第三节流体流动现象
- 格式:pdf
- 大小:295.40 KB
- 文档页数:6
三个传递:动量传递、热量传递和质量传递三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算第一节 流体静止的基本方程一、密度1. 气体密度:RTpM V m ==ρ2. 液体均相混合物密度:nma a a ρρρρn22111+++=(m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组分密度)3. 气体混合物密度:n n mρϕρϕρϕρ+++= 2211(m ρ—混合气体的密度,ϕ—各组分体积分数)4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显著的改变则称为可压缩流体(气体)。
二、.压力表示方法1、常见压力单位及其换算关系:mmHgO mH MPa kPa Pa atm 76033.101013.03.10110130012=====2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等; (2)静压力的方向垂直于任一通过该点的作用平面;(3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。
2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体))(2112z z g p p -+=ρ)(2121z z g pg p -+=ρρ p z gp=ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头)上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。
1、U 形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。
测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体:gR p p 021ρ=-2、双液体U 形管压差计 gR p p )(1221ρρ-=-第二节 流体流动的基本方程一、基本概念1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。
第三节流体的流动现象Fluid-flow Phenomena化工生产中的许多过程都与流体的流动现象密切相关,流动现象是个极为复杂的问题,涉及面广,本节只作简要的介绍。
3-1 牛顿粘性定律与流体的粘度一、牛顿粘性定律流体具有两个特性:(1)流动性:即没有固定形状,在外力作用下其内部产生相对运动。
(2)粘性:即在运动的状态下,流体还有一种抗拒内在的向前运动的特性,粘性是流动性的反面。
以水在管内流动时为例,管内任一截面上各点的速度并不相同,中心处的速度最大,愈靠近管壁速度愈小,在管壁处水的质点附于管壁上,其速度为零,其他流体在管内流动时也有类似的规律。
所以,流体在圆管内流动时,实际上是被分割成无数极薄的圆筒层,一层套着一层,各层以不同的速度向前运动,如图1-10所示。
由于各层速度不同,层与层之间发生了相对运动,速度快的流体层对与之相邻的速度较慢的流体层发生了一个推动其向前运动方向前进的力,而同时速度慢的流体层对速度快的流体层也作用着一个大小相等,方向相反的力,从而阻碍较快的流体层向前运动。
这种运动着的流体内部相邻两流体层间的相互作用力,称为流体的内摩擦力,是流体粘性的表现,所以又称为粘滞力或粘性摩擦力。
流体在流动时的内摩擦,是流动阻力产生的依据,流体流动时必须克服内摩擦力而作功,从而将流体的一部分机械能转变为热而损失掉。
流体流动时的内摩擦力大小与哪些因素有关?可通过下面情况加以说明。
如图1-11所示,设有上下两块平行放置且面积很大而相距很近的平板,板间充满了某种液体。
若将下板固定,而对上板施加一个恒定的外力,上板就以恒定的速度u沿x方向运动。
图10流体在圆管内分层流动示意图此时,两板间的液体就会分成无数平行的薄层而运动?粘附在上板底面的一薄层液体也以速度u随上板而运动,其下各层液体的速度依次降低,粘附在下板表面的液层速度为零。
实验证明,对于一定的液体,内摩擦力F与两流体层的速度差Δu成正比,与两层之间的垂直距离Δy 成反比;与两层间的接触面积S 成正比,,即:S yu F ∆∆∝ 若把上式写成等式,就需引进—个比例系数μ即:S yu F ∆∆=μ 式中的内摩擦力F 与作用面S 平行。