形位误差的检测
- 格式:ppt
- 大小:1.15 MB
- 文档页数:47
实验二形状和位置误差测量1.实验目的(1)掌握用指示表和平台测量平面的形位误差的方法;(2)掌握平面的平面度、平行度和位置度三种形位误差的评定方法和数据处理方法。
2.原理本实验三种形位误差的检测原理均为与理想要素比较原理:(1)平面度误差的测量原理用平台的工作表面模拟理想平面,将实际被测平面与模拟理想平面相比较,用指示表测出其差别。
平面可看成由许多直线构成,因此可用几个有代表性的直线的直线度误差来综合反映该平面的平面度误差。
(2)面对面平行度误差的测量原理用平台的工作表面模拟模拟基准平面和理想平面。
(3)面对面位置度误差的测量原理用平台的工作表面模拟基准平面和理想平面,并用量块组的尺寸体现图样上标注的理论正确尺寸。
3.试剂和仪器设备(1)百分表;(2)磁力表座;(3)试件;(4)平台(,1级);(5)量块(83块/套)。
4.实验步骤(1)将被测工件以其实际基准表面放置在测量平台的工作表面上;(2)按图样上标注的理论正确尺寸选取量块组,并将其放置在测量平台的工作表面上;(3)用量块组调整指示表的示值零位;(4)按选定的布点方式在实际被测表面上标出各测点位置;(5)移动测量架,逐点测量各测点至测量平台工作表面的距离。
5.实验数据及其处理(1)测量数据为各测点指示表的示值;(2)按对角线平面法和最小条件求解平面度误差值;(3)按定向最小区域求解平行度误差值;(4)按定位最小区域求解位置度误差值;(5)按图样上标注的形位公差值判断被测要素的合格性。
6.问题讨论(1)按对角线平面法和最小条件评定平面度误差值各有何特点?(2)面对面平行度误差的定向最小包容区域的判别准则是什么?(3)面对面位置度误差的定位最小包容区域的判别准则是什么?。
在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。
二、孔径单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。
三、长度、厚度长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。
四、表面粗糙度借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。
五、角度1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。
第六节形位误差的评定及检测一、形位误差的评定1.形状误差的评定1)最小条件评定形状误差的基本原则是“最小条件”:即被测实际要素对其理想要素的最大变动量为最小。
(1) 轮廓要素(线、面轮廓度除外)最小条件就是理想要素位于实体之外与实际要素接触,并使被测要素对理想要素的最大变动量为最小。
(2) 中心要素最小条件:就是理想要素应穿过实际中心要素,并使实际中心要素对理想要素的最大变动量为最小。
Ⅰ最小区域f 1Ⅱ被测实际要素Ⅲ图4-24 轮廓要素的最小条件L2被测实际要素d1L12图4-25中心要素的最小条件2)最小包容区(简称最小区域)最小包容区(简称最小区域):是指包容被测实际要素时,具有最小宽度f或直径 f的包容区域。
形状误差值用最小包容区(简称最小区域)的宽度或直径表示。
按最小包容区评定形状误差的方法,称为最小区域法。
最小条件是评定形状误差的基本原则,在满足零件功能要求的前提下,允许采用近似方法评定形状误差。
当采用不同评定方法所获得的测量结果有争议时,应以最小区域法作为评定结果的仲裁依据。
被测实际要素SSa) 评定直线度误差图4-26 最小包容区示例被测实际要素被测实际要素SSc) 评定平面度误差b) 评定圆度误差2.定向误差的评定定向误差值用定向最小包容区域(简称定向最小区域)的宽度或直径表示。
定向最小包容区域是按理想要素的方向来包容被测实际要素,且具有最小宽度f或直径 f的包容区域。
S被测实际要素基准图4-27 定向最小包容区域示例被测实际要素S被测实际要素基准S基准α图4-27 定向最小包容区域示例3.定位误差的评定评定形状、定向和定位误差的最小包容区域的大小一般是有区别的。
如图4-29所示,其关系是:f 形状< f 定向< f 定位当零件上某要素同时有形状、定向和定位精度要求时,则设计中对该要素所给定的三种公差(T 形状、T 定向和T 定位)应符合:T 形状<T 定向<T 定位基准A被测实际要素FSLh 1PP S基准AOL yL x基准Bf图4-28 定位最小包容区域示例HAAAt1t2t3a) 形状、定向和定位公差标注示例:t1 < t2 < t3AHf形状b) 形状、定向和定位误差评定的最小包容区域:f形状< f定向< f定位图4-29 评定形状、定向和定位误差的区别f定向f定位二、形位误差的检测原则1.与理想要素比较原则与理想要素比较原则是指测量时将被测实际要素与其理想要素作比较,从中获得数据,以评定被测要素的形位误差值。
形位误差的检测原则形位误差是指在零件加工过程中,由于加工设备、材料、工艺等因素的影响,导致零件尺寸、形状和位置等方面与设计要求不符的现象。
为了确保制造出符合要求的零件,常常需要进行形位误差的检测。
1.目标指标原则:根据零件的设计要求和使用要求,明确形位误差的目标指标。
目标指标是对零件形状、尺寸和位置等方面的要求的具体表述,可以是零件的图纸上的标注、工艺规程中的要求或客户提出的要求等。
通过目标指标原则,可以明确形位误差的检测的目的和依据。
2.合理性原则:形位误差的检测方法应当科学合理,既能保证检测结果的准确性,又能保证检测过程的可操作性和经济性。
合理性原则要求选择适当的检测方法和检测设备,制定合理的检测方案,并合理安排检测的步骤和流程。
3.全面性原则:形位误差的检测应当全面、细致,对零件的各个方面的尺寸、形状和位置进行全面的检测。
全面性原则要求对目标指标中规定的各项形位误差进行逐一检测,并记录检测结果。
同时,也要对可能的意外误差进行预测和检测,以确保检测结果的真实可靠。
4.重要性原则:形位误差的重要性会根据不同的零件和应用场景而有所差异。
一些零件的形位误差对整个装配系统的工作效果和安全性有着重要的影响,而另一些零件的形位误差则可以容忍一定的范围。
重要性原则要求根据不同零件的重要性确定形位误差的容许范围,并在检测过程中对重要性较高的部分加强检测。
5.可比性原则:形位误差的检测结果应当是可比性的,即在不同的条件下,通过同样的检测方法和仪器,应当得到相同或相近的结果。
可比性原则要求消除人为因素对检测结果的影响,确保各次检测的可比性。
同时,也要求在需比较不同零件或不同批次零件的形位误差时,能够确保结果的可比性。
以上是形位误差的检测原则,通过遵循这些原则,可以确保形位误差的检测结果真实可靠,并保证制造出符合要求的零件。
形位公差定义及检测方法一、直线度的定义及检测方法定义:直线度是指零件被测的线要素直不直的程度。
检测方法概述:㈠.将平尺(小零件可用刀口尺)与被测面直接接触并靠紧。
此时平尺与被测面之间的最大间隙即为该检测面的直线度误差。
一般公用检测器具-塞尺。
(图片)按此方法检测若干条素线,取其中最大误差值作为该件的直线度误差。
㈡.将被测件放在平台上,并靠紧方箱或直角尺(或者将被测件放置在等高V型铁上)。
用杠杆表在被测素线的全长范围内测量,同时记录检测数值,最大数值与最小数值之差即为该条素线直线度误差。
(简图):按上述方法测量若干条素线,并计算,取其中最大的误差值,作为被测零部件的直线度误差。
㈢将被测零部件用千斤顶支起,利用杠杆表将被测素线的两端点调整到与平台平行,在被测素线的全长范围内测量,同时记录,读数,最大值与最小值之差即为该素线的直线度误差,按同样方法测量若干条素线,取其中最大的误差值作为该被测件的直线度误差。
㈣综合量规:综合量规的直径等于被测零件的实效尺寸,综合量规必须通过被测零件。
二、平面度定义及检验方法平面度是指零件被测表面的要素平不平得程度。
㈠将被测件用千斤顶支撑在平台上,调整被测表面最远的三点A,B,C,(利用杠杆表或高度尺)使其与平台平行,然后用测头在整个实际表面上进行测量,同时记录读数,其最大与最小读数之差,即为被测件平面度误差。
㈡用刀口尺(小型件)或平尺(较大型件)在整个被测平面上采用“米”字型或栅格型方法进行检测,用塞尺进行检验,取其塞尺最大值为该被测零件得平面度误差。
㈢环类垫圈类零件将被测件的被测面放在平台上,压紧,然后用塞尺检测多处,其塞入的最大值即为该件的平面度误差。
(或者将被测件的被测面用三块等高垫铁在平台上均分支撑,然后用杠杆表在被测面的多处进行检测,取其最大与最小读数的差作为该件的平面度误差。
三、圆度定义及测量方法定义:圆度是指具有圆柱面(包括圆锥面)的零件在同一横剖面内的实际轮廓不圆的程度。
实验二 形位误差测量一.实验目的1.了解位置度误差的检测原则和基准体现方法;误差的测量原理及方法。
2.熟悉通用量具的使用。
3.加深对平行度、垂直度等位置公差的理解。
二.实验设备测量平板、心轴、精密直角尺、塞尺、百分表、表架、外径游标卡尺等。
三.实验内容1.图2-1为被测件角座,其上提出四个位置公差要求;(1)顶面对底面的平行度公差0.15;(2)两孔的轴线对底面的平行度公差0.05;(3)两孔轴线之间的平行公差0.35;(4)侧面对底面的垂直度公差0.20;2.被测件活塞,要求测量活塞裙部轴线对销孔轴线的位置度三.实验方法步骤 1.按检测原则1(与理想要素比较原则)测量顶面对底面的平行度误差(图2-1)。
将被测件放在测量平板上,以平板面作模拟基准;调整百分表在支架上的高度,将百分表测头与被测面接触,使百分表指针倒转1~2圈,固定百分表,然后在整个被测表面上沿规定的各测量线上移动百分表支架,取百分表的最大与最小读数之差作为被测表面的平行度误差。
图2-2 测量顶面对底面的平行度误差 图2-3 测量两孔轴线对底面的平行度误差 2.按检测原则,测量两孔轴线对底面的平行度误差。
用心轴模拟被测孔的轴线(图 2-3),以平板模拟基准,按心轴上的素线调整百分表的高度,并固定之(调整方法同步骤1), 在距离为L 1的两个位置上测的两个读数M 1和M 2,被测轴线的平行度误差为=f 211M M L L − 式中:L ——被测轴线的长度。
3.按检测原则1测量两孔轴线之间的平行度误差(图2-4)。
用心轴模拟两孔轴线用 游标卡尺在靠近孔口端面处测量尺寸a 1及a 2,差值(a 1-a 2)即为所求平行度误差。
1图2-4 测量两孔轴线之间的平行度误差 图2-5 测量侧面对底面的垂直度4.按捡测原则3(测量特征参数原则)测量侧面对底面的垂直度误差(图2-5)。
用平板模拟基准,将精密直角尺的短边垂直于平板上,长边靠在被测侧面上,此时长边即为理想要素。
机械加工零件中的形位误差检测及评定摘要:对机械加工零件中的形位误差检测及评定一直是社社会广泛关注的热点话题之一。
尤其是在生产车间零件加工中,加工人员采用妥善的误差检测和评定方法能够及时提升工作效率,基于此,本文结合实际情况首先简单概述了机械加工零件中形位误差检测符号表示;其次分析了形状误差的判定和位置误差的判定方法;最后结束了形位误差检测的计算方法,以期给同行提供一定的参考价值。
关键词:机械零件加工;形位误差;判定;计算方法引言形位误差是指零件在实际加工过程中,由于工艺系统原始误差的影响,导致零件实际形状和位置相对于理想形状和位置出现的误差。
在实际零件加工中,会受到外界各种因素发生此类现象,加工人员应在具备专业加工技巧和理论知识的基础上,采用适当措施尽量规避这一问题。
1.机械加工零件中形位误差检测符号分析制造加工企业在实际的零件加工中,为了确保车间内形位误差检测真实准确,管理人员会通过将理想要素和被测实际要素向比较的方式达到预设效果,例如,在车间测量跳动,具体的国际检测方案整那个对常见符号也进行说明具体如表1所示[1]。
表1检测图例常用符号表1.对形状误差的判定首先,形状公差是指单一实际要素的形状所允许的变动量,在实际的误差判定过程中,可以将圆度、直线度、轮廓度及及平面度等相关要素进行判定,与此同时,在对诸多几何形状公差判定时,由于几何形状会在外界因素影响下会发生变化,此时不会出现基准的误差,只是以单个独立的误差要素存在,与此同时,整个几何形状的实际方向和位置都是会相对变化的,测量人员只能通过对被测要素形状误差大小进行控制才能达到预设效果。
换种说法就是它主要指被测实际要素对理想要素的变动量;其次,对形状误差的判定需要管理人员从实际要素找出与理想要素的位置不同之处,与之对比形成的数值也会发生相应变化。
为了确保获取的测量值是唯一不变的,管理人员应完全遵守并执行理想要素位置应最小条件的管理原则。
具体来讲,被测量实际要素的最大便当最小状态可以称为最小条件,例如,以图1(a)为例,在整体轮廓不变的情形下,对于能够评定它的要素,可以随时和A1B1、A2B2、A3B3等含有无数平等的直线来对全面包容实际要素,值得注意的是,其中必须确保一对平等直线之间的包容区是最小的,例如f1,故此可以将A1B1确认为一对平等直线我内置,在完全满足最小条件后,确定区域宽度f1就是直线度误差。
形位误差的检测原则内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.形位公差是控制零件精度的另一种公差,它关系到产品是否符合图纸的要求的大问题。
形位公差分为形状公差四项、位置公差八项和形状与位置公差二项。
要求能看懂其符号,并熟悉公差带的定义及标注方法。
如何准确地测量出零件的形位公差?判断零件是否合格1、形位公差检测的五种原则为:(1)与拟合要素比较的原则即将被测提取要素与拟合要素比较,也就是将量值和允许误差值比较,这是大多数形位误差检测的原则。
如教材中图3-71所示直接用百分表或光学自准直仪测量垂直面直线度误差值。
(2)测量坐标值原则即将被测提取要素测量出的坐标值经过数字处理后获得的形位误差值。
如教材中图3-72所示,需要数学计算才能得出误差值。
(3)测量特征参数原则如教材中图3-73所示,选择锥形面的某个特征截面,测量其径向跳动公差值,来代表该零件的径向跳动值。
(4)测量跳动原则如教材中图3-74所示,测量工件径向跳动公差值时,要把被测工件绕轴线回转,此时测量某点的径向跳动为半径公差值。
(5)控制实效边界原则这是使用综合检测被测要素是否合格的方法,如教材中图3-75所示。
用量规来检测工件的二个同心孔的同轴度是否合格,量规的外径按最大实体要求的形位公差制作,如果量规能顺利通过孔径,则工件内空合格。
2、独立原则零件的尺寸公差和形位公差都要分别满足图纸上的公差标注要求,两者之间没有关联,互不影响,相互独立。
如教材中图3-76所示,销轴的外径公差为0.02,中心线的直线度误差为Φ0.01,检测结果互不影响,应满足各自的独立要求,只要有一项超差,该零件就算不合格,此成为独立原则。
3、相关要求尺寸公差和形位公差之间有相互关联,如教材中图3-77所示的轴的外径尺寸做成11.98为合产品,而直线度误差可以借用轴的公差0.02的余量,即直线度误差可以达到0.03的范围内,该轴仍可以使用。