第5章非平稳随机过程
- 格式:ppt
- 大小:523.50 KB
- 文档页数:29
高斯随机过程通过非线性系统(续1)高斯随机过程通过半波整流器的研究半波整流非线性函数关系:,0,bx x y x ≥⎧=⎨<⎩1.输入是窄带平稳实高斯随机过程输入随机过程的概率密度⎟⎟⎠⎞⎜⎜⎝⎛−=222;2exp 21)(ξξξσπσx x f t 输出随机过程的概率密度2;1()()()2t t t f y y U y ηδ⎛⎞=+⋅ 各阶矩、方差偶数阶矩,考虑到输入窄带平稳实高斯随机过程的概率密度函数是偶函数,[][]13)12(212122222⋅−=="m b E b E m m m m m σξη 奇数阶矩[]135)12(22!1212212⋅⋅−=+++"m b m E m m m m ξσπη均值[]ξσπηb t E 21)(=方差[][][]{}()πσσπσηηηξξξ/11212121)()()(2222222−=⎟⎟⎠⎞⎜⎜⎝⎛−=−=b b b t E t E t D相关函数2100222122212122221))(1(2)(2exp ))(1(2),()(dx dx x x x x x x b t t R R ∫∫∞∞⎟⎟⎠⎞⎜⎜⎝⎛−−+−⋅−==τρστρτρπστξξηηηη 其中,122{}()t t E x x ξρτσ=,利用典型的积分变换1,得:222222211()()()244()()b R b b R R R ηηξξξξξξξξξτσττππστσρτ≈++=功率谱∫∫∞∞−∞∞−′′−′++==f d f f P f P b f P b f b d eR f P f j )()(4)(41)(21)()(222222ξξξξξξξξτπηηηηπσδσπττ2.输入信号是矩形带通窄带实平稳随机过程输入的功率谱密度:⎪⎩⎪⎨⎧Δ+<<Δ−=otherwise,022,2/)(000ff f f f N f P ξξ 20f N ξσΔ⋅=非线性器件输出信号的功率谱密度:直流分量:())(21)(210222f N f b f b δπδσπξ⋅Δ= 低频分量f f Δ≤≤0⎟⎟⎠⎞⎜⎜⎝⎛Δ−⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ⎟⎠⎞⎜⎝⎛f fN b f f f N b 1241224022022ππσξ 带通信号分量2/2/f f f f f c c Δ+≤≤Δ−24102N b二倍频分量f f f f f c c Δ+≤≤Δ−22⎟⎟⎠⎞⎜⎜⎝⎛Δ−⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ⎟⎠⎞⎜⎝⎛f fN b f f f N b 128124022022ππσξ 低通滤波器输出信号的功率谱密度:直流分量:())(21)(210222f N f b f b δπδσπξ⋅Δ= 低频分量f f Δ≤≤0⎟⎟⎠⎞⎜⎜⎝⎛Δ−⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ⎟⎠⎞⎜⎝⎛f fN b f f f N b 1241224022022ππσξ典型的坐标变换1原积分:2100222122212122221))(1(2)(2exp ))(1(2),()(dx dx x x x x x x b t t R R ∫∫∞∞⎟⎟⎠⎞⎜⎜⎝⎛−−+−⋅−==τρστρτρπστξξηηηη 其中,[]221/)()()(ξστρt x t x E =变换))(1(2))(1(2222221τρστρσξξ−=−=x v x u))(1(2),(),(2221τρσξ−=∂∂v u x x积分()[]d udv uv v u uv b dx dx x x x x x x b t t R R ∫∫∫∫∞∞∞∞−+−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−−+−⋅−==00222/3222210022212221212/122221)(2exp ))(1(2))(1(2)(2exp ))(1(2),()(τρπτρστρστρτρπστξξξηηηη 典型的坐标变换2积分之间的关系:()[]()[]()[]dwdI dudv wuv v u uv dudv wuv v u uv dw dIdudvwuv v u I 212exp 2exp 22exp 002200220022=−+−⋅−+−⋅=−+−=∫∫∫∫∫∫∞∞∞∞∞∞典型的坐标变换3原积分:()[]d udv wuv v u I ∫∫∞∞−+−=00222exp积分变换:从v u ,平面到θ,r 平面,参数()παα,0,1cos ∈≤=wαθααθαsin 2cos sin 2cos ⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛+=r v r u , 注意到下列关系:⎟⎠⎞⎜⎝⎛−−==−=⎟⎠⎞⎜⎝⎛−==+=22,22,022,22,0απθπθααπθπθαv uααθααθααθααθαθθsin sin 2sin sin 2sin sin 2cos sin 2cos r r r r v u r v r u =⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=∂∂∂∂∂∂∂∂ ()()()()()(()())222222222222222cos 2cos 12cos 2cos 12cos 1sin 22cos cos 2cos cos 22cos 12cos 1sin 2sin 2cos sin 2cos cos 2sin 2cos sin 2cos )(2r r r r r r uvv u =−−+−−−−++++=−−−++++=⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+=−+θαθααθαθααθαααθαθαααθααθαααθααθατρ 原积分:()[]210222002212sin 2/sin 2exp sin 2exp w w drd r rdudvwuv v u I −+=−=−=−+−=−∞−−−∞∞∫∫∫∫πααπθααπαπww1sin 2/cos −−==παα原积分:()()()()()w ww w w w www w w w dw d dw dI 12/3222212221sin 2/12121121sin 2/11112sin 2/−−−+−+−=−−++−−=−+=πππ原积分:()[]()()()ww ww dwdIdudv wuv v u uv 12/3220022sin2/14141212exp −∞∞+−+−==−+−⋅∫∫π原积分:()()[]⎥⎦⎤⎢⎣⎡+++++⋅=⎥⎦⎤⎟⎠⎞⎜⎝⎛⋅⋅⋅+⋅+++⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅⋅−⋅−−⋅=++−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−+−⋅−==−∞∞∫∫"")(801)(241)(21)(2121)(54231)(321)(2)()(6421)(421)(21121)(sin 2/)()(121))(1(2)(2exp ))(1(2),()(84222536422212/1222100222122212122221τρτρτρτρπσπτρτρτρπτρτρτρτρσπτρπτρτρσπτρστρτρπστξξξξξηηηηb b b dx dx x x x x x x b t t R R由于1)(≤τρ)()()(4)(4121)(2222222τρσττπστσπτξξξξξξξξξηη=++=R R b R b b R。
第五章 随机振动基础在振动系统中,由于激励或参数的不确定性,振动响应也是不确定性的。
研究不确定性振动的科学叫随机振动。
随机振动虽具有不确定性,但仍可利用统计的方法研究其规律性。
研究随机振动实质上是用统计与概率方法了解振动的内在机理及规律性。
随机振动中的样本是随时间变化的,这与概率统计中的样本不同。
所以随机振动理论仅仅是以概率统计方法为基础。
本章主要介绍线性系统的随机振动基本概念和基本理论。
将从随机过程的统计特性入手,介绍几种统计量(总体平均、自相关函数、时间平均、时间自相关函数、功率谱密度函数等)以及如何用这些统计量来描述随机振动,建立激励与响应统计特征之间的相互联系。
最后介绍了空间谱及与时间谱的转换。
5.1随机过程及统计特征在前面的章节中所讨论的振动,其激励和响应都可以以时间为变量预先准确描述。
但在实际问题中不能以时间为参量预先准确描述的振动是普遍存在的。
比如,运行中列车转向架的振动、地震引起的结构振动、发动机运行时产生的振动及飞机降落时起落架的振动等。
这些振动都无法对既定的时刻t 预先给出它们准确的振动情况,更无法用前面章节中的方法解决。
因此,这种具有不确定性的振动过程称作随机振动。
为了探寻随机振动内在的机理及规律性,通常需要对某一给定的随机振动反复试验、记录,从而比较分析每一次的试验结果。
例如实际生产中统计某一随机振动每一次试验中振幅的最大值即为最简单的振动分析。
若对不确定性振动系统进行振动测试,对每一个测点,每测试一次可得一条测试曲线,测试量可以是广义位移或广义力,记为1()x t ,如图5.1中第一条曲线所示。
为了消除不确定性影响,一般要重复多次.假设测试工作重复了n 次,可以得到n 条时间位移曲线)(t x k (n k ,2,1⋯=),如图5.1所示。
)(t x k 为随机变量,是时间t 的函数,因此叫做一个样本函数。
所有可能的样本函数)(t x k (n k ,2,1⋯=)的集合称为随机过程,记作)(t X 。
第五章 离散参数Markov 链5.1 Markov 链的基本概念 1.Markov 链和转移概率矩阵 定义5-1考虑只取有限个或可数个值的随机过程{},0,1,2,nX n = .把过程所取可能值的全体称为它的状态空间,记之为E ,通常假{}0,1,2,E = .若n X i =就说“过程在时刻n 处于状态i ”.若对任意状态011,,,(,n 0)n i i i i j -≥ 及任意的有11111001(|,,,,)(|)n n n n n n n P X j X i X i X i X i P X j X i +--+======== 这样的随机过程称为Markov 链.假设每当过程处于状态i ,则在下一个时刻将处于状态j 的概率是固定的ijp ,即对任意时刻n ,有1(|)n nijP X j X i p +===,称过程具有齐次性.称矩阵00010201011121012j j i i i ij p p p p p p p p P p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦是一步转移概率矩阵,简称为转移矩阵. 由ijp 的定义可知,这是一种带有平稳转移概率的Markov 链,也称作时间齐次Markov 链或简称时齐次Markov 链.我们研究的均为齐次马氏链.2.例题例5-1(直线上的随机游动)考虑在直线上整数点上运动的粒子,当它处于位置j 时,向右转移到j+1的概率为p ,而向左移动到j-1的概率为q=p-1,又设时刻0时粒子处在原点,即00X =.于是粒子在时刻n 所处的位置{}n X 就是一个Markov 链,且具有转移概率,1,10,jk p k j p q k j =+⎧⎪==-⎨⎪⎩其他当12p q ==时,称为简单对称随机游动.例5-6(排队模型)考虑顾客到服务台排队等候服务,在每个服务周期中只要服务台前有顾客在等待,就要对排队在队前的一位顾客提供服务,若服务台前无顾客时就不实施服务.设在第n 个服务周期中到达的顾客数为一随机变量n Y ,且序列{}nY 是独立同分布随机序列,即(),0,1,2,,n k P Y k p k === 且01k k p ∞==∑设n X 为服务周期n 开始时服务台前顾客数,则有11,1,0n n n n n n X Y X X Y X +-+≥⎧=⎨=⎩若若此时{},1nXn ≥为一Markov 链,其转移概率矩阵为01234012340123012000p p p p p p p p p p P p p p p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦例5-8(生灭链)观察某种生物群体,以n X 表示在时刻n群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个数量单位的概率为i b ,减灭到i-1个数量单位的概率为i a ,保持不变的概率为1()i i i r a b =-+,则{},0nX n ≥为齐次马尔可夫链,{}0,1,2,E = ,其转移概率为,1,,1i ij i ib j i p r i ja j i =+⎧⎪==⎨⎪=-⎩ 0(0)a =,称此马尔可夫链为生灭链.3.定理5-1设随机过程{}nX 满足:(1)1(,)(1),n n n X f X n ξ-=≥其中:f E E E ⨯→,且n ξ取值在E 上; (2){},1nn ξ≥为独立同分布随机变量,且0X 与{},1n n ξ≥也相互独立,则{}n X 是Markov 链,而且其一步转移概率为,对于任意,i j E ∈,1((,))ij p P f i j ξ==证明:设1n ≥,由上面(1)、(2)可知,1n ξ+与12,,,nX X X 互相独立,所以有1110011100111001(|,,,)((,)|,,,)((,)|,,,)((,))n n n n n n n n n n n n n n P X j X i X i X i P f X j X i X i X i P f i j X i X i X i P f i j ξξξ+--+--+--+================同理111001(|,,,)(|)n n n n n n P X j X i X i X i P X j X i +--+=======即{}nX 是Markov 链,由时间齐次性,其一步转移概率为1((,))ij p P f i j ξ==于是定理5-1得证.4.定理5-2时齐次Markov 链{}nX 完全由其初始状态的概率分布0(),1,2,i p P X i i ===和其转移概率矩阵()ijP p =所确定.证明:对于任意12,,,n i i i E ∈ ,计算有限维联合分布,由概率的乘法公式及马氏性可知1001121001100111100111100111111001111(,,,)(,,,)(|,,,)(,,,)(|)(,,,)n n n nn n n n n n n n n n n n n n n n i i i i i i i i i P X i X i X i P X i X i X i P X i X i X i X i P X i X i X i P X i X i P X i X i X i p p p p p ------------======================定理5-2得证. 5.例题 例5-9(1)(二项过程的概念)设在每次试验中,事件A 发生的概率为(01)p p <<,独立地重复进行这项试验,以n Y 表示到第n 次为止事件A 发生的次数,则{},1,2,nY n = 是一个二项过程.说明:令n X 表示第n 次试验中事件A 发生的次数,则n X ~(0)1,(1),1,2,n n P X p P X p n ==-=== 且独立.(易知{},1nX n ≥为马氏过程)而1,1,2,n n Y X X n =++= 服从二项分布(,)B n p ,故称此{},1nY n ≥为二项过程.(2)二项过程具有独立平稳增量性. 证明:易知增量1n l n n n l Y Y X X +++-=++ ,1121n l k n l n l n l k Y Y X X ++++++++++-=++ ,等等相互独立;且~(,),1,2,n m n Y Y B m p n +-= ,即具有平稳性. 即{},1nY n ≥为一个独立平稳增量过程.(3)独立平稳增量过程为马氏过程.5.2 C-K 方程1.定理5-3 Chapman-Kolmogorov 方程 对任何整数,0m n ≥, 有()()()m n m n ijik kj k Epp p +∈=∑或()()()m n m n P P P +=⨯证明:这里只需要证明()(1)n n P PP -=成立,再依次递推即可证明本定理.(?)因为()0100100101010(1)(|)(,|)(|)(|,)(|)(|)(n ij n n k n k n k n ik kj k P P X j X i P X j X k X i P X k X i P X j X i X k P X k X i P X j X k p p ∞=∞=∞=∞-====================∑∑∑∑由马氏性)根据矩阵的乘法规则,知()(1)n n P PP -=.定理得证.注:定义m 步转移概率()(|)m ijn m n pP X j X i +===,()m ijp 表示给定时刻n 时,过程处于状态i ,间隔m 步之后过程在时刻n+m 转移到了状态j 的条件概率.还约定(0)1iip =,(0)0ijp =,i j ≠以()n ijp 表示第i 行、第j 列的元素矩阵()n P =(()n ijp ),称为Markov 链的n 步转移概率矩阵.2.例题(两状态Markov 链) 例5-10在重复独立贝努里(Bernoulli )试验中,每次试验有两种状态{}0,1E =,设{}nX 表示第n 次试验中出现的结果,且有(1),(0)1,1,2,n n P X p P X q p n =====-=其中01p <<,则{},1nX n ≥显然是独立同分布随机序列,从而它是Markov 链.于是经过计算有00100111,p p q p p p ====所以,一步转移概率矩阵为q p P qp ⎡⎤=⎢⎥⎣⎦而且有()n qp PP q p ⎡⎤==⎢⎥⎣⎦5.3 Markov 链的状态分类 1.互通 定义5-2称自状态i 可达状态j ,并记i j →,如果存在0n >,使()0n ijp >,称状态i 与j 互通(相同,互达),并记为i j ↔,如i j →且j i →2.定理5-4可达关系与互通关系都具有传递性,即如果i j →且j k →,则i k → 证:因为有i j →,j k →,所以存在1,1l m ≥≥,使()()0,0l m ij jk p p >>由C-K 方程()()()()()0l m l m l m ik is sk ij jk sp p p p p +=≥>∑这里1l m +≥,所以i k →成立.若将可达关系得证明正向进行,再反向进行,就可得出互通关系的传递性,证毕. 3.定义5-3 设{},1nXn ≥为齐次Markov 链,其状态空间为E 。