多元非线性回归
- 格式:docx
- 大小:13.24 KB
- 文档页数:4
多元非线性回归分析是一种多元非线性回归模型。
传统的求解多元非线性回归模型的方法仍然是将其转化为标准的线性多元回归模型。
一些非线性回归模型通过适当的数学变换可以得到线性化的表达式,而对于其他非线性回归模型,仅仅通过变量变换是没有帮助的。
属于前者的非线性回归模型通常称为内在线性回归,而后者称为内在非线性回归。
补充资料:线性回归线性回归是利用数理统计中的回归分析来确定两个或多个变量之间的定量关系的一种统计分析方法。
表达式形式为y=w'x+e,e为误差的正态分布,平均值为0。
在回归分析中,只包含一个自变量和一个因变量,二者之间的关系可用直线近似。
这种回归分析称为单变量线性回归分析。
如果回归分析包含两个或两个以上的自变量,且因变量与自变量之间是线性关系,则称为多元线性回归分析。
在统计学中,线性回归是一种回归分析,它使用称为线性回归方程的最小二乘函数来建模一个或多个自变量和因变量之间的关系。
这个函数是一个或多个模型参数的线性组合,称为回归系数。
只有一个自变量的情况称为简单回归,有多个自变量的情况称为多元回归。
(这应该再次通过由多个因变量而不是单个标量变量预测的多元线性回归来区分。
)在线性回归中,数据由线性预测函数建模,未知模型参数由数据估计。
这些模型称为线性模型。
最常用的线性回归模型是仿射函数,其中给定值x的条件平均值为x。
在不太常见的情况下,线性回归模型可以是Y或其他分位数条件分布的中值。
与所有形式的回归分析一样,线性回归侧重于给定x值的Y的条件概率分布,而不是x和Y的联合概率分布(在多元分析领域)。
线性回归是第一个经过严格研究并在实际应用中得到广泛应用的回归分析方法。
这是因为与未知参数线性相关的模型比与位置参数非线性相关的模型更容易拟合,并且更容易确定结果估计值的统计特性。
线性回归模型通常采用最小二乘法进行拟合,但也可以采用其他方法进行拟合,如最小化其他规范中的“拟合缺陷”(如最小绝对误差回归)或最小化桥梁回归的惩罚函数最小二乘法,最小二乘法可用于拟合这些非线性模型。
多元非线性回归今天给大家展示的内容是关于多元非线性回归模型,一般对统计分析略有了解的人都会知道,回归模型一般分为一元线性回归模型,多元线性回归模型,还有非线性回归模型,非线性回归模型有一元的,也有两元的,还有多元的!其中最复杂的应该是多元非线性回归模型,复杂在何处:第一,我们事前并不知道该用什么样的非线性模型去拟合数据?第二,即使我们知道了需要的非线性模型,但是里面的参数设置,要靠自己专业和经验来设置,没错——靠经验!问题是我们(除了一些大牛)是没经验的。
为了降低难度,结合今天设计学院一位学姐问的问题,赋文君利用别人的模型,去尝试的复现别人的结果,顺便介绍非线性回归分析的基本步骤!注意,以下内容基本在百度上搜不到!都是赋文君自己摸索出来的。
问题背景为了研究建筑材料的抗压强度,某个硕士研究生设计了一个实验,实验材料:石灰,细砂,水玻璃;实验器材:若见先进设备,其实我也没用那些工程机械。
通过一些列物理等方面的参数分析检验,得出了一些实验结果,在利用回归模型分析和相关性分析深入了解石灰,水玻璃和细砂,抗压强度四者之间的数量关系和相关程度。
抗压强度是因变量,石灰,水玻璃和细砂是自变量。
2.原始数据3.非线性回归分析步骤将数据导入或者录入spss中,接着就可以对其进行回归分析了。
按钮点击顺序,找到“分析”——“回归”——“非线性”:将抗压强度选为因变量,接着要输入模型了,案例论文用的是二阶混料规范多项式:为了便于录入模型和分析,把上面的模型分解开:变量x的前面系数(即参数)分别设定为a,b,c,其中a1表示石灰的系数,a2表示水玻璃的系数,a3表示细砂的系数,b1表示石灰*水玻璃的系数,b2表示石灰*细砂的系数,b3表示水玻璃*细砂的系数,c1 c2 c3分别表示,石灰,水玻璃和细砂平方的系数,d是常数量。
多元非线性回归
第一,我们事前并不知道该用什么样的非线性模型去拟合数据?
第二,即使我们知道了需要的非线性模型,但是里面的参数设置,要靠自己专业和经验来设置,没错——靠经验!问题是我们(除了一些大牛)是没经验的。
为了降低难度,结合今天设计学院一位学姐问的问题,赋文君利用别人的模型,去尝试的复现别人的结果,顺便介绍非线性回归分析的基本步骤!
问题背景:
为了研究建筑材料的抗压强度,某个硕士研究生设计了一个实验,实验材料:石灰,细砂,水玻璃;实验器材:若见先进设备,其实我也没用那些工程机械。
通过一些列物理等方面的参数分析检验,得出了一些实验结果,在利用回归模型分析和相关性分析深入了解石灰,水玻璃和细砂,抗压强度四者之间的数量关系和相关程度。
抗压强度是因变量,石灰,水玻璃和细砂是自变量。
3.非线性回归分析步骤
将数据导入或者录入spss中,接着就可以对其进行回归分析了。
按钮点击顺序,找到“分析”——“回归”——“非线性”:
为了便于录入模型和分析,把上面的模型分解开:变量x的前面系数(即参数)分别设定为a,b,c,其中a1表示石灰的系数,a2表示水玻璃的系数,a3表示细砂的系数,b1表示石灰*水玻璃的系数,b2表示石灰*细砂的系数,b3表示水玻璃*细砂的系数,c1 c2 c3分别表示,石灰,水玻璃和细砂平方的系数,d是常数量。
多元非线性回归的动力学分析(续)Johannes OpfermannNETZSCH-Gerätebau GmbH,Wittelsbacherstrabe42,D-95100Selb/Germany编译:戴世琨,曾智强德国耐驰仪器制造有限公司上海代表处4.从实际测量数据获取热力学模型下面以Ca(OH)2的热分解为例说明:尽管实际测试有误差,多元数据分析仍可将其成功校正。
实验部分:分析仪器:NETZSCH STA429气氛:N2气流速率:50ml/min升温速率:5,10.3,21K/min样品称重:47-51mg单曲线分析:图5描述了升温速率为10.3K/min的动力学分析结果。
图中可见,不同反应类型的动力学分析均可得到良好的拟合效果。
需要注意的是,上述拟合结果只是来自于10K/min升温速率的测量数据。
对于其它的升温速率,单曲线拟合时也可能得到不同的动力学参数,甚至得到不同的反应类型。
图5:Ca(OH)2分解的TG测试拟合。
反应类型:D4,D2,R2。
升温速率:10.3K/min表5:Ca(OH)2热分解的单曲线分析结果(反应类型:D4,D2,R2,D3)升温速率(K/min)反应类型lg(A/s-1)E/(kJ/mol)校正系数Fexp Fcrit(0.05)21.5D4D2R2R3D313.8013.465.796.3215.65246.4233.0121.0130.3271.60.999900.999900.999810.999390.999351.001.031.835.966.321.181.181.181.181.1810.3D4D2R2D3R315.2014.786.2917.316.93262.1248.0128.0290.0138.60.999950.999930.999870.999500.999471.001.502.6410.0210.441.191.191.191.191.195.0D2D4R2D3R315.1915.646.3317.827.00249.8263.9128.6292.0139.20.999960.999920.999780.999390.999321.002.095.8515.8917.741.201.201.201.201.20多曲线分析由此,我们有必要将多种不同升温速率的曲线综合分析。
A题思路之一——多元非线性回归分析本题求解关键为建立工资与其他7个因素之间的关系模型,可以考虑采用回归分析法,也可以考虑其他方法;以下仅以回归分析法过程为例给出分析思路,仅供参考:注意:根据下述结果发现本问题应该考虑为多元非线性回归,因此请大家优先挑出使用非线性回归模型的论文,其余酌情考虑。
1.数据预处理1)为数据分析方便,应该考虑名义变量或有序变量的量化处理(编码),如可以考虑如下编码方案(含符号约定):y-日平均工资的对数,便于回归分析;作为因变量。
11~ 0~x⎧=⎨⎩男性女性;2x:工龄31~ 0~x⎧=⎨⎩男性或单身女性已婚女性;40x ⎧⎪⎪⎨⎪⎪⎩~本科1~硕士(受教育状况)=2~博士3~博士后;51~ ()0~x⎧=⎨⎩管理岗位工作部门性质技术岗位;61~ 0~x⎧=⎨⎩受过培训(培训情况)未受过培训;71~ 0~x⎧=⎨⎩两年以上未从事一线工作(一线工作情况)其它情况2)分别作出y与各自变量之间的散点图,发现与x2非线性关系较为明显(下图所示),所以应该考虑为非线性模型,data=xlsread('Adata.xls',2);y=data(:,1);x=data(:,2:8);plot(x(:,2),y,'r*')title('lny vs x2')0501001502002503003504004505003.43.63.844.24.44.64.85lny vs x23)相关性分析data=xlsread('Adata.xls',2);y=data(:,1);x=data(:,2:8);s=corrcoef(data);xlswrite('coef.xls',s)lny X1 X2 X3 X4 X5 X6 X71 0.266995 0.775291 0.286135 0.505526 0.277929 0.199178 0.489786 0.266995 1 0.160389 0.679446 0.312348 0.417621 -0.10498 0.316025 0.775291 0.160389 1 0.226096 0.103146 0.098854 0.151146 0.156321 0.286135 0.679446 0.226096 1 0.266937 0.213363 -0.27966 0.229535 0.505526 0.312348 0.103146 0.266937 1 0.412745 0.219762 0.855236 0.277929 0.417621 0.098854 0.213363 0.412745 1 -0.05307 0.423355 0.199178 -0.10498 0.151146 -0.27966 0.219762 -0.05307 1 0.255665 0.489786 0.316025 0.156321 0.229535 0.855236 0.423355 0.255665 1相关系数表也提示y 仅与x2,x4关系密切.与婚姻状况x1,x3关系不明显.2、建模及简易求解(第1、3问)以下考虑分别用多元线性回归模型、线性逐步回归模型、非线性模型分析,从中选择相对最优的模型。
多元非线性回归多元非线性回归分析是具有两个以上变量的非线性回归模型。
解决多元非线性回归模型的传统方法仍然是找到一种将其转换为标准线性多元回归模型的方法。
一些非线性回归模型可以通过适当的数学变换来获得其线性化表达式,但是对于其他非线性回归模型,仅变量变换没有帮助。
属于前一种情况的非线性回归模型通常称为内在线性回归,而后者称为内在非线性回归。
补充数据:线性回归线性回归是一种统计分析方法,在数学统计中使用回归分析来确定两个或多个变量之间的定量关系。
表达式形式为y = w'x + e,E为误差的正态分布,平均值为0。
在回归分析中,仅包含一个自变量和一个因变量,并且两者之间的关系可以近似地由一条直线表示。
这种回归分析称为单变量线性回归分析。
如果回归分析包括两个或多个自变量,并且因变量和自变量之间的关系是线性的,则称为多元线性回归分析。
在统计中,线性回归是一种回归分析,它使用称为线性回归方程的最小二乘函数对一个或多个自变量与因变量之间的关系进行建模。
此函数是一个或多个称为回归系数的模型参数的线性组合。
仅一个自变量的情况称为简单回归,而一个以上自变量的情况称为多重回归。
(这又应通过多个因变量而不是单个标量变量预测的多个线性回归来区分。
)在线性回归中,数据是通过线性预测函数建模的,未知模型参数是通过数据估算的。
这些模型称为线性模型。
最常用的线性回归建模是给定x值的Y的条件平均值是X的仿射函数。
在不太常见的情况下,线性回归模型可以是Y的条件分布的中位数或其他分位数像所有形式的回归分析一样,线性回归关注于给定x值的Y的条件概率分布,而不是X和Y的联合概率分布(在多元变量领域)分析)。
线性回归是经过严格研究并在实际应用中广泛使用的第一类回归分析。
这是因为与未知参数线性相关的模型比对位置参数非线性相关的模型更容易拟合,并且更容易确定结果估计的统计特征。
线性回归模型通常通过最小二乘近似进行拟合,但也可以通过其他方法进行拟合,例如最小化某些其他规范中的“拟合缺陷”(例如最小绝对误差回归)或最小化最小二乘的惩罚桥回归中的损失函数,最小二乘近似可用于拟合那些非线性模型。
多元非线性回归
目录
1 什么是多元非线性回归分析
2 多元非线性回归分析方程
3 多元非线性回归分析模型[1]
什么是多元非线性回归分析
多元非线性回归分析是指包含两个以上变量的非线性回归模型。
对多元非线性回归模型求解的传统做法,仍然是想办法把它转化成标准的线性形式的多元回归模型来处理。
有些非线性回归模型,经过适当的数学变换,便能得到它的线性化的表达形式,但对另外一些非线性回归模型,仅仅做变量变换根本无济于事。
属于前一情况的非线性回归模型,一般称为内蕴的线性回归,而后者则称之为内蕴的非线性回归。
多元非线性回归分析方程
如果自变数X_1,X_2,\cdots,X_m与依变数Y皆具非线性关系,或者有的为非线性有的为线性,则选用多元非线性回归方程是恰当的。
例如,二元二次多项式回归方程为:{y}=a+b_{11}x_1+b_{21}x_2+b_{12}x_1^2+b_{22}x_2^2+b_{11 \times22}x_1x_2
令b_1=b_{11},b_2=b_{21},b_3=b_{12},b_4=b_{22},b_5=b_{11\tim es22},及x_3=x_1^2,x_4=x_2^2,x_5=x_1\cdot x_2,于是上式化为
五元一次线性回归方程:
\widehat{y}=a+b_1x_1+b_2x_2+b_3x_3+b_4x_4+b_5x_5
这样以来,便可按多元线性回归分析的方法,计算各偏回归系数,建立二元二次多项式回归方程。
多元非线性回归分析模型[1]
一、常见的内蕴多元性回归模型
只要对模型中的变量进行数学变换,比如自然对数变换等,就可以将其转化具有标准形式特征的多元线性回归模型。
1.多重弹性模型
(y_1;x_{11},x_{12}\cdots,x_{1k}),(y_2;x_{21},x_{22}\cdots,x_{2k}),\ cdots,(y_n;x_{n1},x_{n2}\cdots,x_{nk})是一组对的样本观察资料,则称存在下列关系的非线性回归模型为多重弹性模型
y_i=\beta_0x_{i1}^{\beta_1}x_{i2}^{\beta_2}\cdots x_{ik}^{\beta_k}e^{\epsilon_{i}} (1)
上述模型中的各解释变量的幂,能够说明解释变量的相对变化对被解释变量产生的相对影响,我们正式从这一角度说它是多重弹性模型的。
2.Cobb-Dauglas生产函数模型
y_i=AK_{i}^aL_i^{\beta}e^{\epsilon_{i}},i=1,2,\cdots,n (2)
其中,yi表示产出总量,Ki为资本要素,Li为劳动力要素,A、
α、β为参数。
比较式(1)和(2),不难看出C-D生产函数模型实际是多重弹性模型的简化或特殊形式。
3.总成本函数模型
用yi表示总成本,xi表示产出规模,则称具有如下关系的回归模型为总成本函数模型
y_i=\beta_0+\beta_1x_i+\beta_2x_i^2+\beta_3x_i^3+\epsilon _i,i=1,2,…,n (3)
总成本函数是多项式函数的特殊形式,更为一般的情况就是多项式回归模型:y_i=\beta_0+\beta_1x_i+\beta_2x_i^2+\beta_kx_i^k+\epsilon _i,i=1,2,…,n (4)
多项式回归模型从宽松的角度讲,可以不把它看成是非线性回归模型,在这里主要是用来说明一下问题,把它看成内蕴的线性回归模型也无妨。
二、内蕴的非线性回归模型
内蕴非线性回归模型的形式有很多种,大部分难以根据经济含义进行称呼,下面,列出几个以帮助大家增加认识。
(1)CES生产函数模型
y_i=A(\delta_1K_i^{-\rho}+\delta_2L_i^{-\rho})\epsilon_i,i=1,2,…,n (5)
(2)随机项表现为加法的C-D生产函数模型
y_i=AK_i^\alpha+L_i^\beta+\epsilon_i,i=1,2,…,n (6)
(3)其他形式的内蕴非线性函数模型,如
y_i=\beta_0+\beta_1x_{i1}^{\beta_{1}}+\beta_2x_{i2}^{\beta_{ 2}}+\cdots+\beta_kx_{ik}^{\beta_{k}}+\epsilon_i,i=1,2,…,n
(7)
三、多元非线性回归模型的求解问题
对内蕴的线性回归模型,可以通过对模型中的变量或样本数据进行变换,将其转化成具有标准线性形式特征的回归模型,然后再运用前面介绍的模型估计方法进行估计,便能间接地达到目的。
比如对于式(2),它的变换过程为
对式(2)两边求对数
lnyi = lnA + αlnKi + βlnLi + εi
令y^\prime_i=\ln y_i,A^\prime=ln A,K_i^\prime=ln K_i,L_i^\prime=ln L_i,则得
y^\prime_i=A^\prime+\alpha K_i^\prime+\beta L_i^\prime+\epsilon_i,i=1,2,…,n
这是标准的二元线性回归问题,可据之估计出A^\prime、α和β.。