010理论力学-质点动力学

  • 格式:ppt
  • 大小:446.00 KB
  • 文档页数:24

下载文档原格式

  / 24
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(t 0时x R, v x v0 )
2 2 gR 2 则在任意位置时的速度 v (v0 2 gR ) x 22
mgR 2 mv x d v x dx 2 v0 R x

v

x
2 2 gR v (v 2 0 2 gR) x
可见,v 随着 x 的增加而减小。若
代入,有
t 0,v v0 0
F0 0 d v 0 m cost d t
v t
18
积分后得 dx 因 v ,分离变量,再次积分,并以初始条件 dt t 0,x 0 代入,有 x t F 0 d x 0 0 m sin t d t 积分后得
F0 v sint m
动力学问题最根本的依据。
牛顿第二定律指出了质点加速度方向总是与其所受合力的 方向相同,但质点的速度方向不一定与合力的方向相同。因 此,合力的方向不一定就是质点运动的方向。
7
第三定律(作用与反作用定律):两个物体间的作用力与 反作用力总是大小相等、方向相反、沿着同一直线,且同时 分别作用在两个物体上。
微分方程
积分一次
再积分一次
20
则运动方程为 : x v0tcos 0 , y v0tsin0 1 gt2 2 2 x 1 则轨迹方程为 : y xt g 0 g 2 0 2 v0 cos2 0 dy 代入最高点A处值,得: v0 sin 0 gt 0, 即 t v0 sin 0 g dt 将到达A点时的时间t,x=S ,y=H 代入运动方程,得 sg v0 cos 0 v0 sin0 2gH 2 gH 发射初速度大小与初发射角 0 为
第三定律说明了力的产生是由于两个物体相互作用而引
起的,它不仅适用于静止(平衡)状态的物体,而且同样适用于 运动状态的物体。
8
§10-2
质点的运动微分方程
将动力学基本方程表示为微分形式的方程,称为质点的 运动微分方程。 1.矢量形式 d2 r m 2 F ( 式中 r r (t ) 为质点矢径形式的运动 方程 ) dt 2.直角坐标形式
1

二.力学模型:

研究物体的机械运动与作用力之间的关系。 一.研究对象: 1.质点:具有一定质量而不考虑其形状大小的物体。
例如:研究卫星的轨道时,卫星
刚体作平动时,刚体 的质点组成的系统。
质点;
质点。
2.质点系:由有限或无限个有着一定联系 刚体是一个特殊的质点系,由无数个相互间保持距离不变 的质点组成。又称为不变质点系。
综合性问题:已知部分力,部分运动求另一部分力、部分运动。
已知主动力,求运动,再由运动求约束反力。
3
4
第十章
§10–1
§10–2
质点动力学基本方程
动力学的基本定律
质点的运动微分方程
5
§10–1
动力学的基本定律
质点是物体最简单、最基本的模型,是构成复杂物体系 统的基础。质点动力学的基础是三个基本定律。质点动力学 基本方程给出了质点受力与其运动变化之间的关系。
a、 b、 是常数。求作用于质点上的力F。
解:将质点运动方程消去时间t,得
x2 y2 2 1 2 a b
可见,质点的运动轨迹是以
a、 b 为半轴的椭圆。对运动方
程求二阶导数,得加速度
14
2 2 a x a cos t x x 2 2 a y b sin t y y
Leabharlann Baidu

0 Fb
质点运动微分方程除以上三种基本形式外,还可有极坐标 形式、柱坐标等形式。 应用质点运动微分方程,可以求解质点动力学的两类问题。
10
质点动力学两类问题:
第一类问题:已知质点的运动,求作用在质点上的力(微分
问题)。解题步骤和要点:
① 正确选择研究对象 一般选择联系已知量和待求量的质点。
② 正确进行受力分析,画出受力图 应在一般位置上进行分析。
2
自由质点系:质点系中各质点的运动不受约束的限制。 非自由质点系:质点系中的质点的运动受到约束的限制。
质点系是力学中最普遍的抽象化的模型;包括刚体、弹性
体、流体。
三.动力学分类: 质点系动力学
质点动力学
质点动力学是质点
系动力学的基础。
四.动力学的基本问题:大体上可分为两类: 第一类:已知物体的运动情况,求作用力; 第二类:已知物体的受力情况,求物体的运动。
16
④ 选择并列出适当的质点运动微分方程。
⑤ 求解未知量。应根据力的函数形式决定如何积分,并利用
运动的初始条件,求出质点的运动。 如力是常量或是时间及速度函数时, dv 可直接分离变量 dt 积分 。 如力是位置的函数,需进行变量置换
dv dv v , 再分离变量积分。 dt ds
17
[例1] 质量为m的质点沿水平x轴运动,加于质点上的水平为
质点动力学的基本定律:
第一定律(惯性定律):不受力作用的质点,将保持静止 或作匀速直线运动。第一定律明确指出了物体运动状态发生
变化的原因。
第二定律(力与加速度之间的关系的定律):质点的质量 与加速度的乘积,等于作用于质点的力的大小,加速度的方 向与力的方向相同。
6
设作用在质点上的力为F,质点的质量为m,质点获得的加 速度为a,则牛顿第二定律可以用矢量方程表示为 F m a 第二定律建立了质点的质量、 作用于质点的力和质点运动加速度 三者之间的关系,并由此可直接导 出质点的运动微分方程,它是解决

a ax i a y j 2 r
2 F ma m x x x 2 F ma m y y y
将上式代入公式中,得力在直角坐标轴上的投影

F Fx i Fy j m 2 r
可见,F和点M的位置矢径r方向相反,F始终指向中心,其
大小与r的大小成正比,称之为向心力。
15
第二类问题:已知作用在质点上的力,求质点的运动(积 分问题)。 已知的作用力可能是常力,也可能是变力。变力可能是时 间、位置、速度或者同时是上述几种变量的函数。
解题步骤如下:
① 正确选择研究对象。 ② 正确进行受力分析,画出受力图。判断力是什么性质的力 (应放在一般位置上进行分析,对变力建立力的表达式)。 ③ 正确进行运动分析。(除应分析质点的运动特征外,还要确 定出其运动初始条件)。
2 2 g s 2 2 v0 (v0 cos 0 ) (v0 sin 0 ) 2 gH 10.5 m/s 2 gH v sin 0 2H 1 0 0 tg tg 1 31 21 v0 cos 0 s
代入初始条件得 : c1 v0 cos 0 ,c2 v0 sin0 ,c3 c4 0
F F0 cos t ,其中 F0, 均是常数,初始时 x0 0,v0 0 。
求质点运动规律。
解 研究质点在水平方向受力作用。建立质点运动微分方程
2 d 建立质点运动微分方程 m x F0 cos t dt2 即 dv
m
dt
F0 cos t
分离变量,对等式两边积分,并以初始条件
d2 x d2 y d2 z m 2 Fx,m 2 Fy,m 2 Fz dt dt dt
( 式中x、y、z 为质点直角坐标形式的 运动方程 )
9
3.自然形式
d2 s m 2 F dt v2 m Fn
(式中s s(t )为质点的弧坐标形式的 运动方程。F ,Fn ,Fb 分别为力F 在 自然轴系 轴, n轴和b轴上的投影)
dvx dx c x c1t c3 m 0 1 dt dt 1 2 dv dy y gt c2t c4 m y m g gt c2 2 dt dt
列直角坐标形式的质点运动微分方程并对其积分运算
③ 正确进行运动分析 分析质点运动的特征量 。
④ 选择并列出适当形式的质点运动微分方程 建立坐标系 。
⑤ 求解未知量。
11
[例1] 桥式起重机跑车吊挂一重为G的重物,沿水平横梁作匀速 运动,速度为 v0 ,重物中心至悬挂点距离为L。突然刹车,重物 因惯性绕悬挂点O向前摆动,求钢丝绳的最大拉力。 解:① 选重物(抽象为质点)为研究对象; ② 受力分析如图所示; ③ 运动分析,沿以O为圆心,L为半径的圆弧摆动。
2 v0 2 gR
则在某一位置
2 2 gR 时,无论 x多 x=R+H 时速度将减小到零,火箭回落。若 v0
大(甚至为∞), 火箭也不会回落。因此脱离地球引力而一去 不返 时( x )的最小初速度
v0 2 gR 29.8103 6370 11.2 (km/s)
(第二宇宙速度)
[例3] 发射火箭,求脱离地球引力的最小速度。
解: 取火箭(质点)为研究对象, 建立坐标如图 示。火箭在任意位置x 处受地球引力F 的作用。
m gR2 mM mg f F 2 R x2 d x2 mgR 2 建立质点运动微分方程 m 2 dt x2 mM F f 2 x
dvx mgR2 2 即: mvx dx x d 2 x dvx dvx dx v x dvx ( 2 ) dt dt dx dt dx
F0 x (1 cos t ) 2 m
19
[例2] 煤矿用填充机进行填充, 为保证充 填材料抛到距离为S=5米,H=1.5米的顶 板A处。求 (1)充填材料需有多大的初速 度v0 ? (2)初速 v0 与水平的夹角a0?
解:选择填充材料M为研究对象,受力如图所示,
M作斜抛运动。
t 0, x0 0, y0 0; v0 x v0 cos0 , v0 y v0 sin0
23
24
12
④ 列出自然形式的质点运动微方程
G dv Gsin 1 g dt G v2 ma n Fn , T Gcos 2 g l ma F ,
⑤ 求解未知量
v2 由 2 式得 T G (cos ), gl
, 因此 0时 , T Tmax 其中 ,v为变量. 由1式知 重物作减速运动
2 v0 Tmax G (1 ) gl
[注] ① 减小绳子拉力途径:减小跑车速度或者增加绳子长度。 ② 拉力Tmax由两部分组成, 一部分等于物体重量,称为静拉力 一部分由加速度引起,称为附加动拉力。全部拉力称为动拉力。
13
[例2] 已知质量为m的质点M在坐标平面 Oxy 内运动,如 图所示。其运动方程为 x a cos t,y b sin t ,其中