第四章 流体流动基本原理
- 格式:ppt
- 大小:1.24 MB
- 文档页数:79
第四章 流体的有旋流动和无旋流动在上一章中我们阐述了流体流动的一些基本概念,导出了流体流动的连续性方程、欧拉运动方程、伯努利方程和动量方程等,为解决工程实际问题奠定了一定的理论基础。
本章将进一步讨论流体的有旋流动和无旋流动。
第一节 流体微团运动的分析我们知道,刚体的运动一般可以分解为移动和转动两部分。
但流体与刚体不同,流体受力便会发生运动状态的变化,即流体具有流动性,极易变形。
因此,流体微团在运动过程中不但会发生移动和转动,而且还会发生变形运动。
所以,在一般情况下流体微团的运动可以分解为移动、转动和变形运动三部分。
变形运动又分为线变形运动和角变形运动两种情况。
下面我们分别讨论这几种运动情况。
一、移动在流场中取一微元平行六面体的流体微团,各边长分别为dx 、dy 、dz ,形心a 处的速度为u,沿三个坐标轴的速度分量分别为u x 、u y 、u z ,如图4-1所示。
如果微团内各点的速度在坐标轴上的分量也都是u x 、u y 和u z ,那么整个流体微团就只有移动,也就是说流体微团只能从一个位置移动到另一个新的位置,而其形状和大小及方位并不改变。
图4-1 微团移动分析4-2 微团旋转运动分析二、转动同上在流场中取一微元平行六面体的流体微团,转动前流体微团的各边分别与坐标轴平行,为讨论方便起见,我们先讨论流体微团绕垂直于xoy 平面的轴(z 轴)转动的情况,如图4-2所示。
设O 点在x 轴和y 轴方向的速度分量分别为u x 和u y 。
当A 点在y 轴方向的分速度不同于O 点在y 轴方向的分速度及B 点在x 轴方向的分速度不同于O 点在x 轴方向的分速度时,流体微团才会发生旋转。
A 点在y 轴方向的分速度和B 点在x 轴方向的分速度可按泰勒级数展开,并略去高阶无穷小量而得到,它们分别为x xu u d y y ∂∂+和y yu u d xx ∂∂+,它们相对于O 点的对应分速度(相对于O 点的线速度)分别为x xu d y ∂∂和y yu d x∂∂,所以它们相对于O 点的角速度(逆时针方向旋转为正)应为A 点上xu x x xu ∂∂=∂∂y y d /dB 点上 yuy y y u ∂∂-=∂∂-x x d /d 而对于微团中其它各点绕z 轴转动的角速度(如C 点等)则是由该点y 向的分速度在x 轴方向的变化量和x 向的分速度在y 轴方向的变化量共同产生的。
流体流动知识点总结归纳流体力学是研究流体流动规律的一门学科,其研究对象涉及液体和气体的流动,包括流体的性质、流体流动的运动规律、流体的控制以及流体力学在工程和科学领域的应用等方面。
在这篇文章中,我们将对流体流动的一些基本知识点进行总结归纳,以便读者对这一领域有一个清晰的了解。
一、流体的性质1. 流体的定义流体是指那些易于变形,并且没有固定形状的物质。
流体包括液体和气体两种状态,其共同特点是具有流动性。
2. 流体的密度和压力流体的密度是指流体单位体积的质量,常用符号ρ表示。
流体的压力是指单位面积上受到的力的大小,它与流体的密度和流体所在深度有关。
3. 流体的黏性流体的黏性是指流体内部分子之间的相互作用力,黏性越大,流体的内部抵抗力越大,流动越不容易。
黏性会对流体的流动性能产生影响,需要在实际工程中进行考虑。
二、流体流动的基本原理1. 流体的叠加原理流体的叠加原理是指当多个流体同时流动时,它们的速度矢量叠加,得到合成的速度矢量。
这个原理在实际工程中有很多应用,例如飞机的空气动力学设计和水流的流体力学研究等。
2. 流体的连续性方程流体的连续性方程是描述流体在运动过程中质量守恒的基本方程,它表明流体在流动过程中质量的变化等于流入流出的质量之差。
3. 流体的动量方程流体的动量方程描述了流体在运动过程中动量守恒的基本原理,它表明流体在受到外力作用后所产生的加速度与外力的大小和方向有关。
4. 流体的能量方程流体的能量方程描述了流体在运动过程中能量守恒的基本原理,它表明流体在流动过程中所受到的压力和速度的变化与能量的转化和损失相关。
三、流体的流动类型1. 定常流动和非定常流动定常流动是指流体在任意一点上的流速和流量随时间不变的流动状态,而非定常流动则是指流体在不同时间点上的流速和流量随时间有变化的流动状态。
2. 层流流动和湍流流动层流流动是指流体在管道内流动时,各层流体之间的相互滑动,流态变化连续,流线互不交叉。
化工原理流体流动化工原理中的流体流动是一个非常重要的概念,它涉及到化工工艺中许多关键环节,如管道输送、反应器内流动、搅拌反应等。
流体流动的研究不仅可以帮助我们更好地理解化工过程中的现象,还可以指导工程实践,提高工艺效率,降低能耗成本。
本文将从流体流动的基本原理、流体力学方程、流体流动的类型以及流动特性等方面进行探讨。
首先,我们需要了解流体流动的基本原理。
流体力学是研究流体静力学和动力学规律的学科,其中流体流动是动力学的重要内容。
流体流动的基本原理包括质量守恒、动量守恒和能量守恒等。
质量守恒原理指出在流体流动过程中,单位时间内通过任意截面的流体质量不变;动量守恒原理指出在流体流动中,单位时间内通过任意截面的动量不变;能量守恒原理指出在流体流动中,单位时间内通过任意截面的能量不变。
这些基本原理为我们理解流体流动提供了重要的理论基础。
其次,我们需要了解流体力学方程。
流体力学方程是描述流体运动规律的基本方程,包括连续方程、动量方程和能量方程。
连续方程描述了流体的质量守恒规律,动量方程描述了流体的动量守恒规律,能量方程描述了流体的能量守恒规律。
通过这些方程,我们可以定量地分析流体流动的特性,为工程设计和优化提供依据。
接下来,我们需要了解流体流动的类型。
根据流体的性质和流动状态,流体流动可以分为层流和湍流两种类型。
层流是指流体在管道内沿着同一方向以相对较小的速度均匀流动的状态,流线呈直线状并且不会相互交叉。
湍流是指流体在管道内以不规则的、混乱的方式流动的状态,流线呈曲线状并且会相互交叉。
不同类型的流体流动具有不同的特性,需要采用不同的方法进行研究和控制。
最后,我们需要了解流体流动的特性。
流体流动的特性包括速度分布、流动阻力、流体混合等。
速度分布描述了流体在管道内的速度分布规律,可以通过实验和模拟计算进行研究。
流动阻力是指流体在管道内流动时受到的阻力,它与管道的几何形状、流体的黏度等因素有关。
流体混合是指不同流体在管道内的混合过程,它对于化工反应器内的反应效果具有重要影响。
化工原理流体流动总结1. 引言流体流动是化工过程中一个非常重要的基本行为,对于化工工程师来说,了解流体的流动规律和特性是非常关键的。
本文将对化工原理中流体流动的一些基本原理进行总结和概述。
2. 流体的基本性质在研究流体流动之前,我们首先需要了解流体的基本性质。
流体是一种物质状态,具有两个基本特征:能够流动和没有固定形状。
流体可以分为液体和气体两种,液体的分子之间存在着较强的分子间吸引力,而气体的分子间距离较大,分子间作用力相对较弱。
3. 流动的基本原理流动涉及到流体的质量守恒、动量守恒和能量守恒等基本原理。
3.1 流量和流速流量是指单位时间内流体通过某一横截面的体积或质量的多少,通常用符号Q表示。
流速是指单位时间内流体通过一个给定横截面的速度,通常用符号v表示。
流量和流速之间的关系可以用以下公式表示:Q = Av其中,A表示横截面积。
3.2 流体的连续性方程流体的连续性方程是质量守恒的基本原理,它表明流体在任意给定的流管截面上,流入该截面的质量等于流出该截面的质量。
连续性方程可以用以下公式表示:ρ1A1v1 = ρ2A2v2其中,ρ是流体的密度,A是截面积,v是流速。
3.3 流体的动量方程流体的动量方程描述了流体内部压力、速度和力的关系。
动量方程可以用以下公式表示:Δp + ρgΔh + 1/2ρv1^2 - 1/2ρv2^2 = ∑F其中,Δp是压力变化,ρ是流体的密度,g是重力加速度,Δh是高度变化,v1和v2是流体在不同位置的速度,∑F表示所有外力的合力。
3.4 流体的能量方程流体的能量方程描述了流体内部压力、速度和能量的关系。
能量方程可以用以下公式表示:Δp + ρgΔh + 1/2ρv1^2 + P1 - 1/2ρv2^2 - P2 = ∑H其中,P是流体单位体积的压力,Δp是压力变化,ρ是流体的密度,g是重力加速度,Δh是高度变化,v1和v2是流体在不同位置的速度,∑H表示所有外力对流体做的工作。