高中数学教学备课教案函数的定义域与值域
- 格式:docx
- 大小:36.94 KB
- 文档页数:3
诚西郊市崇武区沿街学校高一数学必修1函数的定义域和值域
教学目的
知识与技能
(1)继续理解函数的概念和记号以及域函数概念相关的定义域、函数值、值域的概念。
(2)掌握两个函数是同一函数的条件。
(3)会求简单函数的定义域和值域。
过程与方法
(1)通过对函数的概念的学习,初步探究客观世界中各种运动域数量间的互相依赖关系。
(2)使学生掌握求函数是=式的值得方法。
(3)培养批判思维才能、自我调控才能、交流与才能。
情感、态度与价值观
(1)懂得变化、联络、制约的辩证唯物主意观点。
(2)学会全面的观察、分析、研究问题。
重点难点
重点:符号“y=f(x)〞的含义。
难点:符号“y=f(x)〞的含义。
教法学法:讨论研究
教学用具:多媒体教学过程
板书设计
教学反思。
高中数学函数及定义域教案
目标:学生能够理解函数的概念并能够找到函数的定义域
教学内容:
1. 什么是函数?
2. 函数的定义域是什么?
3. 如何找到函数的定义域?
教学步骤:
一、导入新知识
通过举例让学生了解函数的概念,比如:y=x+3,y=2x^2+1
二、讲解函数的定义域
1. 函数的定义域是指输入的自变量的取值范围
2. 定义域可以是一个区间、多个区间的并集、整个实数集等
三、示例演练
1. 对于函数y=√x,问学生这个函数的定义域是什么?
2. 引导学生找到函数的定义域并解释
四、让学生自主找出函数的定义域
给学生几个函数的例子,让他们找出函数的定义域,然后在班级中分享答案五、总结回顾
总结函数的概念和定义域的含义,确保学生掌握了相关知识点
教学方法:
1. 讲解结合举例演示,使抽象的概念更具体化
2. 学生合作讨论,促进思维碰撞和知识分享
评估与作业:
1. 设计一些函数的定义域求解题让学生独立完成
2. 要求学生写一篇关于函数及其定义域的总结报告
拓展延伸:
引导学生探讨更多复杂函数的定义域求解方法,比如组合函数、复合函数等
以上就是本节课的教案,希望能够帮助学生更好地理解函数及其定义域的概念。
如果有任何问题或建议,请随时与我联系。
祝您教学愉快!。
函数的定义域与值域教学设计课题:函数的定义域和值域学科:数学授课教师: 数理19.4胡家华教材:高中必修1第一章第2节一、教学目标:1、知识目标:了解函数定义域和值域的定义,熟悉掌握简单函数定文域和值域的求法,会求抽象函数的定义域2、能力目标提高学生对函数工定义域、值域及相关问题的解题能力和运算能力,使学生准确而快速地求出函数定义域和值域3、情感目标通过由易到难的知识点层层递进和对各类题解题思路解法的不断运用掌握来提高学生的信心,二、教学重难点:求函数的定义域和值域,求抽象函数的定义域三、教学方法1.通过知识回顾引出新课,用学生熟悉的知识快速将学生的思绪从课间带回到课堂上来,同时也便于同学们更快的接受新知识,理解新概念。
2.通过提问和互动,使学生集中注意力,跟上老师的思路在思考和回答的过程中更好的理解和掌握新知识。
3.通过竞赛式随堂练习题,促进学生积极思考问题在解题的过程中不断巩固新知,并且让学生主动回答问题,加深同学的印象,同时提升学生的自信心。
四、教学过程1.知识回顾函数的概念:设A、B为非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A B为从集合A到集合B的一个函数记作:y=f(x),x∈A(其中X叫做函数的:自变量y叫做函数的函数值)2.新课引入定义域的概念:使函数有意义的自变量的取值范围,叫做函数的定义域。
值域的概念:函数值的集合,就叫做值域(明确“域”即集合,求函数的定义域值域时要表示成集合的形式)思考:上述函数y=f(x)的定义域是多少?f 那么值域呢?是否为B ?讨论得出,定义域为A ,值域不一定为B例: A B A C通过这个例子得出;f :A →B ,也可以表示成 : f :A →C即:函数:定义域 值域进而得出结论:(同时更好的理解定义域与值域的概率)函数的三要素:定义域、对应关系、值域俩个函数相等即:俩个函数的定义域相同,并且对应关系完全一致。
教学内容概要教学内容【知识精讲】一、函数的概念1、函数的定义:设A B 、是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。
记作:(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。
2、函数的三要素分别指函数的定义域、值域、对应法则;当两个函数的定义域、对应法则分别相同时,那么这两个函数是同一函数。
3、函数的表示方法一般有解析法、列表法、图像法当图像满足和,x a a R =∈的图像最多只有一个交点时才可作为函数图像。
分段函数:在用解析法表示函数的时候,往往在其定义域的不同子集上,因对应法则不同而用几个式子来表示的函数即分段函数。
分段函数是一个函数,而不是几个函数。
在解决问题过程中,要处理好整体与局部的关系。
4、函数的运算:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,设φ≠⋂=21D D D 把函数()()()D x x g x f ∈+叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的和函数 把函数()()()D x x g x f ∈叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的积函数 6、复合函数:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,若满足()1D x g ∈的x 的取值范围为E ,设φ≠⋂=2D E D ,把函数()()x g f y =叫做函数()()1D x x f y ∈=,()()2D x x g y ∈=的复合函数,x 是复合函数()()x g f y =的自变量,定义域为D ,()x g 叫做内函数,()x f 叫做外函数。
求函数定义域和值域学习目标:理解函数的概念,会求简单函数的定义域、值域,会根据所给条件求函数的解析式。
知识回顾:函数的定义;映射;定义域;值域;解析式; 一.关于函数:1.下列各项表示同一函数的是 ( )A.()112--=x x x f 与()1+=x x g B.()12-=x x f 与()1-=x x gC.()μμμ-+=11f 与()x x x g -+=11 D.()1=x f 与()x x x g ={}20≤≤=x x A ,{}21≤≤=y y B ,下列选项中表示A 到B 的函数是( )二.关于定义域: 1.求定义域:k 为何值时,函数12822++-=kx kx kx y 的定义域为R 。
(10<≤k )()()⎪⎭⎫ ⎝⎛+-+=411log 22x a ax x f 的定义域为R ,某某数a 的取值X 围。
()()[]31454ln 22+---+=x m x m m y 的定义域为R ,某某数m 的取值X 围。
三.关于值域。
方法1:利用函数图象此种方法适用于易画出所用函数的图象或其示意图,多用于基本初等函数的问题。
请看例题:ABCD[]222,x ,x x y -∈+-=的值域。
⎥⎦⎤⎢⎣⎡-∈=434ππ,x ,x sin y 的值域。
{}c b a ,,m in 表示c b a ,,三个数中的最小值,设{}()010,2,2)(≥-+=x x x x f x ,则)(x f 的最大值为( )A. 4B. 5C. 6D. 7方法2:利用函数单调性有些函数的单调性已知或容易判定,那么在求值域时,就可以利用函数单调性来求解。
那么,什么是利用函数单调性呢?有两层意思:(1)如果函数()x f 在区间D 上为增函数(减函数),且21x x <则有()()21x f x f <(或()()21x f x f >)(2)定义在[]b ,a 上的函数()x f 为增函数(减函数),且()()21x f x f <则b x x a ≤<≤21(或b x x a ≤<≤12)12-+=x x y 的值域。
函数的定义域和值域教案【教案】一、教学目标:1.了解函数的定义域和值域的概念;2.掌握求函数的定义域的方法;3.掌握求函数的值域的方法;4.能够应用所学知识解决实际问题。
二、教学内容:1.函数的定义域和值域的概念;2.求函数的定义域的方法;3.求函数的值域的方法;4.实际问题的应用。
三、教学过程:1.引入(1)复习巩固:复习一元一次方程和二元一次方程的求解方法。
(2)引入新知:通过实际问题引入函数的概念。
比如:某老师设置的体测项目中,小明的体重与身高呈正比关系,我们可以用函数的方式来表达这个关系。
2.教学展开(1)定义域- 介绍函数的定义域的概念:函数的定义域是指使函数有意义的自变量的取值集合。
- 通过例题讲解:比如给出函数f(x) = √(x + 2),问函数 f(x) 的定义域是什么?我们可以解方程x + 2 ≥ 0,得到x ≥ -2,所以函数的定义域为 [-2, +∞)。
(2)值域- 介绍函数的值域的概念:函数的值域是指因变量可能取到的值的集合。
- 通过例题讲解:比如给出函数 f(x) = x^2,问函数 f(x) 的值域是什么?我们可以通过计算函数的图像或者利用二次函数的性质知道,该函数的值域为[0, +∞)。
(3)求解定义域和值域的方法总结:- 定义域的求解方法:根据函数中涉及到的有限性、无理数和分式的限制条件,来确定定义域的范围。
- 值域的求解方法:根据函数的图像或者利用函数的性质来判断函数的取值范围。
3.实践应用通过实际问题的应用来巩固所学内容:(1)例题一:某物体下落的高度与时间的关系可以表示为函数 h(t) = 9.8t^2/2,其中 t 为时间,单位为秒。
请问该函数的定义域和值域分别是什么?- 解答:根据物理知识,时间 t 为正值,所以函数的定义域为 [0,+∞);而高度 h(t) 不会是负值,所以函数的值域为[0, +∞)。
(2)例题二:某商品的销售价格与销售数量的关系可以表示为函数 p(x) = 100 - 2x,其中 x 为销售数量,单位为件。
高中数学人教版《函数的定义域与值域》教案2023版一、教学目标通过本节课的学习,学生应能够:1. 理解函数的定义域和值域的概念;2. 掌握求解函数的定义域和值域的方法;3. 运用所学知识解决相关问题。
二、教学重点与难点1. 教学重点:函数的定义域和值域的概念及求解方法;2. 教学难点:应用所学知识解决相关问题。
三、教学过程1. 导入新课通过提问引入函数的定义域和值域的概念,为引出本课的教学内容做铺垫。
2. 概念讲解(1)函数的定义域定义域是指函数中自变量可以取值的范围。
根据函数的定义和实际问题,确定自变量取值范围时需要考虑以下几点:- 函数中是否包含分母为零的情况;- 若函数存在根式,要求根式内的式子必须为非负数。
(2)函数的值域值域是指函数的所有可能取值所组成的集合。
要确定函数的值域,一般需要进行以下步骤:- 分析函数的性质,判断函数是增函数还是减函数;- 确定函数的最大值和最小值。
3. 求解示范通过具体的例题,讲解如何求解函数的定义域和值域。
引导学生理解求解过程,并解释每一步的原因和依据。
4. 深化训练组织学生进行一些练习,注重培养学生独立解决问题的能力。
根据学生的解答情况,及时给予指导和反馈。
5. 拓展应用提供一些拓展应用题,让学生将所学知识应用到实际问题中。
鼓励学生思考、分析和解决问题的能力,培养学生的数学建模能力。
6. 归纳总结通过学生讨论、总结,归纳总结本节课的内容,并梳理相关的思维导图或概念框架,帮助学生将知识点整合,加深记忆。
四、课堂小结本节课主要介绍了函数的定义域和值域的概念,并讲解了求解函数定义域和值域的方法。
通过练习与应用,帮助学生巩固所学知识。
五、作业布置1. 完成课后习题;2. 思考并解答一道与函数的定义域和值域相关的问题。
六、教学反思本节课的教学内容与学生的预期目标相符,通过多种教学方法的运用,调动了学生的学习积极性。
在示范求解步骤和培养学生解决实际问题的能力方面,可能还需要进一步加强。
一. 教学内容:求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 学习目标1、进一步理解函数的定义域与值域的概念;2、会应用代换、方程思想求简单的函数解析式;3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值;4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用;5、会求实际问题中的函数解析式、定义域、值域和最值问题;6、会用集合、区间或不等式表示函数的定义域和值域。
三. 知识要点(一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g (x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B 的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结;(四)求函数的最值1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(x o)=M,则称当x=x o时f (x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N;2、求函数的最值问题可以化归为求函数的值域问题;3、闭区间的连续函数必有最值。
函数的定义域和值域教案模板【前导部分】(引入概念,简述重要性)函数的定义域和值域是数学中非常重要的概念。
函数的定义域指的是自变量的取值范围,而值域指的是函数在定义域内能够取到的所有函数值。
了解一个函数的定义域和值域,有助于我们理解函数的性质和应用,能够更好地解决与函数相关的问题。
【正文部分】一、定义域的概念及判定方法在介绍函数的定义域之前,我们先回顾一下函数的定义。
函数是一种将一个集合中的元素与另一个集合中的元素建立起对应关系的规则。
在函数的定义中,自变量是我们输入的元素,而函数值则是和输入元素对应的输出。
1. 定义域的概念函数的定义域是指在这个函数中,自变量可以取哪些值。
在数学中,我们通常用一组数的集合来表示定义域。
2. 判定定义域的方法a. 对于代数式函数,我们需要注意函数中是否存在某些禁止的运算,例如分母为零的情况,以及根号内是负数的情况;b. 对于分段函数,我们则需要考虑每一段函数的定义域,并求取它们的交集。
二、值域的概念及判定方法1. 值域的概念函数的值域是函数在定义域内可以取到的所有函数值所组成的集合。
换句话说,值域是函数在纵坐标上的投影。
2. 判定值域的方法针对不同类型的函数,我们有不同的方法来判定其值域:a. 对于线性函数,我们可以通过函数的斜率来判断值域的范围;b. 对于二次函数,我们可以观察其开口方向和顶点坐标,从而确定值域的区间;c. 对于三角函数,我们则需要根据其周期性、奇偶性等特点来判定值域;d. 对于指数函数和对数函数,我们需要注意底数和对数的取值范围等条件。
【拓展应用】函数的定义域和值域不仅仅在数学中有重要的应用,也在其他学科中发挥着重要的作用。
1. 物理学中的应用在物理学中,我们经常需要建立各种物理量之间的函数关系。
函数的定义域和值域在解决物理问题时能够帮助我们确定物理量的取值范围、判断物理规律的适用范围等。
2. 经济学中的应用在经济学中,函数的定义域和值域能够帮助我们确定经济模型中各个变量的取值范围,理解经济规律的限制条件,以及进行经济政策的制定和分析。
海豚教育个性化教案 (内部资料,存档保存,不得外泄)海豚教育个性化教案编号:函数的定义域和值域一、知识回顾1、函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量, 叫做函数的定义域;与x 的值对应的y 值叫做函数值, 叫做函数的值域.2、确定函数定义域的常见方法:(1)分式的 ; (2)偶次方根的 ;(3)零指数幂和负数指数幂的 ;(4)对数式的真数 ,底数 ;(5)正切函数 ;(6)实际问题 。
3、求函数值域的常见方法:(1)直接法——利用常见基本初等函数的值域:①)0(≠+=k b kx y 的值域 ②)0(≠=k xk y 的值域 ③c bx ax y ++=2的值域:0>a 时为 ; 0>a 时为 。
④x a y =的值域 ⑤x y a log =的值域⑥x y sin =,x y cos =的值域是 ⑦x y tan =的值域是(2)配方法——转化为二次函数,配成完全平方式.(3)换元法——通过变量代换转化为能求值域的函数,化归思想(4)分离常数法——适用于型如:dcx b ax y ++=的函数 (5)判别式法——适用于型如:p nx mx c bx ax y ++++=222的函数 (6)不等式法:借助于基本不等式ab b a 2≥+(a>0,b>0)求函数的值域.用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”.(7)单调性法:首先确定函数的定义域,然后再根据其单调性求函数的值域。
常用到函数)0(>+=k x k x y 的单调性: 增区间为(-∞,- k ]和[k ,+∞),减区间为(-k ,0)和(0,k ).二、例题变式例1、求下列函数的定义域:(1)43--=x x y (2)1lg 4x y x -=- (3)6522+--=x x x y (4) )13lg(132++-=x xx y变式1、求下列函数的定义域:(1)x xy 513-=(2)y = (3)y =(4)y =例2、已知等腰三角形的周长为17,写出它的底边长y 与腰长x 之间的函数关系式?并指出函数的定义域。
函數的定義域與值域 【學習目標】1. 掌握求常規函數的定義域與值域的方法。
2. 瞭解特殊情形下的函數的定義域與值域的求法。
3. 以極度的熱情投入學習,體會成功的快樂。
【學習重點】基本初等函數的定義域與值域的求法。
【學習難點】複合函數的定義域與值域的求法。
[自主學習] 一、定義域:1.函數的定義域就是使函數式 的集合. 2.常見的三種題型確定定義域:① 已知函數的解析式,就是 .② 複合函數f [g(x )]的有關定義域,就要保證內函數g(x )的 域是外函數f (x )的 域. ③實際應用問題的定義域,就是要使得 有意義的引數的取值集合. 二、值域:1.函數y =f (x )中,與引數x 的值 的集合.2.常見函數的值域求法,常用的方法有:①觀察法;②配方法;③反函數法;④不等式法;⑤單調性法;⑥數形法;⑦判別式法;⑧有界性法;⑨換元法 例如:① 形如y =221x +,可採用 法;② y =)32(2312-≠++x x x ,可採用 法或法;③ y =a [f (x )]2+bf (x )+c ,可採用 法;④ y =x -x -1,可採用 法;⑤ y =x -21x -,可採用 法;⑥ y =xx cos 2sin -可採用 法等.[典型例析](A )例1. 求下列函數的定義域:(1)y=xx x -+||)1(0; (2)y=232531x x -+-; (3)y=1·1-+x x變式訓練1:求下列函數的定義域: (1)y=212)2lg(x x x -+-+(x-1)0 ;(2)y=)34lg(2+x x +(5x-4)0; (3)y=225x -+lgcosx;( B)例2. 設函數y=f(x)的定義域為[0,1],求下列函數的定義域. (1)y=f(3x); (2)y=f(x1); (3)y=f()31()31-++x f x ; (4)y=f(x+a)+f(x-a).小結:(B)例3. 求下列函數的值域:(1)y=;122+--x x xx (2)y=x-x 21-; (3)y=1e 1e +-x x .(4)y=521+-x x; (5)y=|x|21x -.小結:(C)例4已知函數f(x)=x2-4ax+2a+6 (x∈R).(1)求函數的值域為[0,+∞)時的a的值;(2)若函數的值均為非負值,求函數f(a)=2-a|a+3|的值域.[當堂檢測]1.若函數)(x f y =的定義域為[-1,1],求函數)41(+=x f y )41(-⋅x f 的定義域__________。
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
高一数学函数的概念与性质的优秀教案范本一、教学目标1. 理解函数的定义及其相关概念。
2. 掌握函数的性质,包括定义域、值域、单调性等。
3. 能够应用函数的性质解决实际问题。
4. 培养学生的数学思维和解决问题的能力。
二、教学重难点1. 函数的定义及相关概念的理解与运用。
2. 函数性质的整体把握及灵活应用。
三、教学准备1. 教师准备:教案、白板、彩色粉笔、课件等。
2. 学生准备:教材、笔记、习题等。
四、教学过程【导入】1. 通过展示一个某商品的价格与着装人数的关系图,引导学生思考这两种量的关系如何表示。
2. 引导学生回忆什么是映射,然后引入函数的概念。
【概念讲解】1. 函数的定义:函数是一个集合,它把一个集合中的每个元素都对应到另一个集合中的唯一元素上。
2. 函数的符号表示:y = f(x),其中 y 是函数值,x 是自变量。
3. 自变量和因变量的概念解析。
4. 定义域和值域的概念及意义。
【性质讲解】1. 单调性:定义以及单调递增和单调递减的概念。
2. 奇偶性:定义以及奇函数和偶函数的概念。
3. 周期性:定义以及周期函数的概念。
4. 映射图和函数图像的关系。
5. 函数的有界性。
6. 线性函数、二次函数、指数函数和对数函数等特殊函数的性质介绍。
【例题演练】1. 针对不同的函数性质,设计一些例题进行演练,以巩固学生对函数性质的理解与掌握。
2. 着重培养学生运用性质解决实际问题的能力。
【拓展应用】1. 设计一些拓展问题,让学生能够在新的情境中应用所学的函数性质解决问题。
2. 鼓励学生自行思考、探索,并与同学分享自己的思路和方法。
【归纳总结】1. 学生归纳总结函数的定义及其性质。
2. 教师对学生的总结进行点评和补充。
【学生练习】1. 让学生完成课堂练习题,巩固所学的概念与性质。
2. 对学生的答题进行批改和讲解。
五、课堂小结本节课我们学习了函数的基本概念和性质,包括定义域、值域、单调性等。
通过运用所学的知识解决实际问题,培养了学生的数学思维和解决问题的能力。
函数的概念函数的定义:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函数y=f(x)的值域.对函数概念的理解需注意以下几点:①函数首先是两个数集之间建立的对应,A 、B 都是非空数集,因此定义域(或值域)为空集的函数不存在。
②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的一一对应或多一对应③认真理解()x f y =的含义:()x f y =是一个整体,()x f y =并不表示f 与x 的乘积,它是一种符号,它可以是解析式,也可以是图像,也可以是表格④函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . 【例1】判断下列对应能否表示y 是x 的函数:(1)x y =;(2)x y =;(3)2x y =;(4)x y =2;(5)122=+x y ;(6)122=-x y 。
【练1】判断下列图象能表示函数图象的是( )(A)区间的概念和记号设a,b∈R ,且a<b.我们规定:①满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b];②满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b);③满足不等式a≤x<b 或a<x≤b的实数x的集合叫做半开半闭区间,分别表示为[a,b) ,(a,b].这里的实数a和b叫做相应区间的端点.在数轴上,这些区间都可以用一条以a和b为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点:定义名称符号数轴表示{x|a≤x≤b闭区间[a,b]}{x|a<x<b} 开区间(a,b){x|a≤x<b} 左闭右开区间[a,b]{x|a<x≤b} 左开右闭区间(a,b)这样实数集R也可用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为[a,+∞),(a,+∞),(- ∞,b],(- ∞,b). 注意:书写区间记号时:①有完整的区间外围记号(上述四者之一);②有两个区间端点,且左端点小于右端点;③两个端点之间用“,”隔开.④无穷大是一个符号,不是一个数⑤以“-∞”或“+∞”为区间一端时,这一端必须是小括号。
《函数的值域》教学设计一、三维目标:1、知识目标:(1)理解函数值域的定义,并用集合来表示;(2)常用函数值域,如给定区间二次函数、指数函数、对数函数、三角函数等;(3)掌握常用求函数值域的方法:配方法、换元法、基本不等式法、导数法.2、能力目标:通过小组合作、自主探究等多种学习方式进行复习,能灵活运用求值域的方法,迅速并熟练的求出函数值域.3、情感目标:发展学生的思维能力,激发学生学习数学的兴趣和积极性,实事求是的科学学习态度和勇于创新的精神.二、教学重、难点:教学重点:常用的求函数值域的方法.教学难点:能灵活运用求函数值域的方法来解决实际问题.三、教学过程:(一)让学生回答:121、{})(x f y y =表示的是函数y=f(x)的什么?2、什么是函数的值域,怎样表示它呢?那么求函数值域的方法有哪些呢? 为此我们今天来复习:函数的值域。
(二)让学生回答问题:高中阶段的几种重要函数的值域.1、一次函数y=kx+b (k ≠0) 值域是什么?2、 反比例函数(0)k y k x=≠的值域是什么?3、二次函数y=ax 2+bx+c(a ≠0)的值域是什么?4、指数函数y=a x (a>0,且a 0≠)的值域是什么?5、对数函数y=x a log (a>0,且a 0≠)的值域是什么?思考:求函数值域首先应该考虑什么?强调:函数的定义域.(三)师生共同解决预留的“师生互动”例题、习题:常用的求函数值域的方法对于一些比较简单的函数,其值域可通过观察得到。
例1.已知函数f(x)=2x -3, x ∈{0,1,2,3,5}, 求f(x)的值域练习1. 求函数y=x 1值域。
32. 求函数y=3-x 的值域。
方法一:对于一些比较简单的函数,其值域可通过观察得到(直接法)。
方法二归纳:形如 函数的值域:采用分式分离常数法(或解x 法即反函数法)练习:求下列函数y=325x 3+-x 的值域. 例3:求函数y=x 2+2x+5的值域。
龙文教育个性化辅导教案提纲学生:日期: 年月日第次时段:教学课题函数的定义域和值域----导学案教学目标考点分析1.掌握基本初等函数定义域和值域的求法,会求一些简单函数的定义域和值域.2.本节是函数部分的基础,以考查函数的定义域、值域为主,求函数定义域是高考的热点,而求函数值域是高考的难点.3.本部分在高考试题中的题型以选择、填空题为主,属于中、低档题目.教学重点掌握基本初等函数定义域和值域的求法,会求一些简单函数的定义域和值域. 教学难点掌握求函数值域的常用方法的技巧,弄清函数的值域和函数最值的关系教学方法观察法、图象探究法、分析法、讲练结合法,启发式教学法教学过程:一、常见基本初等函数的定义域1.分式函数中分母.2.偶次根式函数被开方式.3.一次函数、二次函数的定义域均为.4.y=ax(a>0且a≠1),y=sin x,y=cos x,定义域均为.5.y=log ax(a>0且a≠1)的定义域为.6.y=tan x的定义域为.7.实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.二、函数的值域1.在函数概念的三要素中,值域是由和所确定的,因此,在研究函数值域时,既要重视对应关系的作用,又要特别注意定义域对值域的制约作用.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是.(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为;当a<0时,值域为;(3)y=kx(k≠0)的值域是.(4)y=a x(a>0且a≠1)的值域为.(5)y=log a x(a>0且a≠1)的值域是.(6)y=sin x,y=cos x的值域是.(7)y=tan x的值域是.三、课堂基础练习1.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为( )A .{-1,0,3}B .{0,1,2,3}C .{y |-1≤y ≤3}D .{y |0≤y ≤3}2.(2011·广东高考)函数f (x )=11-x+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)3.函数y =1x 2+2的值域为 ( ) A .RB .{y |y ≥12}C .{y |y ≤12}D .{y |0<y ≤12} 4.(教材习题改编)函数f (x )=x -4|x |-5的定义域为________. 5.(教材习题改编)若x 有意义,则函数y =x 2+3x -5的值域是________.四、走近高考[例1] (2011·江西高考)若f (x )=1 12log (2x +1),则f (x )的定义域( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,0∪(0,+∞) D.⎝⎛⎭⎫-12,2 若本例中的函数变为f (x )=2x -1 12log (2x +1),试求f (x )的定义域. [例2] 求下列函数的值域,并指出函数有无最值.(1)y =1-x 21+x 2;(2)y =x +4x(x <0);(3)f(x)=x-1-2x.[例3](2011·湖南高考)已知函数f(x)=e x-1,g(x)=-x2+4x-3.若有f(a)=g(b),则b的取值范围为()A.[2-2,2+2] B.(2-2,2+2)C.[1,3]D.(1,3)五、高考模拟题1.(2011·台州一模)函数f(x)=x22-x-lg(x-1)的定义域是()A.(0,2)B.(1,2)C.(2,+∞) D.(-∞,1)2.(2012·烟台调研)已知函数f(x)的图象如图所示,则函数g(x)=log2f(x)的定义域是________.3.(2012·青田质检)若函数y=f(x)的定义域为[-3,5],则函数g(x)=f(x+1)+f(x-2)的定义域是( )A.[-2,3] B.[-1,3]C.[-1,4] D.[-3,5]4.(2012·青岛模拟)函数y=16-4x的值域是()A.[0,+∞) B.[0,4]C.[0,4) D.(0,4)5.(2012·杭州模拟)若函数y=f(x)的值域是[1,3],则函数F(x)=1-2f(x+3)的值域是( )A.[-5,-1] B.[-2,0]C.[-6,-2] D.[1,3]6.(2012·宁波模拟)在实数的原有运算中,我们定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.设函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2],则函数f(x)的值域为________.7.(2012·嘉兴模拟)已知函数f(x)=4|x|+2-1的定义域是[a,b](a,b∈Z),值域是[0,1],则满足条件的整数数对(a,b)共有________个.8.(2012·合肥模拟)若函数f(x)=2x2+2ax-a-1的定义域为R,则a的取值范围为________.9.(2012·温州模拟)函数f(x)=(a-2)x2+2(a-2)x-4的定义域为R,值域为(-∞,0],则实数a的取值范围是()A.(-∞,2)B.(-∞,-2)C.{-2} D.[-2,2]知识总结:1.函数的最值与值域的关系函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但只确定了函数的最大(小)值,未必能求出函数的值域.2.函数的值域是由其对应关系和定义域共同决定的.常用的求解方法有(1)基本不等式法,此时要注意其应用的条件;(2)配方法,主要适用于可化为二次函数的函数,此时要特别注意自变量的范围;(3)图象法,对于容易画出图形的函数最值问题可借助图象直观求出;(4)换元法,用换元法时一定要注意新变元的范围;(5)单调性法,要注意函数的单调性对函数最值的影响,特别是闭区间上的函数的最值问题;3. 求解定义域为R或值域为R的函数问题时,都是依据题意,对问题进行转化,转化为不等式恒成立问题进行解决,而解决不等式恒成立问题,一是利用判别式法,二是利用分离参数法,有时还可利用数形结合法.课后作业:一、选择题1.(2012·潍坊模拟)函数f(x)=log2(3x-1)的定义域为()A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)2.下列图形中可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数的图象是()3.(2012·茂名模拟)函数y=x(x-1)-lg 1x的定义域为()A.{x|x>0} B.{x|x≥1}C.{x|x≥1或x<0} D.{x|0<x≤1} 4.(2012·长沙模拟)下列函数中,值域是(0,+∞)的是()A.y=x2-2x+1 B.y=x+2x+1(x∈(0,+∞))C.y=1x2+2x+1(x∈N) D.y=1|x+1|5.函数y=2x-1的定义域是(-∞,1)∪[2,5),则其值域是()A .(-∞,0)∪⎝⎛⎦⎤12,2B .(-∞,2]C.⎝⎛⎭⎫-∞,12∪[2,+∞) D .(0,+∞) 二、填空题6.(2012·忻州模拟)函数y =log a (3x -2)(0<a <1)的定义域是________.7.函数y =x -x (x ≥0)的最大值为________.三、解答题8.求下列关于x 的函数的定义域和值域:(1)y =1-x -x ;(2)y =log 2(-x 2+2x );(3)x 0 1 2 3 4 5 y 2 3 4 5 6 79.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.10.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.学生对于本次课评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字: 教师评定: 1、上次作业评价: ○非常好 ○好 ○ 一般 ○ 需要优化2、上课情况评价: ○非常好 ○好 ○ 一般 ○ 需要优化教师签字:教务主任签字: ___________龙文教育教务处。
高中数学教案大班区域
课题:函数的概念与性质
教学目标:
1. 了解函数的定义和性质;
2. 能够判断一个关系是否为函数;
3. 能够求解简单函数的定义域、值域;
4. 能够利用函数的性质解决实际问题。
教学重点与难点:
重点:函数的定义和性质,函数的值域和定义域。
难点:函数的概念的理解和判断一个关系是否为函数。
教学准备:
1. 教科书、课件和板书;
2. 示意图、实例题;
3. 制作相关练习题。
教学过程:
一、导入(5分钟)
教师通过引入实际问题,引导学生认识函数的概念,引发学生的学习兴趣。
二、讲解函数的定义(15分钟)
1. 函数的定义;
2. 定义域和值域;
3. 判断一个关系是否为函数。
三、练习与讨论(20分钟)
1. 学生完成相关练习;
2. 学生相互交流与讨论。
四、总结(5分钟)
让学生总结今天学习到的知识点,并强调函数在实际生活中的应用。
五、作业布置(5分钟)
布置相关作业以巩固学生的学习成果。
教学反思:
通过本节课的教学,学生应该对函数的基本概念有一定的理解,能够判断一个关系是否为函数,能够求解函数的定义域和值域。
同时,通过实际问题的引入,增强了学生的学习兴趣,提高了学生的学习积极性和主动性。
高中数学教学备课教案函数的定义域与值域高中数学教学备课教案
函数的定义域与值域
介绍:
函数是数学中的重要概念,对于高中数学教学来说,理解函数的定
义域与值域是非常关键的。
本教案将围绕函数的定义域与值域展开,
旨在帮助学生深入理解函数的特性和应用。
一、函数的基本概念
1.1 函数的定义
函数是两个集合之间的对应关系,其中一个集合称为定义域,另一
个集合称为值域。
在数学中,我们常以字母f表示函数,用x表示定义域中的元素。
1.2 定义域的确定
定义域是函数中可以取得实际意义的自变量的取值范围。
它由函数
的解析式、图像、实际问题和常识共同确定。
1.3 值域的确定
值域是函数在定义域上所有可能的取值的集合。
通过函数的解析式、图像以及实际问题,我们可以较为准确地确定函数的值域。
二、定义域的常见类型
有理函数是指可以表示为两个多项式的比值的函数。
有理函数的定义域通常由其分母的零点确定。
2.2 幂函数及其定义域
幂函数是指以x为底数的指数函数,形如f(x) = x^a。
对于幂函数,定义域为实数集。
2.3 指数函数及其定义域
指数函数是以一个正实数为底的指数函数,形如f(x) = a^x。
对于指数函数,定义域为实数集。
2.4 对数函数及其定义域
对数函数是指以一个正实数为底的对数函数,形如f(x) = loga(x)。
对于对数函数,定义域为正实数集。
三、值域的常见类型
3.1 有界函数及其值域
有界函数是指在定义域上,函数的值上下都有限制的函数。
值域是一个有限的区间。
3.2 无界函数及其值域
无界函数是指函数在定义域上,函数的值没有上下限的函数。
值域为整个实数集。
单调递增函数是指在定义域上,随着自变量的增大,函数值也随之增大的函数。
值域为一个区间。
3.4 单调递减函数及其值域
单调递减函数是指在定义域上,随着自变量的增大,函数值反而减小的函数。
值域为一个区间。
结论:
通过本教案,我们对高中数学中函数的定义域和值域有了更深入的理解。
定义域是函数自变量的取值范围,它由函数的解析式、图像、实际问题和常识共同确定。
值域是函数在定义域上所有可能的取值的集合,通过函数的解析式、图像以及实际问题,我们可以较为准确地确定函数的值域。
理解函数的定义域与值域对于解题和应用问题具有重要意义,可帮助学生更好地掌握数学知识与能力。