操作系统_实验四信号机制实验
- 格式:doc
- 大小:54.00 KB
- 文档页数:5
操作系统进程控制实验报告硬件环境:处理器:Intel(R) Core(TM) i5-3210M CPU @2.50GHz 2.50GHz安装内存:4.00GB系统类型:64位操作系统软件环境:Linux系统一、实验目的加深对于进程并发执行概念的理解。
实践并发进程的创建和控制方法。
观察和体验进程的动态特性。
进一步理解进程生命期期间创建、变换、撤销状态变换的过程。
掌握进程控制的方法,了解父子进程间的控制和协作关系。
练习Linux系统中进程创建与控制有关的系统调用的编程和调试技术。
二、实验步骤(1)分析实例实验(2)进行独立实验(3)思考并完成实验报告实验截图:思考:说明它们反映出操作系统教材中进程及处理机管理一节讲解的进程的哪些特征和功能?在真实的操作系统中它是怎样实现和反映出教材中讲解的进程的生命期、进程的实体和进程状态控制的。
你对于进程概念和并发概念有哪些新的理解和认识?子进程是如何创建和执行新程序的?信号的机理是什么?怎样利用信号实现进程控制?根据实验程序、调试过程和结果分析写出实验报告。
1.进程的概念:进程不仅是一段程序代码,还包括当前活动(通过程序计数器和寄存器中的内容来表示),另外,进程还包括进程堆栈段,和数据段等。
2.并发概念:是指进程之间交替并发执行3.进程通过系统调用fork()函数创建子进程,子进程由唯一的pid值标示,pid通常是一个整数值。
通过fork创建的子进程实际上是父进程的克隆体,通过复制原来进程的地址空间而成,父子进程同时执行fork之后的程序。
但是父子进程的pid值不同,可以通过对pid的判断,使父子进程执行不同的程序。
子进程如果想执行不同的程序,需要系统调用exec()函数装入新的程序执行。
4.信号的机理:信号是用来通知进程某个特定的事件已经发生。
信号是由特定的事件产生,信号必须要发送到进程,一旦发送,进程必须得到处理。
信号可以可以有系统默认处理也可以用户自定义处理。
操作系统实验实验报告一、实验目的操作系统是计算机系统中最为关键的核心软件,它管理着计算机的硬件资源和软件资源,为用户提供了一个方便、高效、稳定的工作环境。
本次操作系统实验的目的在于通过实际操作和实践,深入理解操作系统的基本原理和核心概念,掌握操作系统的基本功能和操作方法,提高对操作系统的认识和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C 和 C++。
实验硬件环境为一台配备Intel Core i7 处理器、16GB 内存、512GB SSD 硬盘的个人计算机。
三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新的进程,并在完成任务后终止进程。
在实验中,我们使用了 Windows API 函数 CreateProcess 和 TerminateProcess 来完成进程的创建和终止操作。
通过观察进程的创建和终止过程,深入理解了进程的生命周期和状态转换。
2、进程同步与互斥为了实现进程之间的同步与互斥,我们使用了信号量、互斥量等同步对象。
通过编写多线程程序,模拟了多个进程对共享资源的访问,实现了对共享资源的互斥访问和同步操作。
在实验中,我们深刻体会到了进程同步与互斥的重要性,以及不正确的同步操作可能导致的死锁等问题。
(二)内存管理实验1、内存分配与释放使用 Windows API 函数 VirtualAlloc 和 VirtualFree 进行内存的分配和释放操作。
通过实验,了解了内存分配的不同方式(如堆分配、栈分配等)以及内存释放的时机和方法,掌握了内存管理的基本原理和操作技巧。
2、内存分页与分段通过编程模拟内存的分页和分段管理机制,了解了内存分页和分段的基本原理和实现方法。
在实验中,我们实现了简单的内存分页和分段算法,对内存的地址转换和页面置换等过程有了更深入的理解。
(三)文件系统实验1、文件操作使用 Windows API 函数 CreateFile、ReadFile、WriteFile 等进行文件的创建、读取和写入操作。
操作系统中信号的研究与实现随着计算机技术的不断发展,操作系统已成为计算机系统最重要的一部分。
作为操作系统的核心部分,信号是操作系统中的一项非常重要的功能之一。
本文将详细探讨操作系统中信号的研究与实现,包括信号的概念、处理过程、实现方法、应用场景等。
一、信号的概念信号是操作系统与进程之间进行通讯的重要手段。
它是一种异步通知机制,可以使进程响应某些事件或改变某些行为。
在 Linux 中,信号是由内核向进程发送的软中断,用于通知进程发生了某个事件或某个操作已经完成。
信号是 Linux 系统中的一个基本概念,也是用户与内核通信的一种重要方式。
二、信号的处理过程在 Linux 系统中,信号的处理过程可以分为三个阶段:信号产生、信号传递和信号处理。
1.信号产生信号产生是指在 Linux 系统中某个事件发生时,系统会向相应进程发送一个信号,以通知进程发生了该事件。
例如,当用户按下 Ctrl+C 时,系统会向相应进程发送一个 SIGINT 信号,以通知进程接收到该信号。
当然,也可以通过调用 kill 系统调用发送信号来产生信号。
2.信号传递信号传递指的是在发生信号后,系统要将该信号传递给相应的进程进行处理。
当信号产生后,内核会将信号发送到进程的进程表项中,进程可以通过系统调用sigaction 或 signal 来设置自己对信号的处理方式。
信号处理指的是进程接收到信号后需要进行的处理。
在 Linux 系统中,信号处理可以分为默认处理方式和自定义处理方式。
默认情况下,进程接收到信号后会终止运行并退出;而自定义处理方式可以通过 sigaction 或 signal 进行设置。
自定义处理方式可以设置为忽略该信号、终止进程、打印日志等等。
三、信号的实现方法在 Linux 系统中,信号的实现方法包括两种:基于中断的实现和基于轮询的实现。
1.基于中断的实现基于中断的实现指的是操作系统通过中断机制来实现信号的传递和处理。
当信号发生时,操作系统会向相应进程发送一个中断信号,以通知进程接收到该信号。
信号量机制解决互斥问题实验报告一、实验目的本实验旨在通过实际操作,深入理解信号量机制在解决互斥问题中的应用,并掌握其实现原理。
通过实验,我们将观察信号量如何确保对共享资源的互斥访问,从而提高多线程程序的安全性和稳定性。
二、实验环境操作系统:Linux编程语言:C语言开发工具:gcc编译器、终端三、实验原理信号量机制是一种常用的同步原语,用于解决多线程或多进程间的互斥问题。
信号量是一个整数值,通常用于表示资源的数量。
在解决互斥问题时,信号量通过维护一个非负的整数值来确保对共享资源的互斥访问。
四、实验步骤创建两个线程,它们需要访问共享资源。
使用信号量来同步这两个线程,确保它们不会同时访问共享资源。
在访问共享资源之前,线程必须获取信号量。
如果信号量的值为0,线程将被阻塞,直到信号量的值变为正值。
当线程完成对共享资源的访问后,释放信号量,使其值加1。
重复上述步骤,直到完成所有线程的同步操作。
五、实验代码实现以下是一个简单的C语言示例代码,演示了如何使用信号量解决互斥问题:#include <stdio.h>#include <pthread.h>// 定义共享资源数和线程数#define RESOURCE_COUNT 5#define THREAD_COUNT 2// 定义信号量变量pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;int semaphore = RESOURCE_COUNT; // 初始化为可用资源数void *thread_func(void *arg) {int i;for (i = 0; i < RESOURCE_COUNT; i++) {pthread_mutex_lock(&mutex); // 获取互斥锁,保护临界区代码printf("Thread %ld is accessing resource %d\n",pthread_self(), i);semaphore--; // 占用一个资源pthread_mutex_unlock(&mutex); // 释放互斥锁,允许其他线程进入临界区代码sleep(1); // 模拟耗时操作}pthread_exit(NULL);}int main() {pthread_t threads[THREAD_COUNT];int i;for (i = 0; i < THREAD_COUNT; i++) {pthread_create(&threads[i], NULL, thread_func, NULL); // 创建线程并执行函数thread_func()}for (i = 0; i < THREAD_COUNT; i++) {pthread_join(threads[i], NULL); // 等待所有线程执行完毕}return 0;}六、实验结果与分析通过运行上述代码,我们可以观察到以下实验结果:在多线程环境下,当一个线程正在访问共享资源时,其他线程将被阻塞,直到资源被释放。
一.实验目的1.熟悉零极点与频率响应的关系,掌握极点与系统稳定性的关系2.熟悉拉普拉斯变换的原理及性质,掌握常见信号的拉氏变换3.了解正/反拉氏变换的MATLAB 实现方法和利用MATLAB 绘制三维曲面图的方法4.了解信号的零极点分布对信号拉氏变换曲面图的影响及续信号的拉氏变换与傅氏变换的关系二.实验原理 1.系统的零极点及频率响应特性描述连续系统的系统函数H(s)的一般表示形式为:11101110()m m m m n n n b s b s b s b H s s a s a s a ----++++=++++ 其对应的零极点形式的系统函数为:1212()()()()()()()mm n b s z s z s z H s s p s p s p ---=--- 共有n 个极点:p 1,p 2,…p n 和m 个零点:z 1,z 2,…z m 。
把零极点画在S 平面中得到的图称为零极点图,人们可以通过零极点分布判断系统的特性。
当系统的极点处在S 的左半平面时系统稳定;处在虚轴上的单阶极点系统稳定;处在S 的右半平面的极点及处在虚轴上的高阶极点,系统是不稳定的。
描述系统除了可以用系统函数和零极图以外,还可以用状态方程。
对应上述用系统函数H (s) 描述的系统,其状态方程可用相变量状态方程和对角线变量状态方程描述,形式分别为相变量状态方程:1122110121'01000'00100'00010'1n n n n n x x x x f x x x a a a a x ---⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪=+ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪----⎝⎭⎝⎭⎝⎭⎝⎭ 系统在频域中的特性可以用频域中的系统函数表示()()s j H j H s ωω== H(jω)是复函数,可表示为()()|()|j H j H j e ϕωωω=|()|H j ω称为幅频特性, ()ϕω称为相频特性。
第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
case -1:perror("fork()");exit(0);case 0:do_child_loop(sem_set_id,FILE_NAME);exit(0);default:break;}}for(i = 0;i<10;i++){int child_status;wait(&child_status);}printf("main is done");fflush(stdout);return 0;}运行结果:二、共享主存段机制共享主存段为进程提供了直接通过主存进行通信的有效手段,不像消息缓存机制那样需要系统提供缓存,也不像pipe机制那样需要事先建立一个特殊文件,而是有通信双方直接访问某些共享虚拟存储器空间。
在系统V中,系统管理一组共享主存段控制块。
通信进程在使用共享主存段以前,首先提出申请,系统为止分配存储空间并返回共享主存段标识号。
一个共享段建立后,进程把它被附加到自己的虚拟存储空间中。
一个进程可以附加多个共享主存段。
一个主存段一旦被附加到进程的虚拟机空间后,对它的访问以其他虚拟机的访问完全相同。
但为了保证共享主存段数据完整性,通信的进程之间要互斥的进行访问。
当通信进程不再需要该共享主存段时,可使用命令将其与进程分离,从而使其进程的虚空间删除。
为了理解进程通过共享主存段的通信过程,下面举例,一个是进程向共享段写信息的例子:一个是进行从共享段读信息的例子。
代码如下:四、实验过程与分析一、信号量机制在第一个例子的程序中创建了5个并发子进程,互斥地对文件进行写操作,将自己的进程号写到文件中去,信号量的初值为1,当地一个进程执行update_file函数时首先将信号量值-1,(相当于P操作)致使其它进程等待无法操作文件,直到其结束后,将其值变为1后(相当于V操作),其它进程并发竞争对文件的写操作,并将自己的pid 写入文件中。
在linux中信号量机制的执行既步骤如下所示:(1)信号量的定义:struct semaphore {spinlock_t lock;unsigned int count;struct list_head wait_list;};在linux中,信号量用上述结构体表示,我们可以通过该结构体定义一个信号量。
操作系统中的信号机制信号机制是操作系统的一个重要特性,通过它,应用程序可以与操作系统进行通信,实现进程间的协调和同步。
在本文中,将详细介绍信号机制的原理、使用和实现方法,并探讨其在操作系统中应用的重要性和作用。
一、信号机制的原理信号机制的原理是在操作系统中,某个进程通过向另一个进程发送信号,来通知这个进程某些事情已发生。
在Linux和Unix系统中,每个进程都有一个唯一的进程ID,通过信号,进程可以向目标进程发送指定的信号号码,目标进程将收到这个信号,并对其进行处理。
信号可以分为两种类型:软件中断和硬件中断。
软件中断是由操作系统中断处理程序发出的,用于通知应用程序某个事件已经发生;硬件中断是由系统硬件设备发出的,例如鼠标或键盘按键、定时器等。
在Unix系统中,每个信号都有一个唯一的编号,通常在1~31之间。
其中,0号信号表示检查进程是否存在,1号信号表示终止进程,2号信号表示中断进程执行等等。
除此之外,还有一些用户自定义的信号,可以用于特定的应用程序场景。
二、信号机制的使用在Linux和Unix系统中,可以使用kill命令发送信号。
该命令的基本语法是:kill [-s ]。
其中,表示需要发送的信号号码,可以是从1开始的任意整数;表示需要发送信号的进程ID。
如果没有指定信号号码,默认发送15号信号,即终止进程。
除了kill命令,应用程序也可以使用系统调用函数来发送信号。
例如,使用kill函数和raise函数可以向指定的进程ID或当前进程发送信号,如下所示:#include <sys/types.h>#include <sys/signal.h>int kill(pid_t pid, int sig);int raise(int sig);在应用程序中,通常会使用信号处理函数来定义信号的处理方式。
应用程序使用signal函数注册信号处理函数,并在信号发生时执行预先定义好的操作。
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
实验报告实验题目姓名:学号:课程名称:操作系统实验所在学院:信息科学与工程学院专业班级:计算机任课教师:实验项目名称进程通信——共享存储区和信号量一、实验目的与要求:1、了解和熟悉共享存储机制2、了解和熟悉信号量机制3、熟悉信号量机制中使用的数据结构和信号量机制的操作以及控制。
4、了解共享主存段机制,学会对共享主存段的系统调用。
二、实验设备及软件:1、PC机一台2、Linux操作系统三、实验方法(原理、流程图)一、共享存储区1、共享存储区机制的概念共享存储区(Share Memory)是 UNIX 系统中通信速度最高的一种通信机制。
该机制可使若干进程共享主存中的某一个区域,且使该区域出现(映射)在多个进程的虚地址空间中。
另一方面,一个进程的虚地址空间中又可连接多个共享存储区,每个共享存储区都有自己的名字。
当进程间欲利用共享存储区进行通信时,必须先在主存中建立一共享存储区,然后将它附接到自己的虚地址空间上。
此后,进程对该区的访问操作,与对其虚地址空间的其它部分的操作完全相同。
进程之间便可通过对共享存储区中数据的读、写来进行直接通信。
图示列出二个进程通过共享一个共享存储区来进行通信的例子。
其中,进程 A 将建立的共享存储区附接到自己的 AA’区域,进程 B 将它附接到自己的 BB’区域。
应当指出,共享存储区机制只为进程提供了用于实现通信的共享存储区和对共享存储区进行操作的手段,然而并未提供对该区进行互斥访问及进程同步的措施。
因而当用户需要使用该机制时,必须自己设置同步和互斥措施才能保证实现正确的通信。
二、涉及的系统调用1、shmget( )创建、获得一个共享存储区。
系统调用格式: shmid=shmget(key,size,flag)参数定义: int shmget(key,size,flag);key_t key;int size,flag;其中,key是共享存储区的名字;size是其大小(以字节计);flag是用户设置的标志,如IPC_CREAT。