高中数学阶段常见函数性质汇总
- 格式:pdf
- 大小:1.34 MB
- 文档页数:14
高一数学函数的基本性质一、知识点1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
高一函数知识点大全一、函数的定义函数是一种数学操作,它将输入值(或参数)映射到输出值(或结果)。
函数的定义通常包括函数名称、参数列表和函数体。
在高一阶段,我们将学习一些基本的函数,如一次函数、二次函数、幂函数和对数函数等。
二、函数的表示方法函数的表示方法有三种:符号表示法、列表表示法和图像表示法。
符号表示法是用函数名称和参数列表来表示函数,例如y = 2x + 1;列表表示法是将输入值和对应的输出值列成一个表格;图像表示法是通过绘制函数的图像来表示函数的关系。
三、函数的性质函数的性质包括奇偶性、单调性、周期性和对称性等。
奇偶性是指函数是否具有奇偶性;单调性是指函数在某个区间内是单调递增或单调递减;周期性是指函数是否存在周期性;对称性是指函数是否具有对称性。
四、函数的运算函数的运算包括函数的加减乘除、复合运算和反函数运算等。
函数的加减乘除是指将两个或多个函数进行加、减、乘、除运算;复合运算是指将多个函数嵌套在一起,形成一个复合函数;反函数运算是指将一个函数转换为其反函数。
五、函数的图像函数的图像是用来描述函数变化的直观工具。
在绘制函数的图像时,我们需要先确定函数的定义域和值域,然后根据函数的表达式绘制出对应的图像。
同时,我们还需要掌握一些常见的图像变换方法,如平移、伸缩和对称变换等。
六、函数的实际应用高一函数知识点还包括一些实际应用,如利用函数解决实际问题、利用函数进行数据分析等。
在实际问题中,我们需要根据问题的具体情境来选择合适的函数和数学模型进行解决。
我们还需要掌握一些数据处理和分析的方法,如回归分析、聚类分析等。
高一函数知识点是数学学习的重要内容之一。
通过学习和掌握这些知识点,我们可以更好地理解函数的本质和特点,为后续的学习和实际应用打下坚实的基础。
高一函数知识点总结函数是数学的重要概念,是高中数学的核心内容。
在初中数学中,函数通常被视为变量之间的依赖关系,而高中的函数则更加强调映射的概念。
高中阶段常见函数性质汇总函 数 名 称:常数函数解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x)得图象就是平行于x 轴或与x 轴重合(垂直于y 轴)得直线定 义 域:R值 域:{b} 单 调 性:没有单调性奇 偶 性:均为偶函数[当b=0时,函数既就是奇函数又就是偶函数]反 函 数:无反函数周 期 性:无周期性函 数 名 称:一次函数解析式 形 式:f(x )=kx +b (k ≠0,b∈R) 图象及其性质:直线型图象、|k |越大,图象越陡;|k |越小,图象越平缓;当b =0时,函数f(x)得图象过原点;当b =0且k =1时,函数f(x )得图象为一、三象限角平分线;当b=0且k =-1时,函数f (x )得图象为二、四象限角平分线;定 义 域:R值 域:R单 调 性:当k >0时,函数f (x )为R上得增函数;当k<0时,函数f (x)为R上得减函数;奇 偶 性:当b=0时,函数f(x )为奇函数;当b ≠0时,函数f (x)没有奇偶性;反 函 数:有反函数。
[特殊地,当k=-1或b =0且k=1时,函数f (x)得反函数为原函数f (x )本身]周 期 性:无函 数 名 称:反比例函数解析式 形 式:f (x )= (k ≠0)图象及其性质:图象分为两部分,均不与坐标轴相交,当k 〉0时,函数f (x )得图象分别在第一、第三象限;当k<0时,函数f(x )得图象分别在第二、第四象限;双曲线型曲线,x 轴与y 轴分别就是曲线得两条渐近线;图象成中心对称图形,对称中心为原点;图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ;定 义 域:值 域:单 调 性:当k〉0时,函数f (x )为与上得减函数;当k 〈0时,函数f(x )为与上得增函数;奇 偶 性:奇函数反 函 数:原函数本身 周 期 性:无函 数 名 称:变式型反比例函数解析式 形 式:f (x)= (c ≠0且 d ≠0)图象及其性质:图象分为两部分,均不与直线、直线相交,当k〉0时,函数f (x )得图象分别在直线与直线形成得左下与右上部分;当k<0时,函数f (x)得图象分别在直线与直线形成得左上与b右下部分;双曲线型曲线,直线与直线分别就是曲线得两条渐近线;图象成中心对称图形,对称中心为点;图象成轴对称图形,对称轴有两条,分别为、;反 函 数:周 期 性:无函 数 名 称:二次函数 解析式 形 式:一般式: 顶点式:两根式:图象及其性质:①图形为抛物线,对称轴为,顶点坐标为或,与轴得交点为;②当时,抛物线得开口向上,此时函数图象有最低点;当时,抛物线得开口向下,此时函数图象有最高点; ③当时,函数图象与轴有两个交点,当时,函数图象与轴有一个交点,当时,函数图象与轴没有交点; ④横坐标关于对称轴对称时,纵坐标相等;当时,横坐标距对称轴近则函数值小,当时,横坐标距对称轴近则函数值大;⑤函数均可由函数平移得到;定 义 域:R值 域:当时,值域为;当时,值域为单 调 性:当时,上为减函数,上为增函数;当时,上为减函数,上为增函数;奇 偶 性:当时,函数为偶函数;当时,函数为非奇非偶函数反 函 数:定义域范围内无反函数,在单调区间内有反函数周 期 性:无函 数 名 称:指数函数 解析式 形 式:图象及其性质:①函数图象恒过点,与 轴不相交,只就是无限靠近;②函数与得图象关于轴对称;③当时,轴以左得图象夹在在直线与轴之间,轴以右得图象在直线以上;当时,轴以左得图象在直线以上,轴以右得图象夹在在直线与轴之间;f (x )=④第一象限内,底数大,图象在上方;定 义 域:R值 域:单 调 性:当时,函数为增函数;当时,函数为减函数;奇 偶 性:无反 函 数:对数函数周 期 性:无 函 数 名 称:对数函数解析式 形 式: 图象及其性质:①函数图象恒过点,与轴不相交,只就是无限靠近;②函数与得图象关于轴对称;③当时,轴以下得图象夹在在直线与轴之间,轴以上得图象在直线以右;当时,轴以下得图象在直线以右,轴以上得图象夹在在直线与轴之间;④第一象限内,底数大,图象在右方;定 义 域:R值 域:单 调 性:当时,函数为增函数;当时,函数为减函数;[与系数函数得单调性类似,因为两函数互为反函数]奇 偶 性:无 反 函 数:指数函数周 期 性:无函 数 名 称:对钩函数解析式 形 式:图象及其性质:①函数图象与轴及直线不相交,只就是无限靠近;②当时,函数有最低点,即当时函数取得最小值;③当时,函数有最高点,即当时函数取得最大值;定 义 域:值 域:单 调 性:在与上函数为增函数;在与上函数为减函数;奇 偶 性:奇函数反 函 数:定义域内无反函数周 期 性:无 2、3函数单调性(考点疏理+典型例题+练习题与解析)2.3函数单调性【典型例题】例1、(1)则a 得范围为( D)A 。
函数初高中总结知识点一、初中阶段的函数知识点总结1. 函数的概念函数是一种对应关系,它将每一个自变量的取值都对应唯一的一个因变量的取值。
数学上通常用字母来表示一个函数,比如y=f(x)。
其中y是因变量,x是自变量,f(x)表示函数关系的表达式。
2. 函数的性质(1)定义域和值域函数的定义域是所有可能的自变量值的集合,值域是所有可能的因变量值的集合。
在初中阶段,我们通常研究的是一元函数,也就是函数的自变量只有一个。
(2)奇函数和偶函数当函数f(x)满足f(-x)=-f(x)时,称函数f(x)为奇函数;当函数f(x)满足f(-x)=f(x)时,称函数f(x)为偶函数。
奇函数的图形关于原点对称,偶函数的图形关于y轴对称。
(3)单调性函数的单调性是指函数在定义域上的增减性质。
如果对于定义域上的任意两个不同的自变量值x1和x2,当x1<x2时,有f(x1)<f(x2),则称函数f(x)在定义域上是递增的;如果对于定义域上的任意两个不同的自变量值x1和x2,当x1<x2时,有f(x1)>f(x2),则称函数f(x)在定义域上是递减的。
3. 函数的图像初中阶段,我们接触到的函数的图像,一般是一元一次函数、一元二次函数和一元绝对值函数的图像。
一元一次函数的图像是一条直线;一元二次函数的图像是一个抛物线;一元绝对值函数的图像是一个V形。
以上就是初中阶段的函数知识点总结,接下来我们来看一下高中阶段的函数知识点。
二、高中阶段的函数知识点总结1. 函数的概念在高中阶段,我们将学习更多种类的函数,如多项式函数、指数函数、对数函数、三角函数等。
这些函数都是我们在高中数学中要重点学习的内容。
2. 函数的性质(1)函数的奇偶性除了初中阶段学习的奇函数和偶函数外,高中阶段还要学习更多类型的奇偶函数,如正弦函数、余弦函数等。
这些函数的奇偶性对于函数的图像和性质具有很大的影响。
(2)周期性在高中阶段,我们还要学习到周期函数的性质。
高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
高考常用函数知识点汇总函数是数学中非常重要的一个概念,也是高考中常常出现的考点。
理解和掌握常用函数的知识点对于高考数学题目的解答非常有帮助。
本文将对高考常用的函数知识点进行汇总,以帮助同学们更好地备考。
一、一次函数一次函数是最基本的函数之一,其定义域为全体实数。
一次函数的一般形式为y = kx + b,其中k和b是常数。
一次函数的图像为一条直线,其斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。
二、二次函数二次函数是高中数学中较为复杂的函数之一,其定义域为全体实数。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c是常数且a ≠ 0。
二次函数的图像为一条抛物线,其开口方向由二次项系数a的正负决定。
三、指数函数指数函数是以一个正常数为底数的幂函数,其定义域为全体实数。
指数函数的一般形式为y = a^x,其中a是正常数且a ≠ 1。
指数函数的特点是呈现指数递增或递减的趋势,底数a的大小决定了函数的增长速度。
四、对数函数对数函数是指数函数的逆函数,其定义域为x > 0。
对数函数的一般形式为y = loga(x),其中a是正常数且a ≠ 1。
对数函数的特点是呈现递增或递减的趋势,底数a的大小决定了函数的增长速度。
五、三角函数三角函数是研究角及其变化规律的函数,其定义域为全体实数。
常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的图像为周期性的波动曲线,其周期和振幅由函数的参数决定。
六、反三角函数反三角函数是三角函数的逆函数,其定义域由对应的三角函数确定。
常见的反三角函数有反正弦函数、反余弦函数和反正切函数。
反三角函数的图像可通过对应的三角函数的图像通过y = x镜像得到。
七、指数对数函数指数对数函数是指数函数和对数函数的组合,其定义域由对应的函数确定。
常见的指数对数函数有指数对数函数、指数对数对函数和对数指数函数。
这些函数的图像由对应的指数函数和对数函数的图像组合而成。
高中阶段常见函数性质汇总函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R)图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合〔垂直于y 轴〕的直线定 义 域:R 值 域:{b} 单 调 性:没有单调性 奇 偶 性:均为偶函数[当b =0时,函数既是奇函数又是偶函数] 反 函 数:无反函数 周 期 性:无周期性函 数 名 称:一次函数 解析式 形 式:f (x )=kx +b (k ≠0,b ∈R) 图象及其性质:直线型图象。
|k|越大,图象越陡;|k|越小,图象越平缓;当b =0时,函数f (x )的图象过原点;当b =0且k =1时,函数f (x )的图象为一、三象限角平分线;当b =0且k =-1时,函数f (x )的图象为二、四象限角平分线; 定 义 域:R 值 域:R单 调 性:当k>0时,函数f (x )为R 上的增函数; 当k<0时,函数f (x )为R 上的减函数; 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性;反 函 数:有反函数。
[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周 期 性:无函 数 名 称:反比例函数 解析式 形 式:f (x )=xk(k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限;双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线;图象成中心对称图形,对称中心为原点;图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ;定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数;当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增函数; 奇偶 性:奇函数 反 函 数:原函数本身 周 期 性:无函 数 名 称:变式型反比例函数 解析式 形 式:f (x )=dcx bax ++ (c ≠0且 d ≠0)图象及其性质:图象分为两部分,均不与直线c a y =、直线cdx -=相交,当k>0时,b函数f (x )的图象分别在直线c a y =与直线c d x -=形成的左下与右上部分;当k<0时,函数f (x )的图象分别在直线ca y =与直线c d x -=形成的左上与右下部分;双曲线型曲线,直线c a y =与直线cdx -=分别是曲线的两条渐近线;图象成中心对称图形,对称中心为点),(c a c d -;图象成轴对称图形,对称轴有两条,分别为cda x y ++=、cda x y -+-=;由于c a cd x c ad bc d cx c ad b c a d cx c ad b d cx c a d cx b ax x f ++-=+-+=+-++=++=2)()( 令2c ad bc k -=,则c a c d x k x f ++=)( 进而函数f (x )的图象可以看成是由函数x k y =向左平移cd 个单位,向上平移c a个单位得到的定 义 域:),(),(+∞---∞c d c d 值 域:),(),(+∞-∞cac a单 调 性:当0>-ad bc 时,函数在),(c d --∞和),(+∞-c d 上均为减函数;当0<-ad bc 时,函数在),(cd--∞和),(+∞-c d 上均为增函数;奇偶 性:非奇非偶函数 反函数:acx b dx y -+-= 周 期 性:无函 数 名 称:二次函数 解析式 形 式:一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为a b x 2-=,顶点坐标为)44,2(2ab ac a b --或),(h k ,与y 轴的交点为),0(c ;②当0>a 时,抛物线的开口向上,此时函数图象有最低点)44,2(2a b ac a b --;当0<a 时,抛物线的开口向下,此时函数图象有最高点)44,2(2a b ac a b --;③当042>-=∆ac b 时,函数图象与x 轴有两个交点,当042=-=∆ac b 时,函数图象与x 轴有一个交点,当042<-=∆ac b 时,函数图象与x 轴没有交点;④横坐标关于对称轴对称时,纵坐标相等;当0>a 时,横坐标距对称轴近则函数值小,当0<a 时,横坐标距对称轴近则函数值大;⑤函数)0()(2≠++=a c bx ax x f 均可由函数)0()(2≠=a ax x f 平移得到;定 义 域:R 值 域:当0>a 时,值域为),44(2+∞-ab ac ;当0<a 时,值域为)44,(2a b ac --∞单 调 性:当0>a 时,]2,(a b --∞上为减函数,),2[+∞-a b 上为增函数;当0<a 时,),2[+∞-a b 上为减函数,]2,(ab--∞上为增函数;奇 偶 性:当0=b 时,函数为偶函数;当0≠b 时,函数为非奇非偶函数 反 函 数:定义域范围内无反函数,在单调区间内有反函数 周 期 性:无c bx ++指数函数y=a x (常数a>0且a≠1)图象特征函数性质图象向左、向右无限延展,但永远不和x轴相交x∈R图象都在x轴上方函数值恒大于0图象必经过点(0,1) 当x=0时,y=1a>1 图象在第一象限部分的点的纵坐标都大于1 当x>0时,y>1 图象在第二象限部分的点的纵坐标都小于1 当x<0时,0<y<10<a<1 图象在第一象限部分的点的纵坐标都小于1 当x>0时,0<y<1 图象在第一象限部分的点的纵坐标都大于1 当x<0时,y>1a>1 图象上升增函数0<a<1 图象下降减函数对数函数y=lo g a x(a>0且a≠1的常数)图象特征函数性质图象都在y轴右方函数定义域:x>0y 函数值域:y∈R图象必经过点(1,0) 当x=1时,y=0a>1横坐标大于1的点的纵坐标都大于0 当x>1时,y>0 横坐标大于0,小于1的点的纵坐标都小于0 当0< x< 1时,y<00<a<1横坐标大于1的点的纵坐标都小于0 当x>1时,y<0 横坐标大于0,小于1的点的纵坐标都大于0 当0< x< 1时,y>0a>1 图象上升增函数0<a<1 图象下降减函数y =x n (n ∈R 且n 为常数)不 同 点图象呈现“抛物线”型的弧图象呈现“双曲线”型的弧图象与x 、y 轴无限接近,但永不相交图象都经过点(0,0)、(1,1) 图象都经过(1,1)在第一象限,函数值随着x 的增大而增大 即在(0,+∞)上是增函数 在第一象限,函数值随着x 的增大而减小即在(0,+∞)上是减函数共同点(1) 当n =0时,图象是一条去掉(0,1)的直线; (2) 幂函数的图象与坐标轴最多只有一个交点(0,0); (3) 幂函数的图象不可能经过第四象限; (4) 任何两个幂函数的图象最多只有三个交点图像定义域 (-∞,0)⋃(0,+∞)(-∞,0)⋃(0,+∞)奇偶性奇函数 奇函数单调性递增区间),(a --∞和),(+∞a递增区间 (-∞,0)和(0, +∞)递减区间)0,(a -和),0(a递减区间无值 域]a 2,(--∞⋃),a 2[+∞R减小减小xyO aa -a 2 a 2-)0(>+=a xax yxyO )0(>-=a xax y a a -。
高中数学函数性质总结高中数学函数性质总结函数性质1..函数的单调性(1)设x1x2a,b,x1x2那么f(x1)f(x2)0f(x)在a,b上是增函数;x1x2f(x1)f(x2)(x1x2)f(x1)f(x2)00f(x)在a,b上是减函数.x1x2(2)设函数yf(x)在某个区间内可导,如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数.注:如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)g(x)也是减函数;如果函数yf(u)和ug(x)在其对应的定义域上都是减函数,则复合函数yf[g(x)]是增函数.(x1x2)f(x1)f(x2)02.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.注:若函数yf(x)是偶函数,则f(xa)f(xa);若函数yf(xa)是偶函数,则f(xa)f(xa).注:对于函数yf(x)(xR),f(xa)f(bx)恒成立,则函数f(x)的对称轴是函数xabab;两个函数yf(xa)与yf(bx)的图象关于直线x对称.22a注:若f(x)f(xa),则函数yf(x)的图象关于点(,0)对称;若2f(x)f(xa),则函数yf(x)为周期为2a的周期函数.3.多项式函数P(x)anxan1xnn1a0的奇偶性多项式函数P(x)是奇函数P(x)的偶次项(即奇数项)的系数全为零.多项式函数P(x)是偶函数P(x)的奇次项(即偶数项)的系数全为零.23.函数yf(x)的图象的对称性(1)函数yf(x)的图象关于直线xa对称f(ax)f(ax)f(2ax)f(x).(2)函数yf(x)的图象关于直线xab对称f(amx)f(bmx)2f(abmx)f(mx).4.两个函数图象的对称性(1)函数yf(x)与函数yf(x)的图象关于直线x0(即y轴)对称.(2)函数yf(mxa)与函数yf(bmx)的图象关于直线x(3)函数yf(x)和yf1ab对称.2m(x)的图象关于直线y=x对称.25.若将函数yf(x)的图象右移a、上移b个单位,得到函数yf(xa)b的图象;若将曲线f(x,y)0的图象右移a、上移b个单位,得到曲线f(xa,yb)0的图象.5.互为反函数的两个函数的关系f(a)bf1(b)a.27.若函数yf(kxb)存在反函数,则其反函数为y11[f(x)b],并不是ky[f1(kxb),而函数y[f1(kxb)是y1[f(x)b]的反函数.k6.几个常见的函数方程 (1)正比例函数f(x)cx,f(xy)f(x)f(y),f(1)c.(2)指数函数f(x)a,f(xy)f(x)f(y),f(1)a0.(3)对数函数f(x)logax,f(xy)f(x)f(y),f(a)1(a0,a1).(4)幂函数f(x)x,f(xy)f(x)f(y),f(1).(5)余弦函数f(x)cosx,正弦函数g(x)sinx,f(xy)f(x)f(y)g(x)g(y),“xf(0)1,limx0g(x)1.x7.几个函数方程的周期(约定a>0)(1)f(x)f(xa),则f(x)的周期T=a;(2)f(x)f(xa)0,1(f(x)0),f(x)1或f(xa)(f(x)0),f(x)12或f(x)f(x)f(xa),(f(x)0,1),则f(x)的周期T=2a;21(3)f(x)1(f(x)0),则f(x)的周期T=3a;f(xa)f(x1)f(x2)(4)f(x1x2)且f(a)1(f(x1)f(x2)1,0|x1x2|2a),则1f(x1)f(x2)f(x)的周期T=4a;(5)f(x)f(xa)f(x2a)f(x3a)f(x4a)f(x)f(xa)f(x2a)f(x3a)f(x4a),则f(x)的周期T=5a;(6)f(xa)f(x)f(xa),则f(x)的周期T=6a.或f(xa)8.分数指数幂(1)a(2)amn1nmnam1mn(a0,m,nN,且n1).(a0,m,nN,且n1).a9.根式的性质(1)(na)a.(2)当n为奇数时,aa;nnna,a0当n为偶数时,a|a|.a,a0nn10.有理指数幂的运算性质(1)aaarsrrsrs(a0,r,sQ).(2)(a)a(a0,r,sQ).(3)(ab)ab(a0,b0,rQ).p注:若a>0,p是一个无理数,则a表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式rrrslogaNbabN(a0,a1,N0).34.对数的换底公式logmN(a0,且a1,m0,且m1,N0).logmann推论logamblogab(a0,且a1,m,n0,且m1,n1,N0).mlogaN11.对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1)loga(MN)logaMlogaN;MlogaMlogaN;Nn(3)logaMnlogaM(nR).(2)loga2注:设函数f(x)logm(axbxc)(a0),记b4ac.若f(x)的定义域为2R,则a0,且0;若f(x)的值域为R,则a0,且0.对于a0的情形,需要单独检验.12.对数换底不等式及其推论1,则函数ylogax(bx)a11(1)当ab时,在(0,)和(,)上ylogax(bx)为增函数. aa11(2)(2)当ab时,在(0,)和(,)上ylogax(bx)为减函数.aa若a0,b0,x0,x推论:设nm1,p0,a0,且a1,则(1)logmp(np)logmn.(2)logamloganloga【例1】求下列各式的值:n(3)(1)n(n1,且nN*);(2)(xy)2.n(3)3;解:(1)当n为奇数时,nn(3)|3|3.当n为偶数时,n2mn.2(2)(xy)2|xy|.当xy时,(xy)2xy;当xy时,(xy)2yx.a3na3n【例2】已知a21,求n的值.naa3n3nnn2naa(aa)(a1a2n)12n2n解:na1a211221nnnaaaa212n 【例4】已知函数f(x)a23x(a0,且a1).(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.2时,a23xa01.32所以,该函数的图象恒过定点(,1).3(2)∵u23x是减函数,∴当0a1时,f(x)在R上是增函数;当a1时,f(x)在R上是减函数.21【例3】求下列函数的单调区间:(1)yax2x3;(2)y.x0.21u2解:(1)设ya,ux2x3.解:(1)当23x0,即x由ux22x3(x1)24知,u在(,1]上为减函数,在[1,)上为增函数.根据yau的单调性,当a1时,y关于u为增函数;当0a1时,y关于u为减函数.∴当a1时,原函数的增区间为[1,),减区间为(,1];当0a1时,原函数的增区间为(,1],减区间为[1,).(2)函数的定义域为{x|x0}.设y而根据y1,u0.2x.易知u0.2x为减函数.u11的图象可以得到,在区间(,1)与(1,)上,y关于u均为减函数.u1∴在(,0)上,原函数为增函数;在(0,)上,原函数也为增函数.xx2f(x1)f(x2)【例1】若f(x)ax(a0,且a1),则f(1.)22证明:x1x2f(x1)f(x2)x1x2ax1ax2ax1ax22ax1ax2(ax1ax2)220.f()a22222xx2f(x1)fx( 2)∴f(1.(注:此性质为函数的凹凸性))22bx【例2】已知函数f(x)2(b0,a0). ax111(1)判断f(x)的奇偶性;(2)若f(1),log3(4ab)log24,求a,b的值.22bx解:(1)f(x)定义域为R,f(x)2f(x),故f(x)是奇函数.ax1b1(2)由f(1),则a2b10.又log3(4a-b)=1,即4a-b=3.a12a2b10由得a=1,b=1.4ab3exa【例3】(01天津卷.19)设a>0,f(x)是R上的偶函数.aex(1)求a的值;(2)证明f(x)在(0,)上是增函数.exa解:(1)∵f(x)是R上的偶函数,∴f(x)f(x)0.aexexaexa111∴xx0(a)ex(a)ex0(a)(exex)0.aeaeaaaex-e-x不可能恒为“0”,∴当1-a=0时等式恒成立,∴a=1.a(2)在(0,)上任取x1<x2,ex11111f(x1)f(x2)x1ex2x2(ex1ex2)(x1)(ex1ex2)(1x1x2)x2aeeeeee(ex1ex2)( ex1ex21)x1x2x1x2∵e>1,x1<x2,∴ee1,∴ee>1,<0,ex1ex2∴f(x1)f(x2)0,∴f(x)是在(0,)上的增函数.【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t年后的世界人口数y(亿)与t的函数解析式;(2)若人口的平均增长率为x%,写出20xx年底世界人口数为y(亿)与x 的函数解析式.如果要使20xx年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?t*解:(1)经过t年后的世界人口数为y54..8(11.t2)54.8t1.0N12,(2)20xx年底的世界人口数y与x的函数解析式为y54.8(1x)18.由y54.8(1x)1866.8,解得x100(18所以,人口的年平均增长率应控制在1.1%以内.66.81)1.1.54.扩展阅读:高中数学函数概念及其性质知识总结数学必修1函数概念及性质(知识点总结)(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式注意:○3函数的定义域、值域要写成集合或区间的形式.子有意义的实数的集合;○定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。