钻井液体系
- 格式:doc
- 大小:96.00 KB
- 文档页数:20
油气井钻井液体系分析及研究随着油气资源的不断开发,钻井液的研究也越来越重要。
油气井钻井液体系是由多种化学物质组成的,可以根据其组成分为水基、油基和气基钻井液体系。
本文将从钻井液的物理化学特性、分类、应用和研究进展等方面进行探讨。
一、钻井液物理化学特性1.密度:钻井液的密度需要适当地调整,以保证井底压力正常,控制钻杆运动和油管回流,防止井口喷出。
2.黏度:黏度也是决定钻井液性能的一个重要指标。
黏度低的钻井液能够降低井筒阻力并提高洗井质量。
3.PH值:PH值通常在8-10之间,这是为了避免钻井液对地层的腐蚀和侵蚀。
4.泡沫度:泡沫度是油气钻井液的重要指标之一。
合适的泡沫度可保持井壁的稳定性,防止井壁崩塌,同时也有助于控制井底压力。
二、钻井液的分类1.水基钻井液:水基钻井液是目前使用最为广泛的钻井液,其主要成分为水、泥、聚合物材料以及一些添加剂。
水基钻井液相对来说价格比较实惠,但缺点是不适合一些高硫、高岩性、高温高压、高盐度的井。
2.油基钻井液:油基钻井液投资和使用成本相对较高,但优点是能够满足复杂地质情况下的钻井作业需求。
油基钻井液具有较强的化学稳定性和热稳定性,同时也具有低毒性,不会对环境造成污染。
3.气基钻井液:气基钻井液具有低黏度、高效率、对环境污染小等特点,但是价格较高,使用范围也较为有限。
三、钻井液的应用1.减阻除杂:钻井液通过旋转钻铤和注入钻井液来清除井底杂质,降低井壁阻力。
2.支壁孔、保持井壁稳定:在井口附近形成适当的孔道来保持井壁的稳定性。
3.导吸捞渣:在钻井时每过一定时间就要进行清理井底杂质,导吸捞渣就是用钻井液将杂质吸入到井底,然后抽出到地面。
四、钻井液研究进展近年来,国内外学者在钻井液领域开展了很多研究,其中不乏一些有意义的成果和突破。
例如,防漏减阻水基钻井液研制成为目前水基钻井液领域的热点问题之一,该钻井液能够同时满足沉积岩和结晶岩的掏污需求。
此外,在油基钻井液领域,一些合成油基钻井液已被广泛应用,该类钻井液能够承受高温高压环境的作业需求。
钻井液种类简介
1、聚合物无固相钻井液体系
特点是不含土相,固含低、机械钻速快,用于提高上部地层机械钻速。
处理剂以选择性絮凝处理机为主,常用PHP(0.05~0.15%)和K-PAM(0.05~0.3%)。
小于30度和无固相钻井液已不能适应的井段。
调整原则
随地层破碎程度增加,胶结性变差或裂缝发育,应在保持矿化度的前提下(防起泡)提高沥青类处理剂含量作封堵只用。
易塌区块辅以0.5~1.0%聚合醇或无渗透
抑制剂,加强体系的防塌抑制性。
3、聚磺钻井液体系
聚磺钻井液体系具有如下特点:1.利用KPAM、KPHP、PAC等高分子聚合物作为包被抑制剂,既能提高钻井液体系粘度,同时提供体系K+增强钻井液的抑制性。
2.
5、应充分水化配制钻井液用膨润土。
6、配制钻井液用处理剂应配成胶液缓慢加入,避免直接加入固体或粉末状处理
剂。
7、应控制好钻井液处理剂的加入比例、顺序和方法。
现场维护
1、充分发挥固控设备清除钻屑的效率。
2、需补充处理剂,应缓慢、均匀加入钻井液处理剂胶液,尽量避免直接加入处
理剂固体或干粉。
6。
油气田钻井液体系设计及其优化研究钻井液是油气开采工程中必不可少的一种重要物质,其作用包括冷却钻头、输送岩屑、稳定井壁等。
钻井液的选用和设计直接关系到油气开采的效益和安全性。
本文将探讨油气田钻井液体系的设计及其优化研究。
一、油气田钻井液的性能要求油气田钻井液的性能要求主要有以下几点:1.良好的稳定性。
钻井液的稳定性一方面影响井筒的稳定性和钻井效率,另一方面也直接关系到安全性。
2.优异的输送性和冲刷性。
钻井液要能够有效地输送岩屑并冷却钻头,提高钻进效率。
3.低毒、低污染。
钻井液对环境的影响越小越好。
4.耐高温、耐高压。
油气田钻井作业常常在极端的高温和高压环境中进行,因此钻井液必须能够在这些条件下保持其性能。
5.适应性强。
兼顾地质条件和地层环境,能够适应各种复杂的地层条件。
二、油气田钻井液体系的组成油气田钻井液体系通常由基础液和添加剂组成。
基础液也称为钻井液骨架,是钻井液的主体部分。
添加剂则是钻井液的改性剂,对基础液进行改性以满足特定的钻井需要。
依据不同的基础液类型,钻井液可以分为水基钻井液、油基钻井液和气基钻井液。
1.水基钻井液水基钻井液是指以水为主要成分的钻井液体系。
它通常由清水、泥浆和添加剂组成。
泥浆的作用主要涉及稳定井壁和输送岩屑。
添加剂一般包括泡沫剂、黏土、固体控制剂等。
水基钻井液主要特点是价格低,成分清晰,环保性好。
但由于水会使井壁发生膨胀和崩塌,因此水基钻井液的稳定性不如油基钻井液。
2.油基钻井液油基钻井液是指以石油为主要成分的钻井液体系。
它通常由石油、黏土和添加剂组成。
油基钻井液的主要特点在于其极佳的稳定性,能够在地形复杂的地区稳定井壁,减少钻井事故的发生。
同时,油基钻井液还具有较好的抗高温性能,可以在高温下保持其性能不变。
但油基钻井液的价格较高,且由于含有石油,环保性较差。
3.气基钻井液气基钻井液是指以气体为主要成分的钻井液体系。
它通常由气体和添加剂组成,具有不易污染、安全性高的特点。
钻井液的组成和分类钻井液的组成钻井液是由分散介质(连续相)、分散相和化学处理剂组成的分散体。
例如,以水为连续相的水基钻井液是由水(淡水或盐水)膨润土、各种处理剂、加重材料以及钻屑所组成的多相分散体系。
以油为连续相的油包水钻井液是由油(柴油或矿物油)、水滴(淡水或盐水)、乳化剂、润湿剂、亲油固体等处理剂所形成的乳状液分散体系。
分散体系的分类分散体系是指一种或多种物质分散在另一种物质中所形成的体系。
被分散的物质称为分散相(不连续相)另一种物质称为分散介质连续相)。
热力学上把体系中物理性质和化学性质完全相同的均匀部分称为相。
相与相之间有明显的相界面。
例如,膨润土颗粒分散在水中,膨润土颗粒为分散相,水为分散介质,黏土颗粒和水之间有明显的分界面;水滴分散在油中,水是分散相,油是分散介质,水滴和油之间有明显的分界面。
分散体系按分散相颗粒的大小分为以下几类:1.分子分散体系。
分子分散体系是指溶质以小分子、原子或离子状态分散在溶剂中形成的体系,没有界面,是均匀的单相,其粒子直径在Inrn以下。
通常把这种体系称为真溶液。
2.胶体分散体系。
胶体分散体系是指分散相颗粒的直径小于IOOnm的分散体系。
其目测是均匀的,但实际是相不均匀体系(也有将分散相颗粒的直径为I-IOOOnm的颗粒归入胶体范畴),如AgI溶胶等。
3.粗分散体系。
粗分散体系是指当分散相颗粒的直径大于100nm时,目测是混浊不均匀体系,放置后会沉淀或分层,如浑浊的河水等。
钻井液中的分散相颗粒一般介于胶体分散体系与粗分散体系之间,其稳定性规律可以通过研究胶体体系稳定性规律来获得。
钻井液的分类钻井液按密度可分为非加重钻井液和加重钻井液;按其与黏土水化作用可分为非抑制性钻井液和抑制性钻井液力安其固相含量来分)各固相含量较低的称为低固相钻井液,基本不含固相的称为无固相钻井液;根据分散(流体)介质不同,分为水基钻井液、油基钻井液、气体型钻井流体和合成基钻井液4种类型。
钻井液的种类(1)稳定泡沫钻井液技术稳定泡沫钻井液是一种低密度钻井液体系,是在钻井液中加入表面活性剂,降低气、液、固三相表面张力,使空气均匀、稳定地存在于体系中,从而降低钻井液密度。
其特点是能够产生低于水的表观密度,在低压地层中产生微泡膨胀桥堵孔隙,保护油气层,提高勘探开发的综合效益。
通过对稳定泡沫钻井液系统研究,开发出适合大港油田低压油气藏特点的稳定泡沫钻井液体系。
我公司进行了稳定泡沫钻井液技术研究,形成了研究成果。
在现场应用中实现钻井液密度可调、泡沫稳定时间较长、抗污染能力强等优点。
在官新10-16井进行了现场试验,现场钻井液密度达到0.7g/cm3,收到了预期的效果。
2003年我公司在长庆油田气探井的服务中成功应用该钻井液技术,解决了低压气藏储层保护的难题。
(2)无固相欠平衡钻井液技术无固相欠平衡钻井液主要是为了解决低压、低渗油气藏而研究的钻井液体系,控制合理的钻井液密度实现欠平衡条件,减少钻井液滤液对储层的损害是该技术的核心,它适用于灰岩地层、稳定的砂泥岩地层。
1999年完成了第一口井深为5191.96m板深7井,所用的钻井液体系为具有防H2S损害、CO2腐蚀及防水锁损害的无土相钻井液,体系的特点主要表现在:体系采用无土相有利于保护油气层;体系的抑制性较强;体系具有防腐能力;体系便于维护;有利于清洗井眼,由于采用欠平衡有利于提高机械钻速;成本低。
到2002年使用该钻井液体系,相继完成了板深8、板深4、千18-18、西G2等16口井的现场应用,使用最高密度为1.42g/cm3,最低密度为0.84g/cm3。
该体系在现场应用中取得了明显的效果,尤其在保护油气层方面成果显著,该体系在大港油田首次欠平衡探井施工作业中一举成功,在所实施井中平均恢复值达到88%,实施井均获得良好的油气显示,为发现和保护油气层展现了光明的前景,尤其板深7井最为突出,经过5~11mm油嘴多次测试,平均产气量为1×105m3/d,其中轻质油31.75 m3/d,完钻后测试表皮系数为-1.35,投产后井口压力和油气产量相对稳定。
国内外钻井液技术发展概述(2012-05-2711:05:36)摘要:本文主要论述了国内外钻井液的发展状况及发展趋势,介绍了近年来国内外发展起来的16种新型钻井液技术,国内外钻井液技术仍以抗高温、高压、深井复杂地层的钻井液技术为主攻目标,指出了钻井液处理剂的发展方向是高效廉价、一剂多效、保护油气层、尽可能减轻环境污染,并寻求技术更先进、性能更优异、综合效益更佳的钻井液体系及钻井液处理剂。
对钻井液技术发展进行了展望,由于深井、复杂井、特殊工艺井以及特殊储藏的开发、环境保护的重视,对钻井液完井液的要求越来越高,所以抗高温、高压、深井复杂地层、油气层保护仍是钻井液完井液技术发展的重要方向。
关键词:钻井液技术发展一、国内外钻井液技术新发展概述钻井液作为服务钻井工程的重要手段之一。
从90年代后期钻井液的主要功能已从维护井壁稳定,保证安全钻进,发展到如何利用钻井液这一手段来达到保护油气层、多产油的目的。
一口井的成功完井及其成本在某种程度上取决于钻井液的类型及性能。
因此,适当地选择钻井液及钻井液处理剂以维护钻井液具有适当的性能是非常必要的。
钻井液及钻井液处理剂经过80年代的发展高潮以后,逐渐进入稳定期,亦即技术成熟期。
可以认为,由于钻井液及钻井液处理剂都有众多的类型及产品可供选择,因此现代钻井液技术已不再研究和开发一般钻井液及钻井液处理剂产品,而是在高效廉价、一剂多效、保护油气层、尽可能减轻环境污染等方面进行深入研究,以寻求技术更先进、性能更优异、综合效益更佳的钻井液及钻井液处理剂。
1.抗高温聚合物水基钻井液所使用的聚合物在其C-C主链上的侧链上引入具有特殊功能的基团如:酰胺基、羧基、磺酸根(S03H)、季胺基等,以提高其抗高温的能力。
不论是其较新的产品,如磺化聚合物P OLYDRILL,或早己生产的产品如S.S.M.A.(磺化苯乙烯与马来酸酐共聚物)均是如此,并采取下列措施:①利用表面活性剂的两亲作用来改善钻井液的抗温性;②抗氧化剂可以大幅度提高磺化聚合物抗高温降滤失剂的高温稳定性能。
③膨润土一直是水基钻井液的基础。
但随着温度的升高和污染,它是最难控制和预测其性能的粘土矿物。
而皂石和海泡石最重要的特征是随着温度的升高而转变为薄片状结构的富镁蒙脱石,比膨润土能更好的控制流变性和滤失量。
2.强抑制聚合物水基钻井液随着钻井液的发展,研制成功了阳离子聚合物钻井液。
这种抑制能力很强的新型钻井液与原阴离子的聚合物钻井液的本质区别就是在“有机聚合物包被剂”这一主剂上引入了阳离子基团即(-N一)基基团(如阳离子聚丙烯酰胺),另外又添加了一种分子量较小的季胺盐类,(如羟丙基三甲基氯化胺)。
另外,在PAM分子链上引入阳离子基团、疏水基团和AMPS(2-丙烯酰胺基—2—甲基丙磺酸),从而使改性的PAM赋予了新的性能。
通过改性,使聚合物分子中的阳离子中和了粘土颗粒上的负电荷而减小静电斥力,使聚合物能在更多位置上与粘土发生桥链,对粘土能够起到很好的保护作用。
由于分子链中含有疏水基团,使吸附在粘土表面的聚合物表现为憎水性质,故有利于阻止水分子的进入,从而能有效地抑制页岩的膨胀。
3.合成基油包水钻井液合成基钻井完井液体系在组成上与传统的油基钻井液类似,主要由有机合成物基液、乳化剂、水相、加重剂和其它性能调节剂组成。
其中有机合成物为连续相,水相为分散相,加重剂用于调节密度,乳化剂和其它调节剂用于分散体系的稳定及调节流变性。
体系中常用的合成基液类型有酯类、醚类、聚-А-烯烃类和直链烷基苯类等,而尤以酯类用得最多,其次是聚-А-烯烃类。
多元醇(P OLYOLS)类和甲基多糖(M ETHYL G LUCOSIDE)类是合成基钻井完井液中广为使用的两种多功能添加剂,它们具有乳化、降滤失、润滑和增粘的功效,也可以单独作为多元醇钻井液和甲基多糖钻井液两种新体系的主要添加剂。
合成基钻井液的乳化剂有专用的,如水生动物油乳化剂:但多数使用与普通油基钻井液相同的乳化剂,如脂肪酸钙、咪唑啉衍生物、烷基硫酸(酯)盐、磷酸酯、山梨糖醇酐酯类(S PAN)、聚氧乙烯脂肪胺、聚氧乙烯脂肪醇醚(平平加类)等。
该钻井完井液体系已应用了上千口井,取得了井眼稳定、井下安全提高钻速、有利于保护环境和油气层等较好的效果和效益。
4.有机盐盐水钻井液有机盐钻井液完井液的核心是高密度和强的抑制性它是基于低碳原子(C1—C6)碱金属(第一主族)有机酸盐、有机酸铵盐、有机酸季铵盐的钻井液完井液体系。
优点为:①配方简单:一种主处理剂有机盐构成一个钻井液体系;②类油基特点:该钻井液是一种高浓度有机物连续相流体;③抑制性强:能够有效地抑制储层泥岩胶结物的水化膨胀和水化分散,有利于井壁稳定、井眼规则,有效地保护油气层;④低固相,高密度;⑤有利于提高机械钻速;⑥无毒、无害、易生物降解、无生物富集,有利于保护环境。
有机盐钻井液完井液技术机理分析:有机盐钻井液完井液的五种作用机理都能有效地抑制泥岩水化膨胀、水化分散,有利于井壁稳定和油气层保护。
1)、类油基钻井液性质:有机盐钻井液中较长链有机酸根浓度较高,呈有机物连续相性质,可达到趋近于油基钻井液的抑制能力,可有效抑制粘土、钻屑的分散和膨胀,同时有利于保护油气层。
2)、水的活度较低:有机盐钻井液中有机盐含量较高,可束缚大量自由水,水活度低(例如:15%水溶液水的活度为0.85),粘土颗粒、钻屑在其中浸泡时水化应力较低,在其中的分散趋势被强烈抑制,同时能够有效地抑制储层泥岩胶结物的水化膨胀、水化分散,有利于保护油气层。
3)、阳离子吸附和阳离子嵌入机理:有机盐钻井液中含大量的K+、NH4+、NR4+可通过化学键吸附于带负电的粘土颗粒表面,也可嵌入粘土颗粒晶格内,增大粘土颗粒的水化阻力,起到抑制其分散、膨胀的作用,同时有利于保护油气层。
4)、有机酸根阴离子吸附机理:有机盐钻井液中大量的有机酸根阴离子可吸附于带正电的粘土颗粒端面上,阻止水进入粘土颗粒,抑制其表面水化及渗透水化,同时有利于保护油气层。
5)、有机盐钻井液的滤失造壁性分析:有机盐钻井液中大量的有一定链长的有机酸根阴离子,可与土结合形成薄而韧的泥饼,从而有效地保护井壁和降低滤失量,也有利于保护油气层。
钻井液的典型配方:有机盐水溶液(1.00-2.30G/CM3)综合考虑抑制性、流变性、价格等因素,首先确定有机盐基液的密度:烧碱N A OH0.1-0.2%+降滤失剂R EDU11-2%降失水+无萤光白沥青NFA-250.5-2%改善泥饼质量注:根据现场具体情况,有时需要加入包被剂IND10、提切剂V ISCO1、黄原胶X C、聚合醇PGCS-1。
5.甲酸盐类水基钻井液甲酸盐钻井液是国外90年代研制并使用的一种新型钻井液。
将甲酸与氢氧化钠或氢氧化钾在高温高压下反应制成碱性金属盐如甲酸钠、甲酸钾、甲酸铯配制成甲酸盐类水基钻井液。
甲酸盐盐水钻井液体系是在盐水钻井液和完井液基础上发展起来的,因而除具有盐水钻井液的特点外,还具有其独特的优点。
甲酸盐的优点:(1)由于其强抑制性,可有效地抑制泥页岩的水化膨胀和分散,也有利于减少钻井液对油气层的损害。
(2)易生物降解,不会造成对环境的污染。
(3)钻具、套管等金属材料在这种钻井液中的腐蚀性小,有利于延长它们的使用寿命。
(4)不需要加重材料就可以配制高密度钻井液,甲酸纳和甲酸钾盐类的水溶液密度分别为L.34G/CM3和1.60G/CM3,甲酸铯水溶液密度可高达2.3G/CM3不仅有利于提高机械钻速,而且有利于保护油气层。
(5)这种钻井液体系的低粘度、高动态瞬时滤失量有利于提高机械钻速。
(6)这种钻井液体系具有良好的抗高温、抗污染的能力,并可以降低所使用的各类添加剂在高温条件下的水解和氧化降解的速度。
甲酸盐盐水具有作为深井和小井眼钻井的无固相钻井液的特性:(1)在高温下能维持携屑。
(2)在高温下能阻止固相沉降。
(3)降低了压差卡钻的可能性(滤饼很薄)。
(4)在长且狭窄的井筒中具有低的当量循环密度。
(5)可以向钻井液马达和钻头传送最大的动力。
(6)与油层的矿物和油层中的液相相容。
(7)与完井设备的硬件和人造橡胶相容。
(8)符合环保要求而且易被生物降解。
6.硅酸盐钻井液钻井液中添加了对页岩抑制性最好的可溶性硅酸盐。
这种硅酸盐钻井液体系已用于钻水敏性页岩地层、分散性白垩岩地层和含伊利石的地层。
硅酸盐钻井液的抑制能力比任何水基钻井液都高,实际上已达到油基钻井液的抑制能力。
1)硅酸盐的化学性质硅酸盐是一种无机材料,是由碳酸盐与二氧化硅混合后加热生成的。
硅钠比是硅酸钠最重要的物理性能。
改变S I O2、N A2O和H2O的比例能控制硅酸钠的化学和物理性能。
硅钠比决定了硅酸钠的下列特性:(1)固相和粉末的溶解度;(2)硅酸盐的反应能力;(3)诸如粘度等物理性能。
室内试验证明,高硅钠比的硅酸盐具有更高的抑制效率。
在一般情况下,硅钠比为2.6的硅酸盐就能达到基本的抑制能力。
2)钻井液配方和特性典型的硅酸盐钻井液配方见表1。
体系普遍使用黄原胶和聚阴离子纤维素来达到要求的流变性和控制滤失。
硅基钻井液在P H值为11~12.5时稳定性最好。
高P H值可防止溶解硅的聚合。
因此,需要添加硅酸钠来达到要求的P H值。
P H值下降是硅酸盐耗损的信号。
要添加硅酸盐来维持钻井液的抑制性。
钻井液中硅酸盐的浓度可用试验和从硅酸钠的浓度计算出来。
可通过直接把硅酸钠加到钻井液中或通过预混合加到钻井液中的方式来维持理想的浓度。
表1硅酸盐钻井液配方当可溶性硅酸盐与页岩表面接触时,P H值下降并且与页岩中的两价离子(C A+2和M G+2)反应,在页岩表面形成一道可以防止滤液和颗粒侵入地层的屏障。
当使用硅酸盐钻井液钻进时,要注意下列问题:(1)由于钻井液的抑制性强,所以钻屑等固相对钻井液的流变性可能不会产生影响;(2)在钻屑吸收钻井液的滤液之前,新配制的钻井液具有较高的滤失量;(3)钻进时,重要的是要定时记录泵入和返出钻井液中的硅酸盐含量,以便监测硅酸盐的消耗率和确定是否需要对钻井液进行处理;(4)硅酸盐钻井液的高抑制性保持了钻屑的完整性,需要钻井液具有较高的屈服值和较低的剪切粘度以保证井眼的清洁能力,同时振动筛的负荷也要比使用普通钻井液高;(6)由于硅酸盐与钙和镁反应产生沉淀物,所以钻井液体系的硬度为零;(7)硅酸盐钻井液的P H值一般为11.0~12.5。
钻井液的P H值是从硅酸盐含量推导出来的,所以钻井液的碱度(P M和P F)是监测硅酸盐含量的有效方法。
P M为10~30,而P F为8~25。
在钻进时P H 值和碱度下降归咎于硅酸盐消耗。
要通过加入硅酸钠来维持P H值和碱度。
在通常情况下,不需要通过加氢氧化钾和氢氧化钠来维持P H值。
(8)硅酸盐是一种金属材料的防腐剂,所以不需要往钻井液中加防腐剂。