第10章2层板强度理论
- 格式:ppt
- 大小:1.18 MB
- 文档页数:4
§10.5 强度理论一、 强度理论的概念强度理论是研究材料在复杂应力条件下强度失效的原因和失效条件的理论。
在前面的章节中,分别介绍了杆件在基本变形时的强度条件,如杆件在轴向拉、压时处于单向应力状态,其强度条件为[]max max N A σσ=≤式中许用应力[σ]是通过拉伸实验得出材料的极限应力再除以安全系数获得的。
圆轴扭转时,材料处于纯剪应力状态状态,其强度条件为[]max max t T W ττ=≤式中许用应力[τ]也是直接通过实验得出材料的极限应力再除以安全系数获得的。
梁横力弯曲时基于最大正应力作用点和基于最大切应力作用点的强度条件也是直接通过实验建立的。
但是,由于工程构件或元件所处的应力状态是多种多样的。
在复杂应力状态下,判断材料失效仅仅通过实验和这些简单应力状态下建立的强度条件是远远不够的。
人们在长期的生产实践中,综合分析材料强度的失效现象,提出了各种不同的假说。
各种假说尽管各有差异,但它们都认为:材料之所以按某种方式失效(屈服或断裂),是由于应力、应变或应变能密度等诸因素中的某一因素引起的。
按照这种假说,无论单向或复杂应力状态,造成失效的原因是相同的。
所以可将简单应力状态的实验结果,与复杂应力状态的下材料的破坏联系起来,从而建立了强度理论。
二、 材料破坏的两种基本形式综合分析材料破坏现象,可以认为构件由于强度不足将引起两种破坏形式:(1)脆性断裂:材料破坏前无明显的塑性变形,断裂面粗糙,且多发生在最大正应力作用面上,如铸铁受拉和受扭时的破坏,均属于脆性断裂。
(2)塑性屈服(流动):材料破坏前发生较大的塑性变形,破坏面较光滑,且多发生在最大剪应力作用面上,如低碳钢受拉和受扭时的破坏便属于这类破坏。
三、 工程中常用的几个强度理论1.最大拉应力理论(第一强度理论)该理论认为最大拉应力是引起断裂破坏的主要原因。
即认为不论材料处于简单应力状态还是复杂应力状态,引起材料破坏的原因是它的最大拉应力σ1达到某一极限值,材料就发生断裂。
第十章强度理论主讲教师:余茜§10 —1 强度理论的概念§10 —2 断裂准则——第一第二强度理论§10 —3 屈服准则——第三第四强度理论目录第十章强度理论一、材料在单向应力状态或纯剪切应力状态时的强度条件:轴向拉(压)杆件的最大正应力发生在横截面上各点处;而横力弯曲梁的最大正应力发生在最大弯矩横截面的上、下边缘处,如图(a )、(b )所示,其应力状态皆为单向应力状态,强度条件为:拉压杆:梁:[]σσ≤=A N max []σσ≤=zW M max max 113223(a)(b)纯扭转圆轴的最大剪应力发生在横截面周边各点处;而梁的最大剪应力发生在最大剪力横截面的中性轴上,如图(c)、(d)所示,为纯剪切应力状态,强度条件为:扭转轴:梁:[]ττ≤=pWTmax[]ττ≤=bIVSzz*maxmax(c)45(d)45一、材料在单向应力状态或纯剪切应力状态时的强度条件:工程实际中许多构件的危险点处于复杂应力状态,其破坏现象较复杂,但材料的破坏形式可分为如下二类:脆性断裂:材料失效时未发生明显的塑性变形而突然断裂。
如:铸铁在单向拉伸和纯剪切应力状态下的破坏。
塑性屈服:材料失效时产生明显的塑性变形并伴有屈服现象。
如低碳钢在单向拉伸和纯剪切应力状态下的破坏。
二、材料的破坏形式:注意:材料的破坏形式并不是以材料为塑性材料或脆性材料为准来区分的。
材料开始断裂或屈服的状态称为材料的极限状态或失效状态 极限应力:断裂破坏——强度极限σb屈服破坏——屈服极限σs(a)Fp (b)Fp大理石Fp Fp q q 二、材料的破坏形式:注意:材料的破坏形式并不是以材料为塑性材料或脆性材料为准来区分的。
如:大理石为脆性材料,在单向压缩时发生的破坏为脆性断裂,见图(a );若表面受均匀径向压力,施加轴向力后出现明显的塑性变形,成为腰鼓形,显然其破坏形式为塑性屈服,见图(b)。
在复杂应力状态下,一点的3个主应力、、可能都不为零,而且会出现不同的主应力组合。
单层板的二维强度理论 -失效准则在平面应力状态下,单层板的基本强度有五个:F L t—纵向拉伸强度;F L c—纵向压缩强度;F T t—横向拉伸强度;F T c—横向压缩强度;F LT—纵横向剪切强度。
1.最大应力理论该理论假设,只要单层板方向上任何一个应力分量抵达相应的基本强度时,单层板破坏。
强度判据式为FL c L FL tF T c T F T t(1-1)LT F LT注:上式中任一不等式不满足,就意味着单层板破坏,该准则的各不等式是各自独立的,实际上是由三个分准则组成。
显然,在应用该强度理论时,必须将非主方向的应力转换到主方向上来。
2.最大应变理论该理论假设,只要单层板主方向上任何一个应变分量抵达相应的基本强度所对应的应变值时,单层板破坏。
强度判据式为e L c L e L te T c T e T t(2-1)LT eLT式中诸 e 为足标所指示的单向受力时的极限应变,它们与基本强度的关系为eL tFL tE LeT tF T tE Te LTF LTG LT(2-2)e L cF L cE LeT cFT cE T由应力应变之间的关系,可将式(2-2 )写成FL cL LT T FL tF T c TTL LF T t(2-3 )LTFLT注:式( 2-1 )或式( 2-3 )中任一不等式不满足,就意味着单层板破坏。
该准则也是由三个分准则组成。
比较式( 2-3 )和式( 1-1 )可以看出,准则( 2-3 )中多了另一主方向应力的项。
3. 蔡 - 希尔 (Tsai-Hill) 准则蔡- 希尔准则只有一个判据式为2 2 2LL TTLT1(3-1 )F L2F L 2F T2F LT2或者写成( L )2FT ( L)( T )( T )2( LT )2 1(3-2 )F LF L F L F TF TFLT注:蔡 - 希尔准则只有一个判据式。
若等式左端各项之和等于1,表示材料开始破坏;若小于 1,表示材料处于线弹性状态;若大于1,表示材料已经破坏。