金属加工工艺学 第一篇 金属材料的基础知识
- 格式:ppt
- 大小:10.46 MB
- 文档页数:7
适用专业:机械设计制造及其自动化学时:45学分:3一、内容简介本课程主要教学内容为热加工工艺基础,包括金属材料的主要性能,常用工程材料的选择,铸、锻、焊及切削加工的基本原理与工艺特点,毛坯的选择与结构工艺性分析,新材料、新技术、新工艺简介等。
二、本课程的目的和任务本课程是机械设计制造专业的一门重要技术基础课。
在金工实习的基础上,通过本课程的学习,使学生获得常用工程材料及材料成形的基础知识,培养工艺分析的初步能力,并为学习其它有关课程及以后从事机械设计和加工制造工作奠定必要的基础。
本课程的任务(1)熟悉常用工程材料的种类、牌号和性能,具有选用工程材料的初步能力;(2)掌握主要加工方法的基本原理和工艺特点,具有选择毛坯及工艺分析的初步能力;(3)了解与本课程有关的新材料、新工艺、新技术及发展趋势。
三、本课程与其它课程的关系学生在学习本课程之前应学过下列课程:(1)大学化学概论;(2)大学物理;(3)机械制图;并必须先完成金工实习。
本课程学习结束后,才能进入下列课程的学习阶段;(1)机械工程材料:(2)机械设计;(3)机械制造技术基础等。
本课程在培养学生综合素质、实践能力、创新意识和创新精神等方面发挥着其它课程不可替代的作用,学生应对本课程予以足够的重视。
四、本课程的基本要求通过对本课程的学习,使学生掌握金属工艺学的基本理论及基本知识,初步具备应用金属工艺学基本知识的能力,初步具备应用所学知识分析和解决实际问题的能力,并具有创新意识。
五、课程内容及学时安排理论教学内容绪论(2学时)第一篇金属材料基本知识(10学时)熟悉金属材料的主要性能;了解金属和合金的晶体结构和结晶;熟悉铁碳合金相图;熟悉钢的热处理工艺;熟悉常用机械工程材料的种类、性能、特点及应用。
第二篇铸造(8学时)熟悉合金的铸造性能及对铸件质量影响;了解常用铸造合金的熔炼及铸造特点;掌握砂型铸造和常用特种铸造方法的特点和应用;具有铸件结构设计的初步能力,了解铸造新工艺、新技术及其发展趋势。
第一章金属学基础知识1.什么是强度什么是塑性衡量这两种性能的指标有哪些各用什么符号表示金属材料在外力作用下抵抗永久变形和断裂的能力,称为强度。
常用的强度指标有弹性极限σe、屈服点σs、抗拉强度σb。
塑性是指金属材料在外力作用下产生永久变形而不破坏的能力。
常用的塑性指标有断后伸长率δ和断面收缩率Ψ。
2.什么是硬度HBS、HBW、HRA、HRB、HRC各代表用什么方法测出的硬度各种硬度测试方法的特点有何不同硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力。
HBS:用淬火钢球作压头时的布氏硬度。
不能测试太硬的材料,一般在450HBS以上的就不能使用。
通常用于测定铸铁、有色金属、低合金结构钢等材料的硬度。
HBW:用硬质合金球作压头的布氏硬度。
用于测试硬度在650HBW以下的材料。
HRA:洛氏硬度,表示试验载荷(60KG),使用顶角为120度的金刚石圆锥压头试压。
用于硬度极高的材料,例如硬质合金。
HRB:洛氏硬度,表示试验载荷(100KG),使用直径的淬火钢球试压。
用于硬度较低的材料,例如退火钢、铸铁等。
HRC:洛氏硬度,表示试验载荷(150KG),使用顶角为120度的金刚石圆锥头试压。
用于硬度很高的材料,例如淬火钢等。
3.简述各力学性能指标是在什么载荷作用下测试的。
静载荷作用下测试:强度、塑性、硬度。
动载荷作用下测试:冲击韧度、疲劳强度。
4.试对晶体、晶格、晶胞、单晶体和多晶体作简要解释。
晶体:物质的原子都是按一定几何形状有规则地排列的称为晶体。
晶格:用于描述原子在晶体中排列规律的空间架格称为晶格。
晶胞:能够完整地反映晶格结构特征的最小几何单元,称为晶胞。
单晶体:如果一块晶体内部的晶格位向(即原子排列的方向)完全一致,称这块晶体为单晶体。
多晶体:由许多晶格位向不同的晶粒集合组成的晶体称为多晶体。
5.常见金属晶格类型有哪几种试绘图说明。
①体心立方晶格②面心立方晶格③密排六方晶格6.晶体的各向异性是如何产生的为何实际晶体一般都显示不出各向异性在相同晶格中,由于不同晶面和晶向上的原子排列情况不同,因而原子间距不同,原子间相互作用的强弱不同,从而导致晶体的宏观性能在不同方向上具有不同数值,此现象称为晶体的各向异性。
金属工艺学知识点总结资料讲解1.金属材料的分类和特性:-金属材料的分类:金属材料分为黑色金属和有色金属两大类。
黑色金属包括铁、钢和铸铁等,有色金属包括铜、铝、镁、锌、铅等。
-金属材料的特性:金属材料具有导电性、导热性、延展性、可塑性、机械性能好等特点,适用于各种加工工艺。
2.金属加工方法:-切削加工:包括车削、铣削、钻削、刨削等,通过切削废料的去除改变工件形状和尺寸。
-成形加工:包括锻造、拉伸、锤压、挤压等,通过对金属材料的塑性变形改变工件形状。
-组合加工:包括焊接、铆接、螺纹连接等,通过将多个部件组合在一起形成复杂的工件。
-热处理加工:包括淬火、回火、退火等,通过控制材料的结构和性能来改变其力学性能和使用性能。
3.金属成形工艺:-钣金工艺:包括剪切、冲裁、弯曲等,用于制造薄板金属构件。
-铸造工艺:包括砂铸、压铸、精密铸造等,通过将熔融金属注入模具中,得到所需形状的铸件。
-高温成形工艺:包括真空热压、粉末冶金等,通过在高温条件下对金属进行成形,得到复杂形状的工件。
-冷镦工艺:通过在室温下使用特殊的冷镦机械设备,将金属材料进行快速塑性变形,得到各种螺纹、螺栓等小尺寸工件。
4.金属热处理工艺:-淬火:通过将加热至临界温度的金属材料迅速冷却,使其得到高硬度和高强度。
-回火:在淬火后,将金属加热至适当温度,然后冷却,以减轻淬火后的脆性和应力。
-退火:将金属材料加热至一定温度,保持一段时间后缓慢冷却,以改善其组织和性能。
-焊后热处理:焊接后的金属材料会产生应力和变形,通过热处理可以消除这些问题,提高焊接接头的强度和耐腐蚀性。
5.金属表面处理工艺:-镀层:通过在金属表面镀上一层金属或非金属涂层,增加其耐腐蚀性、装饰性和机械性能。
-涂装:通过在金属表面涂上油漆、涂料等防护层,保护金属不受氧化、腐蚀等损害。
-喷砂:通过在金属表面喷射高压喷砂颗粒,清除污物和氧化层,改善表面质量和光泽度。
-抛光:通过机械或化学方法对金属表面进行抛光,使其光洁度达到要求,提高外观质量。
绪论金属工艺学是一门研究有关制造金属机件的工艺方法的综合性技术学科. 主要内容:1 常用金属材料性能2 各种工艺方法本身的规律性及应用.3 金属机件的加工工艺过程、结构工艺性。
热加工:金属材料、铸造、压力加工、焊接目的、任务:使学生了解常用金属材料的性质及其加工工艺的基础知识,为学习其它相关课程及以后从事机械设计和制造方面的工作奠定必要的金属工艺学的基础。
[以综合为基础,通过综合形成能力]第一篇金属材料第一章金属材料的主要性能两大类:1 使用性能:机械零件在正常工作情况下应具备的性能。
包括:机械性能、物理、化学性能2 工艺性能:铸造性能、锻造性能、焊接性能、热处理性能、切削性能等。
第一节金属材料的机械性能指力学性能---受外力作用反映出来的性能。
一弹性和塑性:1弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。
力和变形同时存在、同时消失。
如弹簧:弹簧靠弹性工作。
2 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。
(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。
塑性变形:在外力消失后留下的这部分不可恢复的变形。
3 拉伸图金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。
以低碳钢为例ζbζkζsζeε(Δl)将金属材料制成标准式样。
在材料试验机上对试件轴向施加静压力P,为消除试件尺寸对材料性能的影响,分别以应力ζ(即单位面积上的拉力4P/πd2)和应变(单位长度上的伸长量Δl/l0)来代替P和Δl,得到应力——应变图1)弹性阶段oeζe——弹性极限2)屈服阶段:过e点至水平段右端ζs——塑性极限,s——屈服点过s点水平段——说明载荷不增加,式样仍继续伸长。
(P一定,ζ=P/F一定,但真实应力P/F1↑ 因为变形,F1↓)发生永久变形3)强化阶段:水平线右断至b点P↑变形↑ζb——强度极限,材料能承受的最大载荷时的应力。
金属加工基础知识一、金属加工的概述金属加工是将金属材料经过一系列的加工工艺,包括切削、成形、焊接等,将其加工成所需形状和尺寸的工件。
金属加工工艺广泛应用于制造业的各个领域,是现代工业生产的重要组成部分。
二、金属加工的分类根据加工方法的不同,金属加工可分为切削加工和非切削加工两大类。
1. 切削加工切削加工是指通过金属切削工具将所加工金属材料剪切、切削、刮削、抛光等加工方法,以达到所需要的形状、尺寸和表面质量。
切削加工常见的工艺包括铣削、车削、钻削、磨削等。
2. 非切削加工非切削加工是指通过应用机械力、热力、化学力、电力等手段将金属材料进行塑性变形、热处理、喷涂等加工方法。
非切削加工常见的工艺包括锻造、挤压、模锻、焊接等。
三、常见的金属加工工艺1. 铣削铣削是将旋转的铣刀放置在工件上,通过切削运动将工件的表面削除,从而得到所需的形状。
铣削加工可以用于制作平面、曲线、斜面、孔等各种形状的零件。
2. 车削车削是将工件固定在旋转的主轴上,然后用刀具与工件相对旋转,通过切削去除工件上的材料以得到所需的形状。
车削加工常用于制造圆柱体、圆锥体、球面等形状的零件。
3. 钻削钻削是通过旋转的钻头将工件上的材料削除,以制造孔或加工螺纹等形状。
钻削可以用于各类金属材料的孔加工,是制造业中非常常见的一种加工方式。
4. 锻造锻造是将金属材料置于锻压机中,通过机械力使其受到压力和变形,从而达到所需尺寸和形状的加工方式。
锻造加工适用于制造各种大型零部件,具有良好的机械性能和表面质量。
5. 挤压挤压是将金属材料放置在挤压机中,通过施加压力使其通过模具的缝隙挤压,从而获得所需截面形状的加工方式。
挤压加工常用于铝合金门窗、铜管等的生产制造。
6. 焊接焊接是将两个或两个以上的金属材料通过加热或施加压力使其产生熔融,然后冷却固化以实现连接的加工方式。
焊接广泛应用于制造业中的工件连接,如钢结构、汽车零部件等。
四、金属加工中的注意事项金属加工过程中需要注意以下几点,以确保加工质量和安全性:1. 材料选择:根据加工零件的要求,选择合适的金属材料,包括其性能、热处理能力等。