第二章:误差和分析数据处理总结
- 格式:ppt
- 大小:3.10 MB
- 文档页数:14
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
完整版)分析化学知识点总结第二章:误差和数据分析处理-章节小结1.基本概念及术语准确度是指分析结果与真实值接近的程度,其大小可用误差表示。
精密度是指平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。
系统误差是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。
它包括方法误差、仪器或试剂误差及操作误差三种。
偶然误差是由某些偶然因素所引起的误差,其大小和正负均不固定。
有效数字是指在分析工作中实际上能测量到的数字。
通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。
t分布指少量测量数据平均值的概率误差分布。
可采用t分布对有限测量数据进行统计处理。
置信水平与显著性水平指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。
置信区间与置信限系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。
分为双侧置信区间与单侧置信区间。
显著性检验用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。
包括t检验和F检验。
2.重点和难点1)准确度与精密度的概念及相互关系准确度与精密度具有不同的概念。
当有真值(或标准值)作比较时,它们从不同侧面反映了分析结果的可靠性。
准确度表示测量结果的正确性,精密度表示测量结果的重复性或重现性。
虽然精密度是保证准确度的先决条件,但高的精密度不一定能保证高的准确度,因为可能存在系统误差。
只有在消除或校正了系统误差的前提下,精密度高的分析结果才是可取的,因为它最接近于真值(或标准值)。
在这种情况下,用于衡量精密度的偏差也反映了测量结果的准确程度。
系统误差可分为方法误差、仪器或试剂误差及操作误差。
这种误差由确定的原因引起,具有固定的方向和大小,会在重复测定时重复出现。
分析化学(第六版)总结第二章 误差和分析数据处理第一节 误差定量分析中的误差就其来源和性质的不同, 可分为系统误差、偶然误差和过失误差。
一、系统误差定义: 由于某种确定的原因引起的误差, 也称可测误差特点:①重现性, ②单向性, ③可测性(大小成比例或基本恒定)分类:1. 方法误差: 由于不适当的实验设计或所选方法不恰当所引起。
2. 仪器误差.由于仪器未经校准或有缺陷所引起。
3. 试剂误差.试剂变质失效或杂质超标等不合.所引起4. 操作误差.分析者的习惯性操作与正确操作有一定差异所引起.操作误差与操作过失引起的误差是不同的。
二、偶然误差定义: 由一些不确定的偶然原因所引起的误差, 也叫随机误差.偶然误差的出现服从统计规律, 呈正态分布。
特点:①随机性(单次)②大小相等的正负误差出现的机会相等。
③小误差出现的机会多, 大误差出现的机会少。
三、过失误差1.过失误差: 由于操作人员粗心大意、过度疲劳、精神不集中等引起的。
其表现是出现离群值或异常值。
a) 2.过失误差的判断——离群值的舍弃在重复多次测试时, 常会发现某一数据与平均值的偏差大于其他所有数据, 这在统计学上称为离群值或异常值。
离群值的取舍问题, 实质上就是在不知情的情况下, 区别两种性质不同的偶然误差和过失误差。
离群值的检验方法:(1)Q 检验法:该方法计算简单, 但有时欠准确。
设有n 个数据, 其递增的顺序为x1,x2,…,xn-1,xn, 其中x1或xn 可能为离群值。
当测量数据不多(n=3~10)时, 其Q 的定义为1) 具体检验步骤是:2) 将各数据按递增顺序排列;2)计算最大值与最小值之差;3)计算离群值与相邻值之差; 计算Q 值;5)根据测定次数和要求的置信度, 查表得到Q 表值;6)若Q >Q 表, 则舍去可疑值, 否则应保留。
该方法计算简单, 但有时欠准确。
(2)G 检验法:该方法计算较复杂, 但比较准确。
具体检验步骤是: 1)计算包括离群值在内的测定平均值;2)计算离群值与平均值 之差的绝对值3)计算包括离群值在内的标准偏差S4)计算G 值。
第二章误差及数据处理§1 误差概述一、误差的来源1.测定值分析过程是通过测定被测物的某些物理量,并依此计算欲测组分的含量来完成定量任务的,所有这些实际测定的数值及依此计算得到的数值均为测定值。
2.真实值 true value真实值是被测物质中某一欲测组分含量客观存在的数值。
在实验中,由于应用的仪器,分析方法,样品处理,分析人员的观察能力以及测定程序都不十全十美,所以测定得到的数据均为测定值,而并非真实值。
真实值是客观存在的,但在实际中却难以测得。
真值一般分为:<1>理论真值:三角形内角和等于1800。
<2>约定真值:统一单位(m.k g,.s)和导出单位、辅助单位。
1)时, <3>相对真值:高一级的标准器的误差为低一级标准器的误差的51(31~20则认为前者为后者的相对真值。
思考:滴定管与量筒、天平与台称3.误差的来源真值是不可测的,测定值与真实值之差称为误差。
在定量分析中,误差主要来源于以下六个方面:<1> 分析方法由于任何一种分析方法都仅是在一定程度上反映欲测体系的真实性。
因此,对于一个样品来说,采用不同的分析方法常常得到不同的分析结果。
实验中,当我们采用不同手段对同一样品进行同一项目测定时,经常得到不同的结果,说明分析方法和操作均会引起误差。
例如:在酸碱滴定中,选用不同的指示剂会得到不同的结果,这是因为每一种指示剂都有着特定的pH变化范围,反应的变色点与酸、碱的化学计量点有或多或少的差距。
另外在样品处理过程中,由于浸取、消化、沉淀、萃取、交换等操作过程,不能全部回收欲测物质或引入其他杂质,对测定结果也会引入误差。
<2> 仪器设备由于仪器设备的结构,所用的仪表及标准量器等引起的误差称为仪器设备误差。
如:天平两臂不等、仪表指示有误差、砝码锈蚀、容量瓶刻度不准等。
<3> 试剂误差试剂中常含有一定的杂质或由贮存不当给定量分析引入不易发现的误差。
第二章误差和分析数据的处理一、内容提要本章讨论了误差的来源、性质及其减免方法,有效数字及运算规则,并简单介绍应用统计学原理处理分析数据的基本方法。
定量分析的任务是准确测定试样中组分的含量。
在分析过程中误差是客观存在的,因此作为分析工作者,不仅要测定试样中待测组分的含量,还应对测定结果作出评价,判断其准确性和可靠程度,查出产生误差的原因,并采取有效措施减少误差,使所得结果尽可能准确地反映试样中待测组分的真实含量。
定量分析误差根据其性质和来源,可分为系统误差和偶然误差两类。
系统误差是由确定原因引起,数据其恒定单向性,包括方法误差、仪器和试剂误差、操作误差。
系统误差对分析结果的作用有两种形式:恒定误差和比例误差。
系统误差可通过对照实验、回收实验、空白实验和校准仪器来检验和消除。
偶然误差是由偶然原因引起,其大小和正负都不固定,但服从统计规律,增加平行测定次数可减小偶然误差。
准确度是指测定值与真实值接近的程度,用误差来衡量,误差越小,准确度越高。
误差通常用绝对误差、相对误差表示。
精密度是指用相同方法对同一试样进行多次测定,各测定值彼此接近的程度,用偏差来衡量。
偏差越小,精密度越高,常用绝对偏差、平均偏差、相对平均偏差、标准偏差,相对标准偏差来表示。
准确度和精确度既有严格区别又相互关联,一般而言:准确度高的前提是精密度高;但精密度高不一定准确度高;精密度不高,准确度肯定不可靠;只有精密度和准确度都好的结果才最为可靠。
因此,只有防止过失误差,减小偶然误差,消除或校正系统误差,才能得到可靠的分析结果。
有效数字的位数表示了分析结果的准确度,其记录和运算须遵循响应的规则。
相关与回归是研究变量间关系的统计方法,通常用相关系数来判断二变量是否成线性关系,由回归直线方程计算试样中被测组分的浓度。
本章重点是误差的分类,准确度与精密度的关系,有效数字及其修约规则。
本章难点是相关计算。
二、习题(一)判断题()1.精密度高,准确度一定高。
第二章 误差和分析数据处理何测量都不可能绝对准确,在一定条件下,测量结果只能接近于真实值,而不能达到真实值个定量分析要经过许多步骤,并不只是一次简单的测量,每步测量的误差,都影响分析结果的性,因而定量分析结果的误差更加复杂行定量分析时,必须根据对分析结果准确度的要求,合理地安排实验,避免不必要的追求高准节 测量误差是衡量一个测量值的不准确性的尺度,反映测量准确性的高低差越小,测量的准确性越高1、 绝对误差和相对误差测量之中的误差,主要有两种表示方法:绝对误差与相对误差(一)绝对误差:测量值与真值(真实值)之差称为~绝对误差是以测量值的单位为单位,可以是正值,也可以是负值,及测量值可能大于或小于测量值越接近真值,绝对误差越小;反之,越大(二)相对误差:绝对误差与真值的比值称为~相对误差反映测量误差在测量结果中所占的比例,它没有单位通常相对误差以%,%0表示如果不知道真值,但知道测量的绝对误差,则相对误差也可以测量值x为基础表示在分析工作中,用相对误差衡量分析结果,比绝对误差更常用根据相对误差的大小,还能提供正确选择分析仪器的仪器对于高含量组分测定的相对误差应当要求严些(小些)对于低含量组分测定的相对误差可以允许大些在相对误差要求固定时,测定高含量组分可选用灵敏度较低的仪器,而对低含量组分灵敏度较高的仪器二、真值与标准参考物质可知的真值,有三类:理论真值、约定真值、相对真值:三角形内角和为180度:国际单位及我国的法定计量单位是约定真值各元素的原子量物质的理论含量:常用标准参考物质的证书上所给出的含量作为相对真值标准参考物质:1必须是经工人的权威机构鉴定,并给予证书的2必须具有很好的均匀性与稳定性3其含量测量的准确度至少要高于实际测量的3倍约定真值与相对真值是分析化学工作中最常用的真值除理论真值外,其它真值都是由实验测得,都带有一定的误差三、系统误差和偶然误差按误差的性质分:系统误差和偶然误差(一)系统误差:是由某种确定的原因引起的,一般它有固定的方向(正或负)和大小,重复测定时重复出现根据系统误差的来源分为:方法误差、仪器(或试剂)误差、操作误差方法误差:是由于不适当的试验设计或所选择的分析方法不恰当所引起的,通常方法误差影响的存在,使测定结果要么总是偏高;要么总是偏低,误差的方向固定仪器或试剂误差:是由仪器未经校准或试剂不合格所引起的:是由于分析工作者的操作不符合要求造成的在一个测定过程中这三种误差都可能存在:如果在多次测定中系统误差的绝对值保持不变,但相对值随被测组分含量的增大而:如果系统误差的绝对值随样品量的增大而成比例增大,相对值不变,则称为~也有时,系统误差的绝对值虽然随样品量的增大而增大,但不成比例系统误差是以固定的方向和大小出现,并具有重复性。