m:n(m+n>0)的两部分,那么点P的坐标可以通过以下公式计算:Px = (nx1 + mx2) / (m + n)Py = (ny1 + my2) / (m + n)其中,Px和Py分别代表点P的横坐标和纵坐标。
例如,若给定线段AB的两个端点分别为A(2,4)和B(6,8),且要在AB上以内部比例2:1将其分割,即将AB分为两段,其中一段长度为整体长度的2/3,另一段长度为整体长度的1/3、那么按照定比分点坐标公式,点P的坐标可通过以下计算得到:Px=(2*2+1*6)/(2+1)=(4+6)/3=10/3≈3.33Py=(2*4+1*8)/(2+1)=(8+8)/3=16/3≈5.33因此,点P的坐标为(3.33,5.33)。
课题:线段的定比分点.目的:掌握有向线段的定比分点和线段的中点公式,并能简单应用. 重点、难点:线段的定比分点.过程:一、复习引入前面我们学习了有向直线,有向线段,有向线段的长度,有向线段的数量等许多概念和符号.今天我们想在此基础上跟大家讨论线段的定比分点.二、新授1.定义:有向直线l 上的一点P ,把l 上的有向线段21P P 分成两条有向线段P P 1和2PP .P P 1和2PP 数量的比叫做点P 分21P P 所成的比,通常用字母λ来表示这个比值,21PP P P =λ,点P 叫做21P P 的定比分点. 2.说明: (1)21P P 是在过两点1P 、2P 的一条有向直线上的有向线段,1P 是起点,2P 是终点;(2)P P 1是以1P 为起点,P 为终点;2PP 是以P 为起点,2P 为终点.顺序不能颠倒,否则λ的值就会随之改变;(为了联系紧密,P 为分点,∴21PP P P =λ中,P P →1,2P P →,就是起点→分点,分点→终点.)(3)21PP P P 不是线段的长度之比,而是有向线段的数量之比,这个比与过21P P 的有向直线无关;(4)在21PP P P 中,分子是由线段的起点1P 到分点P 的有向线段P P 1的数量,分母是由分点P 到终点2P 的有向线段2PP 的数量.请思考,点P 分21P P 所成的比和点P 分12P P 所成的比有何关系.3.练习:如图,求点B 分AC ,点B 分CA ,点C 分AB ,点C 分BA ,点A分BC ,点A 分CB 所成的比.(23,32,25-,52-,53-,35-) 由此回答:(1)P 分21P P 的比与P 分12P P 的比互为倒数;(2)λ的符号与点P 的位置有关.4.小结:若点P 在线段21P P 上,点P 叫做21P P 的内分点,此时0>λ;若点P 在线段12P P 或21P P 的延长线上,点P 叫做21P P 的外分点,此时0<λ.三、解几的基础是坐标系、点的坐标,那么我们怎样求定比分点的坐标呢?问题:设21P P 的两个端点分别为),(111y x P 和),(222y x P ,点P 分21P P 所成的比为λ(1-≠λ),求分点P 的坐标),(y x .分析:过点1P 、2P 、P 分别作x 轴的垂线11M P 、22M P 、PM ,则垂足分别是)0,(11x M 、)0,(22x M 、)0,(x M .根据平行线分线段成比例定理,得2121MM M M PP PP =.如果点P 在线段21P P 上,那么点M 也在线段21M M 上;如果点P 在线段21P P 或12P P 的延长线上,那么点M 也在线段21M M 或12M M 的延长线上.因此21PP P P 与21MM M M 的符号相同,所以21PP P P =21MM M M . ∵11x x M M -=,x x MM -=22,∴xx x x --=21λ, 即21)1(x x x λλ+=+,当1-≠λ时,得λλ++=121x x x . 同理可以求得y y y y --=21λ,λλ++=121y y y . 因此,当已知两个端点为),(111y x P 、),(222y x P ,点),(y x P 分21P P 所成的比为λ时,点P 的坐标是λλ++=121x x x ,λλ++=121y y y (1-≠λ). (1)把P P 1、2PP ,M M 1、2MM 看成一般的线段,根据初中几何平行截割定理得2121MM M M PP PP =;(2)从有向线段的数量的符号来验证这个比例. 当点P 在两点1P 、2P 之间,这时点M 也在两点1M 、2M 之间,有向线段P P 1和2PP 都具有相同的方向,它们的数量符号相同,∴=λ21PP P P 是正的.同样有向线段M M 1、2MM 也具有相同的方向,它们的数量的符号也相同,所以21MM M M 也是正的,因此,=λ21PP P P =21MM M M . 当点P 在线段21P P 或12P P 的延长线上,那么点M 也在线段21M M 或12M M 的延长线上,而P P 1与2PP 的符号相反,于是=λ21PP P P 0<.同样M M 1、2MM 的符号也相反,所以21MM M M 也是负的,因此,=λ21PP P P =21MM M M . 所以1P 、2P 不论在哪个象限,相互位置关系怎样,也不论点P 在21P P 上或在延长线上,定比分点公式都是正确的.特别地,当点P 是线段21P P 的中点时,有21PP P P =,即1=λ,因此线段21P P 中点P 的坐标是221x x x +=,221y y y +=.四.简单应用例.点1P 和2P 的坐标分别是)6,1(--和)0,3(,点P 的横坐标为37-.求点P 分21P P 所成的比λ和点P 的纵坐标y . 解:由λ的定义,可得x x x x --=21λ41373)1(37-=⎪⎭⎫ ⎝⎛-----=. 84110416121-=⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-=++=λλy y y . 点P 分21P P 所成的比是41-,点P 的纵坐标是8-. 五.练习1.已知两点)2,3(1-P 、)4,9(2-P .求点)0,(x P 分21P P 所成的比λ及x 的值.2.点M 分有向线段21M M 的比为λ,求点M 的坐标),(y x ,其中)5,1(1M 、)3,2(2M ,2-=λ; 六.小结1.定比分点P 的位置与λ的符号关系;2.定比分点坐标公式;3.λ的求法.七.作业。