荧光分析法实验(有思考题答案)
- 格式:doc
- 大小:125.00 KB
- 文档页数:3
分子荧光法测定水杨酸和乙酰水杨酸一、实验目的1、学习荧光分析法的基本原理。
2、掌握应用分子荧光法测定乙酰水杨酸、水杨酸的分析方法。
3、了解F-3501型荧光分光光度计的主要结构及工作原理,掌握其正确的使用方法。
二、实验原理某些物质经紫外光或波长较短的可见光照射后,会发射出较入射波长更长的荧光。
荧光光谱反映了物质的特性,建立在测量荧光光谱基础上的分析方法称为荧光分析法。
当进行荧光测定时,总要选择不同波长的光波进行测定,即一个为激发光——物质所吸收的光;另一个为物质吸收后发出的光称为发射光或荧光。
对同一物质而言,在稀溶液(即A = abc < 0.05)中,荧光的强度F与该物质的浓度C 有以下关系:F = 2.3φabcI0式中φ为荧光过程的量子效率,a为荧光分子的吸光系数,b为试样的吸收光程,I0为入射光的强度。
当I0及b 不变时,上式变为:F= KC其中,K为常数。
荧光分析法具有灵敏度高(一般超过分光光度法2~3个数量级)、取样少、方法快速等特点,现已成为食品、生物医药、天然产品、农业、环境保护、化工等领域中的重要分析方法之一。
但由于许多物质本身不会发生荧光,故在使用范围上受到一定的限制。
乙酰水杨酸(ASA,即阿司匹林)水解能生成水杨酸(SA),而在乙酰水杨酸中,或多或少都存在着水杨酸。
由于两者都有苯环,也有一定的荧光效率,因而在以三氯甲烷为溶剂的条件下,可用荧光法进行测定。
从乙酰水杨酸和水杨酸的激发光谱和荧光光谱中可以发现:乙酰水杨酸和水杨酸的激发波长和发射波长均不同,利用此性质,可在各自的激发波长和发射波长下分别测定。
三、仪器与试剂1、仪器F-3501型荧光分光光度计、电子天平、离心机、真空泵、石英比色皿、移液管、棕色容量瓶、比色管、烧杯、砂芯抽滤装置、量筒、洗耳球、洗瓶等。
荧光分析法测定维生素B2一、实验目的1.学习与掌握荧光光度分析法测定维生素B2的基本原理与方法;2.熟悉荧光分光光度计的结构及使用方法;3、学习掌握固体及液体试样的荧光测试方法。
二、实验原理当用一种波长的光照射某种物质时,这种物质会在极短的时间内,发射出一种比照射光波长较长的光,这种发射出来的光就叫做荧光。
当照射光停止照射时,荧光也随之很快地消失。
利用某些物质被紫外光照射后所产生的、能够反映出该物质特性的荧光,以进行该物质的定性分析与定量分析,称为荧光分析。
实验证明,荧光通常发生于具有刚性平面的л-电子共轭体系分子中。
随着л-电子共轭度与分子平面度的增大,荧光也就越容易产生。
因此几乎所有对分析化学有用的荧光体系都含有一个以上的芳香基团,芳环数越多,荧光愈强。
能发荧光的纯无机物很少,通常就是利用有机配位体与金属离子形成荧光络合物进行无机离子的分析。
图1.荧光分光光度计的结构原理图荧光分光光度计工作原理(图1)可简述为:光源发出的光束经激发单色器色散,提取所需波长单色光照射于样品上,由样品发出的荧光经发射单色器色散后照射于检测器上,检测器把荧光强度信号转变为电信号并经放大器放大后,由信号显示系统显示或者记录。
荧光光谱包括激发光谱与发射光谱两种。
激发光谱就是就是指发射单色器波长固定,而激发单色器进行波长扫描所得到的荧光强度随激发光波长变化的曲线。
荧光发射光谱就是指激发单色器波长固定,发射单色器进行波长扫描所得到的荧光强度随发射光波长变化的曲线。
一般所说的荧光光谱实际上仅指荧光发射光谱。
这一光谱为分析指出了最佳的发射波长。
荧光定性定量分析与紫外可见吸收光谱法相似。
定性时,就是将实验测得样品的荧光激发光谱与荧光发射光谱与标准荧光光谱图进行比较来鉴定样品成分,一般荧光定性的依据就是荧光光谱峰的个数、位置、相对强度及轮廓。
定量分析时,一般以激发光谱最大峰值波长为激发光波长,以荧光发射光谱最大峰值波长为发射波长,测量样品的荧光强度。
实验四荧光分光光度法测定维生素B2一、实验目的1.了解F 96 荧光分光光度计的性能及操作。
2.掌握荧光分析法的基本原理。
3.学习荧光分析法测定维生素B2 的含量。
二、实验原理维生素B2 是一种具有强烈荧光特性的化合物。
其水溶液在pH = 6~7 时荧光最强,其最大激发波长为λex= 465 nm ,最大发射波长为λem = 520 nm。
在低浓度时,λex = 465 nm 时在520 nm 处测得的荧光强度与维生素B2 成正比。
即:I F=Kc采用校正曲线法可测定复合维生素片剂中维生素B2 含量。
当pH 在11以上时,荧光猝灭。
图 4 维生素B2 的激发光谱(a)和荧光光谱(b)三、仪器与试剂1.仪器:F96 型荧光分光光度计;容量瓶;移液管。
2.试剂:1%HAc 溶液;维生素B2;复合维生素片剂。
四、实验步骤1.维生素B2 标准溶液的配制称取10.0 mg 维生素B2,先溶解于少量1%HAc中,然后转移至 1 000 mL容量瓶中,用1%HAc稀释至刻度,摇匀,即配制成10.0 μg/mL的维生素B2 标准溶液。
溶液保存在棕色容量瓶中,置阴凉暗处。
2.标准系列溶液的配制取5个50 mL的容量瓶,分别加入1.00、2.00、3.00、4.00 及 5.00 mL 维生素B2 标准溶液,用水稀释至刻度,摇匀,待测。
3.未知样品溶液的配制取复合维生素片剂适量,于100 mL小烧杯中,以1%HAc溶解,转移至50 mL容量瓶中,以水稀释至刻度,待测。
4.将标准系列溶液及未知样品溶液,分别置于F96 荧光分光光度计上,选择合适的激发波长和测定波长,测定其荧光强度,绘制工作曲线,查出未知样品中维生素B2 的含量。
五、数据处理1.由记录仪记录所得荧光光谱图上查出标准系列不同浓度维生素B2 相应的荧光强度,作工作曲线。
2.在荧光光谱图上查出未知样品的荧光强度,在工作曲线上查出对应浓度,进行换算后求出片剂中维生素B2 的含量。
氨基酸类物质的荧光光谱分析【摘要】荧光物质吸收特定频率辐射能量后会产生荧光,不同荧光物质的最大吸收波长、最大激发波长以及荧光谱图不同,以此可以鉴定未知物质。
荧光还与物质浓度在一定范围内有线性关系,可以通过测定未知浓度的已知物荧光吸收强度来测定浓度。
【实验目的】1、熟悉荧光分析法的基本原理;2、了解RF–5301 型荧光分光光度计的构造、原理,掌握荧光分析法的基本操作;3、掌握荧光分析技术应用于定量分析的原理及方法。
【基本原理】原理概述:利用荧光物质分子在吸收特定频率辐射能量后,由基态跃迁至激发态的任一振动能级,在溶液中以热的形式损失部分能量后回到第一电子激发态的最低振动能级,再以辐射形式去活化跃迁到电子基态的任一振动能级,便产生荧光。
荧光的产生:荧光物质分子在吸收特定频率辐射能量后,由基态跃迁至第一电子激发态(或更高激发态)的任一振动能级,在溶液中这种激发态分子与溶剂分子发生碰撞,以热的形式损失部分能量后,而回到第一电子激发态的最低振动能级(无辐射跃迁)。
然后再以辐射形式去活化跃迁到电子基态的任一振动能级,便产生荧光。
能产生强荧光的物质分子,一般都具有大的共轭π 键结构或具有刚性平面结构等特征。
发射光谱与吸收光谱:荧光分析法的特点:优点:灵敏度高、选择性好、工作曲线线性范围宽,能提供激发光谱、发射光谱、发光强度、发光寿命、量 子产率、荧光偏振等诸多信息;缺点:由于能够产生强荧光的物质相对较少,荧光分析法的应用不太广泛;改进:对于没有强荧光或没有荧光的物质的测定可设计相应的反应使其生成具有荧光特性的配合物进行测定。
氨基酸:含有氨基和羧基的一类有机化合物,是生物功能大分子蛋白质的基本组成单位,是构成动物营养所需蛋白质的基本物质。
色氨酸(Try)、酪氨酸(Tyr)和苯丙氨酸(Phe)是天然氨基酸中仅有能发射荧光的组分,可以用荧光法测定。
【仪器与试剂】1、仪器:F-4600 型荧光分光光度计,10 mL 带玻璃塞的比色管10只,移液管图1荧光光谱仪结构示意图2、试剂:标准溶液a:4×10-4mg/mL的酪氨酸溶液;标准溶液b:1×10-3mg/mL的苯丙氨酸溶液;标准溶液c:1×10-3mg/mL的色氨酸溶液;色氨酸待测样;去离子水。
实验八、荧光光度法测定维生素B2的含量内容:P94-97和P208-210一、实验目的1、学习荧光分光光度计的工作原理2、熟悉荧光分光光度计的结构及使用方法3、掌握荧光光度分析法测定维生素B2的方法二、实验原理在紫外光或波长较短的可见光照射后,一些物质会发射出比入射光波长更长的荧光。
以测量荧光的强度和波长为基础的分析方法叫做荧光光度分析法。
对同一物质,若alc << 0.05,即对很稀的溶液,荧光强度F与该物质的浓度c有以下的关系:F = 2.3 Φf I0alc,I0和l不变时,F = K⋅c (K为常数)。
因此,在低浓度的情况下,荧光物质的荧光强度与浓度呈线性关系。
维生素B2在430~440 nm蓝光的照射下,发出绿色荧光,其峰值波长为535 nm。
维生素B2的荧光在pH值为6~7时最强,在pH值为11时消失。
荧光分析实验首先选择滤光片,使测量获得最强荧光,且受背景影响最小。
激发光谱受选择激发滤光片的依据,该滤光片的最大透射比与待测物质激发光谱的最大峰值波长相近。
荧光光谱是选择荧光滤光片的主要依据。
本实验使用的Cary Eclipse荧光分光光度计,其预扫描功能可自动识别出该容积的拉曼、瑞利及二级散射峰,并在扫描结束后自动给出最佳的激发/发射波长。
本实验采用标准曲线法来测定维生素B2的含量。
三、实验仪器与试剂(略)四、实验内容1、扫描测定取待测液2.50 mL置于50 mL容量瓶中,用水稀释至刻度,摇匀,用Cary Eclipse 荧光分光光度计进行扫描测定,选择最佳的激发/发射波长。
2、浓度测定在5个50 mL容量瓶中,分别加入1.00 mL、2.00 mL、3.00 mL、4.00 mL和5.00 mL 维生素B2的标准溶液,稀释,定容。
选定扫描测定确定的最佳激发/发射波长,用Cary Eclipse荧光分光光度计依次从稀到浓测量系列标准溶液和待测液稀释液的荧光强度。
五、结果与分析1、标准系列溶液的荧光强度绘制标准曲线。
第一章荧光分光光度分析法1.1概述1.1.1 基本原理由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。
物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态,这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光。
不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。
在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。
1.1.2 基本结构图1 荧光分光光度计工作原理示意图(1)光源:为高压汞蒸气灯或氙弧灯,后者能发射出强度较大的连续光谱,且在300nm~400nm 范围内强度几乎相等,故较常用。
(2)激发单色器:置于光源和样品室之间的为激发单色器或第一单色器,筛选出特定的激发光谱。
(3)发射单色器:置于样品室和检测器之间的为发射单色器或第二单色器,常采用光栅为单色器。
筛选出特定的发射光谱。
(4)样品室:通常由石英池(液体样品用)或固体样品架(粉末或片状样品)组成。
测量液体时,光源与检测器成直角安排;测量固体时,光源与检测器成锐角安排。
(5)检测器:一般用光电管或光电倍增管作检测器。
可将光信号放大并转为电信号。
1.1.3 仪器操作规程1.1.3.1 开机a. 确认所测试样液体或固体,选择相应的附件。
b. 先开启仪器主机电源,预热半小时后启动电脑程序RF-5301PC,仪器自检通过后,即可正常使用。
1.1.3.2 测样(1)spectrum模式a. 在“Acquire Mode”中选择“Spectrum”模式。
实验五荧光光度法测定维生素B2的含量一、实验目的1、学习荧光分光光度法测定维生素B2的分析原理;2、掌握荧光分光光度计的操作技术与测定维生素Bgq方法。
二、实验原理1、荧光光度法原理(1)常温下,处于基态的分子吸收一定的紫外可见光的辐射能成为激发态分子,激发态分子通过无辐射跃迁至第一激发态的最低振动能级,再以辐射跃迁的形式回到基态,发出比吸收光波长长的光而产生荧光。
在稀溶液中,荧光强度IF与物质的浓度c有以下的关系:I F = 2.3034I。
血当实验条件一定时,荧光强度与荧光物质的浓度成线性关系:I F = Kc这就是荧光光谱法定量分析的理论依据。
(2)荧光分析法的特点:a、与紫外-可见分光度法比较,荧光分析法具有更高的灵敏度。
b、选择性好。
荧光法既能依据发射光谱,又能依据吸收光谱来鉴定物质。
c、所需试样量少、操作方法简便。
(3)荧光光谱激发光谱:固定测量波长(选最大发射波长),化合物发射的荧光强度与照射光波长的关系曲线。
激发光谱曲线的最高处,处于激发态的分子最多,荧光强度最大。
发射光谱:固定激发光波长(选最大激发波长),化合物发射的荧光强度与发射光波长关系曲线。
固定发射光波长进行激发光波长扫描,找出最大激发光波长,然后固定激发光波长进行荧光发射波长扫描,找出最大荧光发射波长。
激发光波长与发射荧光波长的选择就是本实验的关键。
(4)荧光分析仪器常用的荧光分析仪器由激发光源、单色器、液槽、检测器与显示记录器五部分构成,如下图所示:2、荧光光度法测定多维葡萄糖粉中维生素B2的含量维生素BJ又叫核黄素,VB)就是橘黄色无臭的针状结晶,其结构式为:O维生素B2易溶于水而不溶于乙醚等有机溶剂,在中性或酸性溶液中稳定,光照易分解,对热稳定。
维生素B2溶液在430〜440 nm蓝光的照射下,发出绿色荧光, 荧光峰在535 nm。
维生素B在pH=6〜7的溶液中荧光强度最大,在pH=11的碱性溶液中荧光消失,所以可以用荧光光度法测维生素B2的含量。
荧光分析法实验报告荧光分光光度法一、 实验目的1、学习荧光分光光度法的基本原理;2、学习荧光光谱仪的结构和操作方法;3、学习激发光谱、发射光谱曲线的绘制方法。
二、 实验原理荧光分光光度法(fluorescence spectroscopy, FS )通常又叫荧光分析法,具有灵敏度高、选择性强、所需样品量少等特点,已成为一种重要的痕量分析技术。
荧光(fluorescence )是分子吸收了较短波长的光(通常是紫外光和可见光),在很短的时间内发射出比照射光波长较长的光。
由此可见,荧光是一种光致发光。
任何荧光物质都有两个特征光谱,即激发光谱(excitation spectrum )和发射光谱(emission spectrum )或称荧光光谱(fluorescence spectrum )。
激发光谱表示不同激发波长的辐射引起物质发射某一波长荧光的相对效率。
绘制激发光谱时,将发射单色器固定在某一波长,通过激发单色器扫描,以不同波长的入射光激发荧光物质,记录荧光强度对激发波长的关系曲线,即为激发光谱,其形状与吸收光谱极为相似。
荧光光谱表示在所发射的荧光中各种波长的相对强度。
绘制荧光光谱时,使激发光的波长和强度保持不变,通过发射单色器扫描以检测各种波长下相应的荧光强度,记录荧光强度对发射波长的关系曲线,即为荧光光谱。
激发光谱和荧光光谱可用于鉴别荧光物质,而且是选择测定波长的依据。
荧光强度(F )是表征荧光发射的相对强弱的物理量。
对于某一荧光物质的稀溶液,在一定波长和一定强度的入射光照射下,当液层的厚度不变时,所发生的荧光强度和该溶液的浓度成正比,即该式即荧光分光光度法定量分析的依据。
使用时要注意该关系式只适用于稀溶液。
三、 仪器与试剂F-4500荧光光谱仪;比色管(10mL );牛血清白蛋白(BSA )四、 实验内容1、 开机准备:接通电源,启动电脑。
打开光谱仪主机电源,预热15分钟。
2、 运行FL solution 软件,设定检测方法和测量参数:EX (激发波长):280nmEM (发射波长):340nmEX 扫描范围:210nm ~330nmEM 扫描范围:290nm ~450nmEX 缝宽:2.5nm ,EM 缝宽:2.5nm扫描速度:240nm/minPMT 电压:700V3、 激发光谱和发射光谱的绘制:先固定激发波长为280nm ,在290~450nm 测定荧光强度,获得溶液的发射光谱,在343nm 附近为最大发射波长λem ;再固定发射波长为λem ,测定激发波长为200nm ~λem 时的荧光强度,获得溶液的激发光谱,在280nm 附近为最大激发波长λex 。
实验二.氨基酸的荧光激发、发射及同步荧光光谱的测量五.数据处理
1.用实验获得的数据绘制两种氨基酸的激发、发射、同步光谱图(如图3、4)。
2.从激发和发射光谱中找出最大激发波长和最大发射波长值,以及它们相对应的峰高。
在它们的同步荧光光谱中也确定最大波长和对应的峰高。
苯丙氨酸的荧光光谱图
苯丙氨酸扫描激发波长在214nm和285m两处出现最高峰,本实验选择214nm为最大激发波长。
此外,激发波长曲线在280-300nm处出现了一个十分完美的峰,此峰为倍频峰,非激发波长峰,我们通过同步扫描荧光光谱技术可以验证,如图,我们通过同步扫描荧光光谱技术获得的激发波长也在215nm,与之前基本吻合。
色氨酸的荧光光谱图
色氨酸扫描激发波长在217nm处有一个最大峰,所以激发波长为217,发射波长为361。
发射波长曲线在450-460nm处出现了一个十分完美的峰(在这张图上没显示出来),此峰为倍频峰,非激发波长峰,我们通过同步扫描荧光光谱技术可以验证。
六.讨论与思考
1.对待测溶液进行预扫描的有何作用?
从预扫描得到激发和发射波长的初步结果,根据我们得到的初步结果对仪器进行设置,然后对两种氨基酸溶液测量它们的荧光激发、发射和同步荧光光谱。
2.观察激发波长的整数倍处荧光发射光谱在有何特点?该波长是否适合于进行定量分析?
激发波长的整数倍处荧光发射光谱会出现以很强的峰,是倍频峰。
不适合定量分析。
3.同步荧光技术有哪些优点?比较激发、发射和同步荧光光谱中的峰值及对应波长,比较他们的不同,并解释原因。
同步荧光法能简化光谱,减少光谱重叠和散射的影响,提高对荧光性质相近化合物同时测定的选择性和灵敏度。
同步荧光法相对于激发光谱和发射光谱,
得到的峰比较窄,更明显。
同步荧光光谱不是荧光物质的激发光谱和发射光谱
的简单叠加。
在选合适的扫描波长差值的情况下,同时扫描激发光谱和发射光谱重叠波长处,才同时产生信号,
4.通过两种氨基酸的化学结构,是否可以不经试验判断其荧光强度的大小次序。
CH2CH
COOH
2
C
NH
CH2
CH
CHCOOH
NH2
苯丙氨酸色氨酸
从共轭角度看,体系的共轭度增强,荧光效率一般也将增大,并使荧光波长向长波方向移动。
共轭效应使荧光增强的原因,主要是由于增大荧光物质的摩尔吸光系数,π电子更容易被激发,产生更多的激发态分子,使荧光增强。
苯丙氨酸有4个共轭双键,而色氨酸有5个共轭双键,所以色氨酸荧光强度要高一些。
5.比较紫外分光光度法和荧光分析法的区别和各自的优缺点。
紫外分光光度法是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。
反映的是分子结构中发色基团和助色基团的特征,但是紫外分光光度法提供的信息量比较少,所以虽然可以提供化合物的骨架结构和验证某些发色基团和助色基团,但很难确定其基团位置。
利用某些物质被紫外光照射后由激发单重态(S
1)最低振动能级至基态(S
)
各振动能级的跃迁产生的荧光可以进行定性或定量分析的方法。