发酵工程实验报告之果胶酶
- 格式:doc
- 大小:1008.00 KB
- 文档页数:12
实验报告果胶酶在果汁生产中的作用一.实验目的1.探究不同温度对果胶酶活性的影响;2.探究不同 ph 对果胶酶活性的影响;3.探究果胶酶的用量对果汁生产的影响。
二.实验原理1.果胶酶的活性受温度影响。
处于最适温度时,活性最高。
果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。
2.果胶酶的活性受ph影响,处于最适ph,酶的活性最高,高于或低于此值活性均下降。
果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。
3.在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后,在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。
三.实验材料与用具苹果、果胶酶、盐酸溶液、榨汁机、电子天平、恒温水浴锅、烧杯、量筒、试管、漏斗、温度计、玻璃棒、滤纸、滴管、三脚架四.实验步骤(一)温度对果胶酶活性的影响1.制备果汁选取一个中等大小的苹果( 约 200g) 洗净后,不去皮,切成小块,放入榨汁机中,加入约 200ml 水,榨取 2min,制得苹果泥。
量取一定体积的苹果泥,不同条件下处理后,用滤纸进行过滤即可得到果汁;2.取9支试管编号并分别加入等量的果汁和果胶酶;3.将9支试管分别放入30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃的水浴锅中保温10分钟;4.过滤果汁用量筒测量果汁的里量,并记录数据。
(二)ph 对果胶酶活性的影响1.制备果汁;2.取5支试管编号并分别加入等量的果汁和果胶酶;3.将5支试管放入40℃恒温水浴锅中加热;4.待试管内温度稳定后在5支试管分别加入ph分别为5、6、7、8、9的盐酸溶液;5.恒温保持10min;6.过滤果汁用量筒测量果汁的里量,并记录数据。
(三)果胶酶的用量对果汁生产的影响1.配制不同浓度的果胶酶溶液准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、6mg、7mg、8mg、9mg,配制成相等体积的水溶液,取等量放入9支试管中,并编号1~9。
一、实验目的1. 学习果胶酶的提取方法。
2. 探究不同提取条件对果胶酶活性的影响。
3. 测定果胶酶的活性。
二、实验原理果胶酶是一种复合酶,主要包括果胶分解酶、果胶酯酶和果胶酶等。
它们能将果胶分解为低聚果胶、果胶酸和果胶单糖等,从而降低果胶的粘度,提高果汁的澄清度。
本实验通过提取果胶酶,并测定其活性,旨在了解果胶酶的提取方法和活性。
三、实验材料1. 材料:新鲜柑橘皮、硫酸铵、吐温-80、磷酸氢二钠、磷酸二氢钠、葡萄糖标准液、蒸馏水等。
2. 仪器:电子天平、高速离心机、恒温水浴锅、分光光度计、烧杯、量筒、移液器、试管等。
四、实验方法1. 果胶酶的提取(1)将新鲜柑橘皮洗净,去皮,切成小块。
(2)将柑橘皮与蒸馏水按1:10(质量比)的比例混合,置于高速离心机中,以4000 r/min离心10分钟。
(3)取上清液,加入硫酸铵,使硫酸铵的终浓度为0.5 mol/L,置于4℃冰箱中沉淀过夜。
(4)将沉淀物重新溶解于蒸馏水中,加入吐温-80,使吐温-80的终浓度为1%,混匀后置于高速离心机中,以4000 r/min离心10分钟。
(5)取上清液,用0.1 mol/L磷酸缓冲液(pH 6.0)透析,去除硫酸铵,透析时间为4小时。
(6)透析后的溶液即为果胶酶提取液。
2. 果胶酶活性测定(1)绘制标准曲线:以葡萄糖标准液为参比,采用紫外分光光度法测定葡萄糖浓度,绘制标准曲线。
(2)酶活性测定:取1 mL果胶酶提取液,加入0.5 mL 0.5%果胶溶液,混匀后置于恒温水浴锅中,在40℃下反应30分钟。
(3)终止反应:向反应体系中加入1 mL 1 mol/L NaOH溶液,混匀。
(4)测定吸光度:用分光光度计测定反应体系的吸光度,根据标准曲线计算葡萄糖浓度。
(5)计算酶活性:根据葡萄糖浓度和反应体系体积,计算果胶酶活性。
五、实验结果与分析1. 果胶酶提取结果通过实验,成功提取了果胶酶,提取液呈淡黄色,说明果胶酶提取成功。
一、实验目的1. 了解果胶酶的特性和作用机制。
2. 掌握果胶酶提取和纯化的方法。
3. 学习果胶酶在不同条件下的酶活性测定。
4. 探究果胶酶在食品加工中的应用。
二、实验原理果胶酶是一类能够降解果胶的多糖水解酶,主要分为三种:果胶分解酶、果胶酯酶和果胶裂解酶。
果胶酶在食品加工中具有重要作用,如果汁澄清、果酱生产、果胶降解等。
三、实验材料与仪器1. 实验材料:柑橘皮、淀粉酶、葡萄糖标准液、酚酞指示剂等。
2. 仪器:恒温水浴锅、紫外可见分光光度计、离心机、天平等。
四、实验方法1. 果胶酶的提取(1)将柑橘皮洗净、去皮、去核,切成小块。
(2)将柑橘皮放入组织捣碎机中,加入适量的蒸馏水,捣碎成浆状。
(3)将浆状物过滤,得到果胶酶提取液。
2. 果胶酶的纯化(1)将果胶酶提取液加入适量的硫酸铵,使蛋白质沉淀。
(2)离心,收集沉淀,用蒸馏水洗涤沉淀,得到粗果胶酶。
(3)将粗果胶酶加入适量的硫酸铵,使蛋白质再次沉淀。
(4)离心,收集沉淀,用蒸馏水洗涤沉淀,得到纯果胶酶。
3. 果胶酶的酶活性测定(1)配制果胶溶液:称取一定量的果胶,用蒸馏水溶解,配制成一定浓度的果胶溶液。
(2)取一定量的果胶溶液,加入适量的淀粉酶,在恒温水浴锅中反应一定时间。
(3)加入酚酞指示剂,用葡萄糖标准液滴定至溶液呈粉红色,记录消耗的葡萄糖标准液体积。
(4)根据消耗的葡萄糖标准液体积和果胶溶液的浓度,计算果胶酶的酶活性。
4. 果胶酶在食品加工中的应用(1)果汁澄清实验:将柑橘汁中加入适量的果胶酶,观察果汁澄清效果。
(2)果酱生产实验:将柑橘皮与果胶酶混合,观察果酱的质地和口感。
五、实验结果与分析1. 果胶酶的提取和纯化实验成功提取了果胶酶,并通过硫酸铵沉淀法进行了初步纯化。
2. 果胶酶的酶活性测定通过酶活性测定,得到了果胶酶的酶活性为XX U/mg。
3. 果胶酶在食品加工中的应用在果汁澄清实验中,加入果胶酶的柑橘汁澄清效果明显优于未加果胶酶的柑橘汁。
一、实验目的1. 了解果胶酶的提取方法;2. 掌握果胶酶活性的测定方法;3. 探究不同提取方法对果胶酶活性的影响。
二、实验原理果胶酶是一种复合酶,主要由果胶分解酶、果胶酯酶和半乳糖醛酸酶组成。
它能够分解植物细胞壁中的果胶,使植物组织变得柔软,便于提取。
本实验通过提取黑曲霉等真菌中的果胶酶,并测定其活性,以了解果胶酶的特性。
三、实验材料与仪器1. 实验材料:- 黑曲霉菌种- 柑橘皮- 硫酸铵- 乙酸乙酯- 氯化钠- 碳酸氢钠- 磷酸氢二钠- 磷酸二氢钠- 果胶- 水浴锅- pH计- 离心机- 移液器- 烧杯- 试管- 滴定管- 酶标板- 酶标仪2. 实验试剂:- 磷酸盐缓冲液(pH 6.8)- 果胶酶提取液- 果胶溶液- 氯化钠溶液- 碳酸氢钠溶液- 磷酸氢二钠溶液- 磷酸二氢钠溶液四、实验方法1. 果胶酶提取(1)将黑曲霉菌种接种于装有马铃薯葡萄糖琼脂(PDA)培养基的培养皿中,培养48小时。
(2)将培养好的黑曲霉菌种接种于装有马铃薯葡萄糖液体培养基的三角瓶中,培养48小时。
(3)将培养好的菌液以4,000 r/min离心10分钟,收集菌体。
(4)将菌体用pH 6.8的磷酸盐缓冲液洗涤三次,去除杂质。
(5)将洗涤后的菌体加入硫酸铵溶液中,搅拌溶解,调节pH至7.0。
(6)将溶液以4,000 r/min离心10分钟,收集沉淀。
(7)将沉淀用pH 6.8的磷酸盐缓冲液洗涤三次,去除杂质。
(8)将洗涤后的沉淀加入乙酸乙酯溶液中,搅拌溶解,去除蛋白质。
(9)将溶液以4,000 r/min离心10分钟,收集沉淀。
(10)将沉淀用pH 6.8的磷酸盐缓冲液洗涤三次,去除杂质。
(11)将洗涤后的沉淀加入氯化钠溶液中,搅拌溶解,调节pH至7.0。
(12)将溶液以4,000 r/min离心10分钟,收集沉淀。
(13)将沉淀用pH 6.8的磷酸盐缓冲液洗涤三次,去除杂质。
(14)将洗涤后的沉淀加入碳酸氢钠溶液中,搅拌溶解,调节pH至7.0。
一、实验目的1. 了解果胶酶在果汁生产中的应用及其作用原理。
2. 探究不同果胶酶用量对果汁产量和品质的影响。
3. 确定果胶酶的最适用量,为果汁生产提供理论依据。
二、实验材料1. 材料:苹果泥、果胶酶溶液、蒸馏水、pH试纸、恒温水浴装置、试管、漏斗、滤纸、量筒、试管夹。
2. 试剂:质量分数为2%的果胶酶溶液、体积分数为0.1%的缓冲液。
三、实验方法1. 实验分组:将实验分为6组,分别编号为1~6。
2. 苹果泥处理:取等量的苹果泥,用pH试纸测定其pH值,调节至4.8。
3. 果胶酶溶液添加:向1~6号试管分别加入不同体积的果胶酶溶液(如:0.1mL、0.2mL、0.3mL、0.4mL、0.5mL、0.6mL)。
4. 恒温水浴:将装有苹果泥和果胶酶溶液的试管放入45℃恒温水浴装置中,保温相同时间(如:30分钟)。
5. 过滤:使用漏斗和滤纸将苹果泥过滤,收集果汁。
6. 果汁体积测量:使用量筒测量过滤得到的果汁体积,记录数据。
四、实验结果与分析1. 实验结果:通过实验,得到以下数据(单位:mL):组号果胶酶用量(mL)果汁体积(mL)1 0.1 302 0.2 403 0.3 504 0.4 605 0.5 656 0.6 652. 结果分析:(1)随着果胶酶用量的增加,果汁体积逐渐增加。
当果胶酶用量达到0.5mL时,果汁体积达到最大值,之后继续增加果胶酶用量,果汁体积不再增加。
说明果胶酶用量在一定范围内对果汁产量有显著影响。
(2)在实验中,果胶酶用量为0.1mL时,果汁产量较低,可能是因为果胶酶用量不足,未能充分发挥其催化作用。
随着果胶酶用量的增加,果汁产量逐渐提高,但超过0.5mL后,果汁产量增加不明显,可能是因为酶活性已经达到饱和,继续增加果胶酶用量对果汁产量影响不大。
(3)从实验结果可以看出,果胶酶的最适用量为0.5mL。
在此用量下,果汁产量较高,且能保证果汁品质。
五、实验结论通过本实验,我们得出以下结论:1. 果胶酶在果汁生产中具有重要作用,可以提高果汁产量和品质。
一把神奇的剪刀——果胶酶葡萄果实中含有大量的芳香物质、色素、单宁以及其他多酚类物质,这些成分绝大多数都存在于葡萄皮的细胞中,并被细胞外的保护层细胞壁紧紧地包裹起来。
如何将芳香物质、色素、单宁等成分充分浸提出来是酿酒师的头等大事。
而果胶酶好似一把神奇的剪刀剪开葡萄皮的细胞壁,将其包裹的芳香物质释放到葡萄酒中。
果胶是广泛存在于高级植物细胞中的一类多糖化合物,对植物组织起软化和连接作用。
而果胶酶是分解果胶质的多种酶的总称,是一种在食品工业上广泛使用的酶。
果胶酶也存在于植物和微生物中,主要作用是软化果胶组织,将果胶质分解,降低黏度。
国际葡萄与葡萄酒局(OIV)的规定中允许在酿酒过程中加入果胶酶。
葡萄酒酿造过程中使用的果胶酶是由黑曲霉(Aspergillus niger)经特殊工艺制成的,分液态和固态两种。
最早的商业果胶酶是1922年由法国的 Rapidase 公司生产。
黑曲霉因为葡萄浆果的细胞壁成分不仅仅是果胶,还含有其他物质,且不同葡萄品种的酿造工艺有所差异,所以商业果胶酶多为复合果胶酶,包括果胶裂解酶(Pectinlyase)、果胶酯酶(Pectin esterase)和聚半乳糖醛酸酯酶(Polygalacturomases)等。
果胶裂解酶将果胶的长链裂解成短链,果胶酯酶和聚半乳糖醛酸酯酶则负责将短链的果胶分子变成更小的短链分子。
在葡萄酒酿制的过程中,复合果胶酶起到了增加葡萄出汁率、加速葡萄内杂质、果肉等物质的沉降和澄清的作用,缩短了杂质(泥土、果梗残留物)与果汁接触的时间,降低了不良气味带给葡萄酒的风险,如泥土味、生青味等。
另外,果胶酶还能提升多酚类物质(优质单宁)和香气前体物质的溶解、提升色素稳定性、增加香气成分的含量、加强葡萄酒的过滤效果。
影响果胶酶作用的因素果胶酶的使用和选择需要考虑葡萄品种、品质情况、成熟度、种植环境、采收方式、压榨力度和酿制工艺等等诸多因素。
不同葡萄品种的果胶含量不同,例如赤霞珠(Cabernet Sauvignon)与玫瑰香所含的果胶就有所差异。
实验报告果胶酶在果汁生产中的作用一.实验目的1.探究不同温度对果胶酶活性的影响;2.探究不同 ph 对果胶酶活性的影响;3.探究果胶酶的用量对果汁生产的影响。
二.实验原理1.果胶酶的活性受温度影响。
处于最适温度时,活性最高。
果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。
2.果胶酶的活性受ph影响,处于最适ph,酶的活性最高,高于或低于此值活性均下降。
果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。
3.在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后,在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。
三.实验材料与用具苹果、果胶酶、盐酸溶液、榨汁机、电子天平、恒温水浴锅、烧杯、量筒、试管、漏斗、温度计、玻璃棒、滤纸、滴管、三脚架四.实验步骤(一)温度对果胶酶活性的影响1.制备果汁选取一个中等大小的苹果( 约 200g) 洗净后,不去皮,切成小块,放入榨汁机中,加入约 200ml 水,榨取 2min,制得苹果泥。
量取一定体积的苹果泥,不同条件下处理后,用滤纸进行过滤即可得到果汁;2.取9支试管编号并分别加入等量的果汁和果胶酶;3.将9支试管分别放入30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃的水浴锅中保温10分钟;4.过滤果汁用量筒测量果汁的里量,并记录数据。
(二)ph 对果胶酶活性的影响1.制备果汁;2.取5支试管编号并分别加入等量的果汁和果胶酶;3.将5支试管放入40℃恒温水浴锅中加热;4.待试管内温度稳定后在5支试管分别加入ph分别为5、6、7、8、9的盐酸溶液;5.恒温保持10min;6.过滤果汁用量筒测量果汁的里量,并记录数据。
(三)果胶酶的用量对果汁生产的影响1.配制不同浓度的果胶酶溶液准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、6mg、7mg、8mg、9mg,配制成相等体积的水溶液,取等量放入9支试管中,并编号1~9。
一、实验设计实验序号实验三实验名称特定产物工业生产菌种发酵试验时间2010年13日-23日实验室基础生物2(121)一、实验目的1、掌握菌种选育、菌种发酵条件的优化和微生物酶制剂酶活测定的基本方法;2、了解酶学性质的研究.3、了解影响果胶酶对果汁澄清效果的各种因素二、实验与原理1、果胶酶概况(1)、果胶质:是高等植物细胞壁内及细胞壁间的结构性多糖,是一类高分子碳水化合物,它的存在往往给果蔬加工等工艺带来许多麻烦和损失。
(2)、果胶酶:是指能分解果胶质的多种酶的总称,广泛存在于高等植物和微生物中。
(3)、产生果胶酶的微生物:细菌、放线菌、酵母和霉菌,但目前商品果胶酶多数来自霉菌。
(4)、果胶酶的应用:主要是用于果胶的分解,在水果加工、葡萄酒生产、麻类脱胶和饲料等方面有着广泛的应用。
2、果胶酶的酶活测定方法(1)、粘度降低法:利用粘度计测量在一定温度、酶浓度和一定反应时间内,标准果胶溶液的粘度降低值。
(2)、脱胶作用时间法:以脱胶作用的时间来测定果胶酶的酶活力。
(3)、次亚碘酸法:用滴定法定量测定半乳糖醛酸的生成量,以表示果胶酶的活力。
(4)、还原糖法(DNS法):根据果胶酶水解果胶生成半乳糖醛酸,后者是一种还原糖,与3,5 -二硝基水杨酸共热后被还原成棕红色的氨基化合物,在一定的范围内,还原糖的量和反应液的颜色呈比例关系,可利用比色法在540nm进行测定。
3、微生物发酵生产产品受以下条件制约:(1)、培养基成分:C源、N源、无机盐、水和生长因子(2)、培养条件:温度、pH、溶解氧等(3)、附加条件:诱导物、表面活性剂等4、酶催化反应的进行受多种因素的影响:底物浓度、酶浓度、温度、pH、激活剂、抑制剂三、设备与材料(一)、培养基1、菌种筛选使用培养基(1)、基本培养基:果胶1% 、磷酸氢二钠0.5%、蛋白胨1%、pH4.5、琼脂2.0%。
(2)、分离培养基:果胶0.5%、磷酸氢二钠0.5%、琼脂2.0%、H4.5。
果胶酶在果品加工中的应用及其固定化研究摘要:介绍了果胶酶在果品加工中的应用,并对果胶酶的固定化研究现状及发展前景作了阐述。
关键词:果胶酶;果品加工,固定化;载体Application of Pectinase in Processing of Fruit and ImmobilizationAbstract:It is introduced that the application of pectinase in processing of fruit,and study and development in this paper.Key words:peetinaae;processing of fruit;immobilization;carrier引言随着社会经济的发展和人们生活水平的提高,果品成了人类健康不可缺少的营养物质。
我国有着丰富的果品资源,然而因果品本身营养丰富,含水量高,很容易受微生物侵染和腐蚀,保存期较短。
为了充分利用资源优势,提高我国农产品在国际市场上的竞争,能力,必须大力发展果品加工业。
但是目前果品加工中存在着不少难题,例如果汁和果酒的澄清,果实的脱皮、加工过程中香气成分和营养物质的损耗等。
解决这些难题仅仅靠改进加工工艺或增加设备投资是很难实现的。
而目前有许多难题已经通过酶工程的应用得到了很好的解决。
酶工程就是为了使酶催化各种物质转化的能力实现可控制操作,把游离的酶固定化,或者把经过培养发酵所得到的目的酶活力高峰时的整个微生物细胞进行固定化,再应用于生产实践中的过程。
近年来,酶工程在果品加工中的应用非常广泛,所用的酶种类越来越多,数量也越来越大。
本文只针对果胶酶在果品加工中的应用及其固定化研究加以综述。
1.果胶酶在果品加工中的应用果胶酶是指分解果胶物质的多种酶的总称,它可分为两大类:解聚酶(depolymerase)和果胶酯酶(pectinesterase,简称PE)。
解聚酶按照作用机理不同又可分为水解酶(hydrolases)和裂解酶(1yases)。
探究果胶酶的最适⽤量实验报告
探究果胶酶的最适⽤量实验报告
⼀、实验⽬的:探究果胶酶最适⽤量。
⼆、实验原理:果胶酶能够分解果胶,⽡解植物的细胞壁及胞间层。
使得浑浊的果汁变澄清。
三、材料⽤具:35mL苹果泥、2%的果胶酶溶液、10mL量筒4个、漏⽃7个、滤纸10张、试管16只、玻璃棒4根、简易榨汁机1台。
四、实验步骤:
1、制备苹果泥:将200g苹果洗净后,不去⽪,切成⼩块,放⼊榨汁机,⼿动榨汁。
2、分别对7只试管进⾏编号为1~7,另7只编号为甲~庚。
3、分别量取苹果泥5mL于1~7号试管中,再分别量取1、1.5、2、2.5、3、3.5、
4mL的2%果胶酶溶液倒⼊甲~庚中,⽤蒸馏⽔调节体积相同。
4、将甲试管中果胶酶溶液倒⼊1试管中,余下试管⽤同样⽅法处理。
最后将温度
保温7分钟。
5、将每组⽤滤纸过滤出果汁,并观察澄清度(做好记录)。
五、实验结果:
【A~H为果汁澄清度从⼤到⼩】
六、实验结论:⽤量为1.5mL的果胶酶溶液产⽣果汁的最为澄清。
七、实验反思:因苹果泥制备所耽误的时间过长,导致实验时间增长。
且因为在过滤果汁之前没有⽤沸⽔浴将所有试管中的果胶酶⾼温失活,导致实验结果有⼀定的误差。
葡萄糖异构酶从以下六个方面来了解和认识:1.酶的催化特性和来源2. 酶的功能用途3. 酶的结构和理化性质4. 酶的生产方法和提取纯化工艺5. 酶制剂在生产中的应用6. 该酶制剂的发展趋势一、酶的催化特性和来源•葡萄糖异构酶又称木糖异构酶,它可以催化D-木糖、D-葡萄糖,D-核糖等醛糖转化为相应的酮糖。
•目前为止,发现的产酶菌为细菌和放线菌,还有少量的米曲霉和酵母中。
1、催化特性由于葡萄糖异构化为果糖具有重要的经济意义,因此工业上习惯将D-木糖异构酶称为葡萄糖异构酶。
该酶一般只能催化C2与C4羟基为顺式的戊糖和己糖异构化,即只能催化D-木糖、D-核糖和D-葡萄糖异构化为对应的酮糖大多数微生物该酶是胞内酶,可以直接利用细胞进行异构化反应,但也有一些微生物可以产生胞外酶,因菌种菌龄培养条件而异。
2、来源细菌•主要是乳酸杆菌,如短乳杆菌、发酵乳杆菌、盖氏乳杆菌、李氏乳杆菌、甘露醇乳杆菌、产气气杆菌、阴沟气杆菌、果聚糖气杆菌、凝结芽孢杆菌、嗜热芽胞脂肪杆菌等。
放线菌•主要是链霉菌和诺卡菌,如白色链菌、包氏链霉菌、多毛链霉菌、黄微绿链霉菌、橄榄色链霉菌、秀红链霉菌、委内瑞拉链霉菌、达氏诺卡菌等。
•还有密苏里游动放线菌其他•米曲霉•酵母菌密苏里游动放线菌胞内酶达95%以上,嗜热放线菌M1033的胞外异构酶达99%,我国7号淀粉酶链霉菌M1033菌株也可以产生胞外葡萄糖异构酶。
生产葡萄糖异构酶的微生物分为诱导型需要木糖作为诱导剂组成型不添加木糖,是工业生产发展的方向二、酶的功能用途1. 将葡萄糖异构化为高果糖浆,味道纯正,具有较强保温性、着色性和防腐性,营养价值较高2. 可不经消化直接被肠胃吸收,果糖的代谢不受胰岛素调节,糖尿病人可以利用。
3. 是饮料、糕点等食品工业的理想用糖,在蜂蜜中含量最为丰富,它的甜度约为蔗糖的1.2-1.8倍。
4. 目前在全国范围内各国都大力发展果葡糖浆和结晶果糖的生产三、酶的结构和理化性质•淀粉的浆液经过α-淀粉酶的催化作用,可以形成糊精,糊精经过糖化酶的催化作用形成葡萄糖,葡萄糖在葡萄糖异构酶的催化作用下,分子的结构变化,这叫做G的异构化,G经异构化就形成了果糖,如果把果葡糖浆中的果糖和葡萄糖分离开来,经分离出来的葡萄糖再次进行异构化,并且如此反复多次,最后的混合物中果糖的含量可以达到70%-90%,这样的混合物就叫做高果糖浆。
果胶酶产生菌的分离及其产酶条件优1 果胶酶产生菌的分离及其产酶条件优化摘要:通过野外采集样品,从中筛选出两株产酶相对较高的菌株,并对其酶学性质进行初步研究,探索其最适生长时间,生长的环境温度,最适ph,以及最适接种量,并设计实验方案。
第一部分前言果胶酶是一类分解果胶物质的多种酶的总称,主要包括原果胶酶,果胶脂酶,果胶裂解酶及多聚半乳糖醛酸酶四大类,因其能有效的分解果肉组织中的果胶物质,而广泛应用于食品加工、酿酒工业等方面。
此外,果胶酶在生物制药,生物污染防治,农产品加工,饲料等其他生物大规模产业也用途广泛,因而需求量也是日益增加,由于自然界中天然果胶酶广泛存在于动、植物体内,因产量较低而难以作为大规模提取,因此,寻求高效的果胶酶生产方法也更加重要,现阶段,采用微生物发酵,并从其代谢产物中提取果胶酶方法,已应用的日加成熟,各种高产、高效的菌株纷纷被筛选出来,而广泛应用于发酵生产。
一、果胶酶产生菌(一)果胶酶产生菌的选育据报到,在自然界中,已知的果胶酶产生菌多达40余种,其中多数为细菌和霉菌,还有少数的放线菌、酵母菌。
1.材料和方法:1.1实验材料:采集果园土壤及腐烂的柑橘、桔子、甜瓜等水果腐烂的部分。
1.2培养基:1.2.1富集培养基: 5%的葡萄糖,0.3%酵母膏,0.5%蛋白栋。
1.2.2选择培养基: 磷酸氢二钾0.01g,硫酸镁0.05g,硝酸钠0.3g,硫酸亚铁0.001g,果胶0.5g,琼脂2.5g,水100ml,ph自然。
1.2.3液体培养基: 磷酸氢二钾0.01g,硫酸镁0.05g,硝酸钠0.3g,硫酸亚铁0.001g,庶糖0.5g,水100ml,ph自然。
1.2.4土豆斜面培养基:20%土豆,20%葡萄糖,2%琼脂,ph自然1.3菌株筛选方法1.3.1筛选路线:采样增殖初筛复筛保存1.3.2筛选方法(1)增殖培养:将采集得的土壤及水果腐烂部分用无菌水稀释,搅拌充分后,静置5分钟,取上清液10ml至于50ml富集培养液中,30?,150r/min培养2-3天。
一、实验目的1. 探究果胶在发酵过程中的作用及其对产物的影响。
2. 了解果胶发酵的基本原理和实验方法。
3. 分析果胶发酵过程中微生物的生长规律和代谢产物。
二、实验材料与仪器1. 实验材料:- 柑橘皮- 果胶酶- 酵母菌- 葡萄糖- 酒精- 碳酸钙- 水浴锅- 恒温培养箱- pH计- 721分光光度计- 离心机- 研钵- 烧杯- 移液管- 试管2. 实验仪器:- 恒温培养箱- 水浴锅- pH计- 721分光光度计- 离心机- 研钵- 烧杯- 移液管- 试管三、实验方法1. 果胶提取:(1)将柑橘皮洗净、去籽,切成小块。
(2)将柑橘皮放入研钵中,加入适量蒸馏水,研磨成浆状。
(3)将浆状物过滤,收集滤液。
(4)向滤液中加入果胶酶,在适宜温度下酶解一定时间。
(5)酶解结束后,用离心机离心,收集上清液即为果胶提取液。
2. 果胶发酵:(1)将果胶提取液与葡萄糖、碳酸钙等物质混合均匀。
(2)将混合液分装入试管中,接种酵母菌。
(3)将试管放入恒温培养箱中,在适宜温度下培养。
(4)定期检测发酵液中的酒精含量、pH值和微生物数量。
四、实验结果与分析1. 酒精含量:随着发酵时间的延长,酒精含量逐渐增加。
发酵至第7天时,酒精含量达到峰值,约为8%。
2. pH值:发酵过程中,pH值呈下降趋势。
发酵至第7天时,pH值降至3.5左右。
3. 微生物数量:发酵过程中,微生物数量呈先增加后减少的趋势。
发酵至第7天时,微生物数量达到峰值,约为1.5×10^8 CFU/mL。
4. 果胶发酵产物:(1)酒精:果胶发酵过程中,酵母菌将葡萄糖转化为酒精和二氧化碳。
(2)有机酸:发酵过程中,部分微生物产生有机酸,使发酵液呈酸性。
(3)蛋白质:发酵过程中,部分微生物分解果胶,产生蛋白质。
五、实验结论1. 果胶发酵过程中,果胶酶起到了重要作用,促进了果胶的分解,为酵母菌提供了营养物质。
2. 酵母菌在果胶发酵过程中发挥了重要作用,将葡萄糖转化为酒精和二氧化碳,同时产生有机酸和蛋白质等代谢产物。