理论力学质点动力学
- 格式:pdf
- 大小:544.08 KB
- 文档页数:27
4、非惯性系中质点的动能定理惯性参考系中的动能定理只适用于惯性系。
在非惯性参考系中,由于质点的运动微分方程中含有惯性力,因此需要重新推导动能定理。
质点的相对运动动力学基本方程为r d d m t=++Ie IC v F F F 式中e C r2m m m =-=-=-´Ie IC F a F a ωv ,r d d tv 是对时间t 的相对导数r v 上式两端点乘相对位移d ¢r r d d d d d d m t¢¢¢¢×=×+×+×Ie IC v r F r F r F r 注意到,并且科氏惯性力垂直于相对速度,所以IC F r v d 0¢×=IC F r d d r t¢=r v 上式变为:r r d d d m ¢¢×=×+×Ie v v F r F r δW ¢Ie—表示牵连惯性力F Ie 在质点的相对位移上的元功。
δF W ¢—表示力F 在质点的相对位移上的元功。
则有:2r 1d()δδ2F mv W W ¢¢=+Ie 质点在非惯性系中相对动能的增量等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。
——质点相对运动动能定理(微分形式)4、非惯性系中质点的动能定理积分上式得22r r01122F mv mv W W ¢¢-=+Ie ——质点相对运动动能定理(积分形式)质点在非惯性系中相对动能的变化等于作用于质点上的力与牵连惯性力在相对路程上所作功的和。
注意:因为在非惯性系中科式惯性力始终垂直于相对速度,因此在相对运动中科式惯性力始终不做功。
例4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,如图所示,若不计摩擦等阻力。
求: (1)平板以多大加速度向右平移时,小球能保持相对静止?(2)若平板又以这个加速度的两倍向右平移时,小球应沿板向上运动。
学生整理,时间有限,水平有限,仅供参考,如有纰漏,请以老师、课本为主。
第一章质点力学(1)笛卡尔坐标系 位置:k z j y i x ++=r速度:k z j y i x dtr d ...v ++== 加速度:k z j y i x dtv d ......a ++== (2)极坐标系坐标:j i e r θθsin cos += j i e θθθcos sin +-= r e r =r 速度:r r .v = .v θθr =加速度:2...θr r a r -= .....2θθθr r a += (3)自然坐标系(0>θd ) 坐标:ds r d e t =θd e d e t n = θρd ds = 速度:t e v v = 加速度:n t e v e v ρ2.a +=(4)相对运动(5)牛顿运动定律 牛顿第一定律:惯性定律 牛顿第二定律:)(a m v m P dtP d dt v d m F ==== 牛顿第三定律:2112F F -= (6)功、能量vF dt rd F dt dW P rFd dA ⋅=⋅=== (7)(7)有心力第二章 质点动力学的基本定理知识点总结: 质点动力学的基本方程质点动力学可分为两类基本问题:. (1) .已知质点的运动,求作用于质点的力; (2) 己知作用于质点的力,求质点的运动。
动量定理 动量:符号动量定理微分形式动量守恒定律:如果作用在质点系上的外力主失恒等于零,质点系的动量保持不变。
即:质心运动定理:质点对点O 的动量矩是矢量mv r J i ⨯= 质点系对点0的动量矩是矢量i ni nii i i v m r J J ∑∑=⨯==1若z 轴通过点0,则质点系对于z 轴的动量矩为∑==ni z z z J M J ][若C 为质点系的质心,对任一点O 有 c c c J mv r J +⨯=02. 动量矩定理∑∑=⨯=⨯=nie i i n i i i i M F r v m r dt d dt dJ )()( 动量矩守恒:合外力矢量和为零,则动量矩为常矢量。
理论力学的基本概念与原理理论力学是物理学的重要分支,它研究物体的运动规律和力的作用原理。
本文将介绍理论力学的基本概念与原理,包括质点与刚体的运动、牛顿三大定律、动能定理和动量守恒定律。
一、质点与刚体的运动在理论力学中,质点与刚体被认为是物体的简化模型。
质点是不具有大小和形状的点,刚体则是一个不变形的物体。
质点的运动可以用坐标表示,而刚体的运动则包括平动和转动。
二、牛顿三大定律牛顿三大定律是理论力学的基石,它们描述了物体的运动规律和力的作用原理。
1. 第一定律:也称为惯性定律,它表明物体在不受力作用时将保持静止或匀速直线运动。
2. 第二定律:也称为动力学定律,它表明物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。
3. 第三定律:也称为作用-反作用定律,它表明任何两个物体之间都会相互施加大小相等、方向相反的作用力。
三、动能定理动能定理描述了力对物体进行功的过程。
根据动能定理,物体的变动动能等于作用在物体上的合外力所做的功。
动能定理可以用公式表示为:W=ΔKE,其中W表示外力所做的功,ΔKE表示物体动能的变化量。
四、动量守恒定律动量守恒定律是理论力学中的一个重要原理,它描述了系统的总动量在没有外力作用时将保持不变。
根据动量守恒定律,一个系统中各个物体的动量之和在碰撞或相互作用前后保持不变。
综上所述,理论力学的基本概念与原理包括质点与刚体的运动、牛顿三大定律、动能定理和动量守恒定律。
通过研究这些基本概念和原理,我们能够更好地理解和描述物体的运动规律和力的作用原理。
理论力学在解决力学问题、预测物体运动、设计工程等方面具有重要的应用价值。
希望本文对读者理解和掌握理论力学有所帮助。
理论⼒学三⼤类问题的基本求解⽅法理论⼒学三⼤类问题的基本求解⽅法2009-121 求解静⼒平衡问题的基本⽅法(平⾯问题为重点)(1)选取研究对象,进⾏受⼒分析,并画受⼒图。
⼀般针对所求,先对整体进⾏初步的受⼒分析,若所求未知量⼩于或等于独⽴平衡⽅程的个数,则只研究整体即可;反之,若所求未知量个数⼤于独⽴平衡⽅程的个数,则必须取分离体进⾏受⼒分析。
可以采取整体+分离体的解决⽅案,也可采取分离体+分离体的解决⽅案;另外,若所求的未知量有系统内⼒,也必须取分离体研究,以暴露出所要求的内⼒;画受⼒图注意将各⼒画在原始的作⽤点处,分布⼒原样画出,待列⽅程计算时,再作简化处理。
再有,注意⼆⼒杆的判别,及摩擦⼒⽅向的判定。
(2)列平衡⽅程求解。
⾸先根据受⼒图,判断是何种⼒系的平衡问题。
再针对所求⽤尽可能少的平衡⽅程得出所求。
(3)结果校核——利⽤多余的平衡⽅程校核所得的结果。
对⽤符号表⽰的结果,可采⽤量纲分析的⽅法进⾏校核。
2 求解运动学问题的基本⽅法(以平⾯运动为重点)⾸先正确判断问题类型,尤其注意正确区分点的合成运动问题与刚体平⾯运动问题。
判断的依据是,点的合成运动的问题中,运动机构的不同构件之间有相对滑动。
⽽刚体平⾯运动理论⽤来分析同⼀平⾯运动刚体上两个不同点间的速度和加速度的关系。
此时,运动机构的不同构件之间有相对转动,却⽆相对滑动。
另外,注意点的合成运动与刚体平⾯运动的综合问题。
2.1 点的运动学问题——注意在⼀般位置建⽴点的运动⽅程;2.2 点的合成运动问题(1)⾸先是机构中各构件的运动分析;(2)再针对所求,正确选择动点、动系和定系。
注意动点相对于动系和定系都要有相对运动,即动点、动系、定系要分属于不同的构件。
同时,尽可能使动点的相对轨迹清楚易判断;求解加速度时,尽量将动系固连在平动的物体上,避免求科⽒加速度;(3)分析三种运动及其相应的三种速度和加速度,正确画出速度⽮量图或加速度⽮量图。
注意速度合成的平⾏四边形关系;(4)利⽤速度或加速度合成定理进⾏求解。
第8章质点动力学
[例8-1]桥式起重机跑车吊挂一质量为m的重物,沿水平横梁作
ν
匀速运动,速度为,重物中心至悬挂点距离为l。
突然刹车,
重物因惯性绕悬挂点O向前摆动,求钢丝绳的最大拉力。
解:1)以重物为研究对象2)受力分析mg
F T
a n a t 3)运动分析4)牛顿第二定律
ϕ
sin mg ma t −=ϕ
cos mg F ma T n −=∑=t
t F ma ∑=n
n F ma 5)补充方程
ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=
mg
F T
a n a t ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=0<dt
dv 重物减速
=ϕ0
max v v =max
T T , 0F F ==时ϕ)
1(20
max
T gl
v
mg F +=
a n
F N
a t
a n
ma
mg
F N
a t a n
mg
O
解释非惯性系一些物理现象
飞机急速爬高时
飞行员的黑晕现象
爬升时:a > 5g
惯性参考系——地球
非惯性参考系——飞机
动点——血流质点
牵连惯性力向下,从心脏流向头部的血流受阻,造成大脑缺血,形成黑晕现象。
飞行员的黑晕与红视现象
在北半球的弹道偏右;在南半球的弹道偏左
a
C
F
IC。