《材料力学》第十章 强度理论
- 格式:ppt
- 大小:251.50 KB
- 文档页数:17
材料力学强度理论
材料力学强度理论是材料力学的一个重要分支,它研究材料在外力作用下的强
度和变形特性。
材料的强度是指材料抵抗破坏的能力,而变形特性则是指材料在外力作用下的形变行为。
强度理论的研究对于材料的设计、制备和应用具有重要意义。
首先,强度理论可以帮助我们了解材料的破坏机制。
材料在外力作用下会发生
破坏,而不同的材料在受力时表现出不同的破坏模式,比如拉伸、压缩、剪切等。
强度理论可以通过实验和理论分析,揭示材料在受力时的破坏机制,为材料的设计和选用提供依据。
其次,强度理论可以指导材料的合理使用。
在工程实践中,我们需要根据材料
的强度特性来选择合适的材料,并确定合理的使用条件。
强度理论可以帮助我们评估材料在特定工况下的承载能力,从而保证材料的安全可靠使用。
此外,强度理论还可以为材料的改进和优化提供指导。
通过对材料强度特性的
研究,我们可以发现材料的强度局限性,并提出改进的方案。
比如,可以通过合金化、热处理等手段来提高材料的强度,或者通过结构设计来减小应力集中,提高材料的抗破坏能力。
综上所述,材料力学强度理论是材料科学中的重要内容,它不仅可以帮助我们
了解材料的破坏机制,指导材料的合理使用,还可以为材料的改进和优化提供指导。
在未来的研究和工程实践中,我们需要进一步深入研究强度理论,不断提高材料的强度和可靠性,为社会发展和科技进步做出贡献。
四大强度准则理论:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]。
第10章强度理论10、1 强度理论的概念构件的强度问题就是材料力学所研究的最基本问题之一。
通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。
故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。
各种材料因强度不足而引起的失效现象就是不同的。
如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。
对以铸铁为代表的脆性材料,失效现象则就是突然断裂。
在单向受力情况下,出现塑性变形时的屈服点σ与发生断裂s时的强度极限σ可由实验测定。
sσ与bσ统称为失效应力,以安全系数除失效应力得到b许用应力[]σ,于就是建立强度条件[]σσ≤可见,在单向应力状态下,强度条件都就是以实验为基础的。
实际构件危险点的应力状态往往不就是单向的。
实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。
常用的方法就是把材料加工成薄壁圆筒(图10-1),在内压p作用下,筒壁为二向应力状态。
如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。
这种薄壁筒试验除作用内压与轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。
此外,还有一些实现复杂应力状态的其她实验方法。
尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。
况且复杂应力状态中应力组合的方式与比值又有各种可能。
如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。
由于技术上的困难与工作的繁重,往往就是难以实现的。
解决这类问题,经常就是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。
图10-1经过分析与归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还就是屈服与断裂两种类型。
同时,衡量受力与变形程度的量又有应力、应变与变形能等。
人们在长期的生产活动中,综合分析材料的失效现象与资料,对强度失效提出各种假说。
材料力学强度理论
材料力学强度理论是材料力学的重要分支,它研究材料在外力作用下的变形和破坏规律,对于工程结构的设计和材料的选用具有重要的指导意义。
材料力学强度理论主要包括极限强度理论、能量强度理论和应变强度理论等。
首先,极限强度理论是最早形成的材料力学强度理论之一。
它认为材料的破坏取决于材料内部的最大应力达到其抗拉强度或抗压强度时所对应的应变状态。
极限强度理论的优点是简单易行,适用范围广,但其缺点是只考虑了材料的强度,忽略了材料的变形性能,因此在工程实践中应用受到了一定的限制。
其次,能量强度理论是在极限强度理论的基础上发展起来的。
它认为材料的破坏取决于单位体积内的应变能达到一定数值时所对应的应变状态。
能量强度理论考虑了材料的变形性能,能够更准确地描述材料的破坏过程,因此在工程实践中得到了广泛的应用。
最后,应变强度理论是在能量强度理论的基础上进一步发展起来的。
它认为材料的破坏取决于应变状态达到一定数值时所对应的应力状态。
应变强度理论综合考虑了材料的强度和变形性能,能够更全面地描述材料的破坏规律,因此在工程实践中得到了广泛的应用。
总的来说,材料力学强度理论对于工程结构的设计和材料的选用具有重要的指导意义。
不同的强度理论各有其优缺点,工程师需要根据具体的工程要求和材料性能选择合适的强度理论进行分析和计算。
在今后的研究和工程实践中,我们还需要进一步深入理解材料的力学性能,不断完善和发展材料力学强度理论,为工程结构的安全可靠提供更加科学的依据。
材料力学强度理论材料力学强度理论是研究材料在外力作用下的强度性能和破裂行为的理论。
强度是指材料在外力作用下抵抗破坏的能力。
材料力学强度理论可以帮助工程师预测材料在实际工程应用中的强度,从而确保工程的安全性和可靠性。
在材料力学强度理论中,常用的强度概念包括抗拉强度、抗压强度、抗剪强度等。
抗拉强度是指材料在拉伸状态下能够承受的最大拉力;抗压强度是指材料在压缩状态下能够承受的最大压力;抗剪强度是指材料在受剪状态下能够承受的最大剪力。
这些强度值可以通过实验测试得到,也可以通过数值计算预测。
材料力学强度理论的基础是材料的弹性行为和塑性行为。
弹性行为是指材料在外力作用下能够恢复原状的性质,塑性行为是指材料在外力作用下会发生永久形变的性质。
根据材料的弹性和塑性行为,可以得到不同的强度理论。
常用的强度理论包括极限强度理论、最大剪应力理论和最大能量释放率理论。
极限强度理论是最简单和常用的强度理论,它假设材料的破坏强度只取决于材料本身的性质,与外力的作用方式无关。
根据极限强度理论,材料的破坏强度取决于其最弱的部分,即材料中最容易出现破坏的部分。
因此,工程师需要在设计过程中充分考虑材料的强度分布,以确保整个结构的强度。
最大剪应力理论假设材料破坏的原因是剪应力达到材料的抗剪强度。
根据最大剪应力理论,材料的破坏只与剪应力有关,而与拉应力和压应力无关。
因此,工程师在设计中应当避免剪应力集中,以提高结构的强度。
最大能量释放率理论是基于能量耗散的原理,假设材料的破坏是由于能量释放速率最大而引起的。
根据最大能量释放率理论,材料的破坏不仅与应力分布有关,还与材料的断裂韧性有关。
因此,工程师在设计中需要考虑材料的韧性因素,以提高结构的抗破坏能力。
综上所述,材料力学强度理论是研究材料在外力作用下的强度性能和破裂行为的理论,包括抗拉强度、抗压强度、抗剪强度等。
常用的强度理论包括极限强度理论、最大剪应力理论和最大能量释放率理论。
工程师可以根据这些理论预测材料的强度,从而确保工程的安全和可靠。