x
质点系中所有质点对于点O的 动量矩的矢量和,称为质点系 对点O的动量矩。
[LO ]z Lz
19
3. 定轴转动刚体对转轴的动量 矩
z
Lz M z (mivi ) mivi ri
miri2 miri2
ri
vi
mi
令:
mi
ri
2
Jz
Jz——刚体对 z 轴的转动惯量
y
x
Lz Jz
z
Mo(mv)
B
mv
O
r
h
A(x,y,z)
x
MO (mv) r mv
MO(mv) =mvh=2△OAB
MO(mv)
定位矢量
y
[MO (mv)]z M z (mv)
18
2. 质点系的动量矩
z
vi
LO MO (mivi )
m2
mi
ri
ri mvi
m1
O
y Lz M z (mivi )
aC g sin 0 FN mg cos
圆盘作平动
37
(b) 斜面足够粗糙
Σ Fx mg sin F maC
Σ Fy mg cos FN 0
J C FR
aC R
C
aC
F
mg
FN
aC
2 3
g sin
2 g sin
3R
F 1 mg sin
3
FN mg cos
由 F ≤ f F N 得:
自然轴系 轴, n轴和b轴上的投影)
dv m dt F
v2
m Fn
0 Fb
质点运动微分方程还可有极坐标形式, 柱坐标形式等等。 应用质点运动微分方程,可以求解质点动力学的两类问题。