新版五年级奥数数学容斥原理课件
- 格式:pptx
- 大小:10.99 MB
- 文档页数:39
您身边的个性化教育专家——问鼎教育
第八课容斥原理
概念在计数时,必须注意无一重复,无一遗漏。
为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
例题例1 在一次校运动会上,甲班参加田赛的有15人,参加径赛的有12人,既参加田赛又参加了径赛的有7人,没有参加比赛的有21人,那么这个班有多少人?
例2两个边长分别为10厘米、4厘米的正方形重叠在一起,重叠部分的面积为4平方厘米,求这个图所能覆盖的面积。
例3 在1到100的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?
例4有50个学生,他们穿的裤子是白色的或者黑色的,上衣是蓝色的或红色的,若有14人穿的是蓝色上衣白裤子,31人穿黑裤子,18人穿红上衣,那么穿红上衣黑裤子的学生有多少人?
随堂练习:
1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的4人,两样都会的有多少人?
2、4个边长是2厘米的正方形平放在桌子上,中间有一个边长是3厘米的正方形重叠在上面,求覆盖桌子的面积。
3、有一根长为240厘米的绳子,从一端开始每隔4厘米作一个记号,每隔6厘米也作一个记号,然后将标记有记号的地方剪断。
问:绳子共被剪成了多少段?
您身边的个性化教育专家——问鼎教育。