口诀巧取不等式组的解集
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
数学学习顺口溜1、有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.【注】“大”减“小”是指绝对值的大小.2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变.(a-b)2n+1=-(b-a)2n+1,(a-b)2n=(b-a)2n6、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.7、完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.8、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.9、“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)10、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.11、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.12、一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.13、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.14、分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.15、最简根式的条件:最简根式三条件,幂指、根指号内不把分母含,(数)(数)要互质,幂指比根指小一点.16、特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y 为0,x 为0 在y 轴.17、象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.18、平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x 轴,纵坐标相等横不同;直线平行于y 轴,点的横坐标仍照旧.19、对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x 轴对称y 相反,y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号.20、自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.21、函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次2函数的解析式写成y=a(x+h)+k 的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.22、一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k 与b,作用之大莫小看,k 是斜率定夹角,b 与y 轴来相见,k 为正来右上斜,x 增减y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远.23、二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见,y 轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.24、反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k 为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.25、巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.26、三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30 度、45 度、60 度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.27、平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.28、梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.29、添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.30、圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.31、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.32、正多边形诀窍歌:份相等分割圆,n 值必须大于三,依次连接各分点,内接正n 边形在眼前.经过分点做切线,切线相交n 个点.n 个交点做顶点,外切正n 边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n 条对称轴都过圆心点,如果n 值为偶数,中心对称很方便.正n 边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n 个整,依此计算便简单.33、函数学习口决:正比例函数是直线,图象一定过原点,k 的正负是关键,决定直线的象限,负k 经过二四限,x 增大y 在减,上下平移k 不变,由引得到一次线,向上加b 向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正k 落在一三限,x 增大y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y 的顺序可交换.二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小y 轴看,△的符号最简便,x 轴上数交点,a、b 同号轴左边,抛物线平移 a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.34、实数定义域:实数讲究定义域,四项原则须注意。
巧用顺口溜熟记初中数学公式和规律有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
【注】“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b - a)2n+1(a -b)2n=(b - a)2n 平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
不等式组的口诀解法
(一)同大取大
如果两个不等式的解集都是大于某数时,那么不等式的解集就是大于大数
(二)同小取小
如果两个不等式的解集都是小于某数时,那么不等式组的解集就是小于小数
(三)大小小大中间找
如果不等式组中的一个不等式的解集是大于小数,另一个不等式的解集是小于大数,那么这个不等式组的解集就是小数与大数之间的部分
(四)大大小小找不到
如果不等式组中的一个不等式的解集是大于大数,另一个不等式的解集是小于小数,那么不等式组就是无解
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
巧用“口诀”法求不等式组中待定字母的值的范围一元一次不等式组是初中数学的一个重要内容,不过一元一次不等式组的解集的确定教材里只讲了用数轴来确定,这种方法对于不等式组中未出现待定字母时容易求解。
一旦不等式组中出现了待定字母,学生是感到束无手策的,本文举例说明如何用口诀法来求一元一次不等式组中待定字母的值。
一元一次不等式组解集是指不等式组中几个一元一次不等式解集的公共部分。
利用数轴来确定虽然直观,但也有不足之处,不过利用它我们能够得出下面“口诀”。
不等式组(a >b) 解集在数轴上的情况 不等式组的解集口诀 ① bx a x >> x >a 同大取大 ② bx a x << x <b 同小取小 ③ b x a x >< b <x <a 大小交叉中间找 ④ b x a x <> 无解(空集) 大小分离无处找例1:如果一元一次不等式组 ax x >>2的解集为2>x ,那么a 的取值范是( )。
A. 2>a B.2≥a C.2≤a D.2<a分析:此题中因为a 待定,所以利用数轴较为困难,但利用口诀法中的“同大取大”结合不等式的解集2>x ,易知b a b a b ab a2≤a ,故选C 。
例2:若不等式组 632≤++m x m x >有解,则m 的取值范围是 。
解:解不等式m x >2+得2-+m x >解不等式63≤+m x 得32m x -≤ 如果此时利用数轴则难以下手,但因为不等式组有解,结合口诀法中的“大小交叉中间找”,表明322m m --<,434<m ,3<m ,所以m 的取值范围是3<m 。
例3:如果不等式组 212++m x m x >>的解集为1->x ,那么m 的值是多少?分析:若212+≥+m m ,则1≥m ,又1->x ,所以结合口诀法中的“同大取大”,可得112-=+m ,解得m=-1,而m ≥1故舍去。
若2m+1<m+2,则m <1,又1->x ,所以利用口诀法中的“同大取大”得m+2=-1,解得m=-3,因m <1,所以符合条件。
第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。
4、解不等式:求不等式的解集的过程,叫做解不等式。
⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。
用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。
初中数学顺口溜01.有理数运算有理数加减,统称代数和。
同号取原号,绝对值相加。
异号相加减,先看绝对值,取大值符号,绝对值相减。
有理数乘除,同号得正号,异号是负号,绝对值乘除。
多数相乘除,偶负值是正,奇个负为负,绝对值乘除。
有理数乘方,正数任次方,结果都为正。
负数分奇偶,偶次方是正,奇次方得负。
02.归并同类项同类项必两相同,字母相同指数同。
同类归并依法那么,扎实代数大体功。
先求系数代数和,字母指数不改动。
03.添括号去括号法那么括号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
04.因式分解一提二套三分组,十字相乘法不俗。
四种方式假设不行,拆项添项再重组。
或可公式法求根,繁式适用换元试。
分解二次三项式,先用完全平方式,十字相乘是第二,求根分解要记住。
05.比和比例两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
别离互换内外项,比例变形叫更比。
同时互换内外项,相对原式叫倒比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
前项和比后项和,比值不变叫等比。
同式平方等异积,比例中项在那个地址。
商定变量成正比,积定变量是反比。
06.求比值四数是不是成比例,递增递减先排序。
两头积等中间积,四数必然成比例。
四式是不是成比例,升或降幂先排序。
两头积等中间积,四式一样成比例。
解比例式三求一,外项积等内项积。
07.实数概念域实数讲究概念域,四项原那么须注意。
负数不能开平方,分母为零无心义。
分数指数底数正,切记零无零次幂。
知足多个不等式,不等式组求解集。
08. 解一元一次不等式先去分母去括号,常量移项到右边。
注意移项更正负,整理归并同类项。
系数化1要注意,乘除负数变方向。
09.一元一次不等式组解集同大取大,同小取小。
大小小大取中间,大大小小是无解。
10.用公式法解一元二次方程第一化成一样式,确信参数a b c 。
运用求根判别式,有无实根便得知。
套用公式求实根,假设无实根要点题。
新初中数学方程与不等式之不等式与不等式组技巧及练习题附解析(2)一、选择题1.不等式组0321x a x -<⎧⎨-≤-⎩的整数解共有3个,则a 的取值范围是( ) A .45a <<B .45a <≤C .45a ≤<D .45a ≤≤【答案】B【解析】【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到a 的范围.【详解】 0321x a x -<⎧⎨-≤-⎩①②, 由①解得:x <a ,由②解得:x≥2,故不等式组的解集为2≤x <a ,由不等式组的整数解有3个,得到整数解为2,3,4,则a 的范围为4<a≤5.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.2.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.关于 x 的不等式组21231xx a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为()A.-2≤a<-1 B.-2<a≤-1 C.-3≤a<-2 D.-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:21231xx a-⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72,解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72,因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.已知方程组31331x y m x y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1 【答案】C【解析】【分析】 直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】解:31331x y m x y m+=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.5.不等式组360420x x +≥⎧⎨->⎩的所有整数解的和为( ) A .1B .1-C .2D .2-【答案】D【解析】【分析】求出不等式组的解集,再把所有整数解相加即可.【详解】360420x x +≥⎧⎨->⎩360x +≥解得2x ≥-420x ->解得2x >∴不等式组的解集为22x -≤<∴不等式组的所有整数解为2,1,0,1--∴不等式组的所有整数解之和为21012--++=-故答案为:D .【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.6.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .【答案】D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】 2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.7.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤< 【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.9.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】 根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.10.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限, ∴260{50x x ->-<, 解得:3<x <5.故选:A .【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.13.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.14.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.15.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.16.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.17.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.18.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A .a <﹣3B .﹣3<a <1C .a >﹣3D .a >1【答案】A【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P (1﹣a ,2a+6)在第四象限, ∴10260a a ->⎧⎨+<⎩解得a <﹣3.故选A .【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( ) A . B .C .D . 【答案】C【解析】【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235x x +≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.20.关于x 的不等式412x -≥-的正整数解有( ) A .0个 B .1个 C .3个D .4个 【答案】C【解析】【分析】先解不等式求出解集,根据解集即可确定答案.【详解】解不等式412x -≥-得3x ≤,∴该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.。
初中数学公式速记口诀1.有理数的加法运算:同号相加一边倒;异号相加”大”减”小”,符号跟着大的跑;绝对值相等”零”正好。
【注】”大”减”小”是指绝对值的大小。
2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
5.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n6.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
7.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
8.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
9.”代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)10.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
11.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
12.一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
13.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
14.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
不等式组解解口诀
不等式组的解集可以通过以下口诀来求解:
1.同大取大:如果两个不等式的解集都是大于某个数,那么解
集就是两个数中较大的那个。
2.同小取小:如果两个不等式的解集都是小于某个数,那么解
集就是两个数中较小的那个。
3.大小小大中间找:如果两个不等式的解集一个是大于某个数,
一个是小于某个数,那么解集就是两个数中间的数。
4.大大小小无处找:如果两个不等式的解集一个是大于某个数,
一个是小于某个数,且两个数的大小不确定,那么解集为空
集。
需要注意的是,这个口诀只适用于一元一次不等式组的求解。
如果不等式组中含有多个未知数,或者不等式组中含有分式、根式等复杂的表达式,需要使用其他的方法进行求解。
初中数学记忆口诀有什么数学的知识点繁多,怎么才能更好的记住呢?这个时候,口诀的好处就体现出来了。
它可以缩小记忆材料的绝对数量,加大信息浓度,增强趣味性,不但可减轻大脑负担,而且记得牢。
下面是小编给大家带来的初中数学记忆口诀,欢迎大家阅读参考,我们一起来看看吧!史上最全初中数学公式和规律口诀最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。
对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了。
一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
2022年暑假初升高数学第15讲:一元二次不等式的解法学习目标核心素养1.掌握不等式的解集及不等式组的解集.2.解绝对值不等式.(重点、难点)3.掌握一元二次不等式的解法.(重点)4.能根据“三个二次”之间的关系解决简单问题.(难点)1.通过数学抽象理解绝对值不等式.2.通过一元二次不等式的学习,培养数学运算素养.1.不等式的解集与不等式组的解集一般地,不等式的所有解组成的集合称为不等式的解集.对于由若干个不等式联立得到的不等式组来说,这些不等式的解集的交集称为不等式组的解集.2.绝对值不等式一般地,含有绝对值的不等式称为绝对值不等式.思考1:你能总结出若a>0,|x|>a与|x|<a的解集吗?提示:不等式|x|<a |x|>a解集{x|-a<x<a}{x|x>a或x<-a}3.一般地,如果实数a,b在数轴上对应的点分别为A,B,即A(a),B(b),则线段AB的长为AB=|a-b|,这就是数轴上两点之间的距离公式.数轴上线段AB的中点坐标公式为x=a+b 2.4.一元二次不等式的概念一般地,形如ax2+bx+c>0的不等式称为一元二次不等式,其中a,b,c 是常数,而且a≠0.5.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考2:不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.6.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考3:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.7.三个“二次”的关系设y=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac判别式Δ>0Δ=0Δ<0解不等式y>0或y<0的步骤求方程y=0的解有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根画函数y=ax2+bx+c(a>0)的图像思考4:若一元二次不等式ax 2+x -1>0的解集为R ,则实数a 应满足什么条件?提示:结合二次函数图像可知,若一元二次不等式ax 2+x -1>0的解集为R ,则⎩⎨⎧a >0,1+4a <0,解得a ∈∅,所以不存在a 使不等式ax 2+x -1>0的解集为R .1.不等式组⎩⎨⎧2x +1>0,3x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12≤x ≤23 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x ≤23 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <23D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x ≤232.不等式3x 2-2x +1>0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <1 C .∅ D .R3.不等式|x |-3<0的解集为________.4.不等式-3x 2+5x -4>0的解集为________.求不等式组的解集【例1】 不等式组⎩⎪⎨⎪⎧12x -1≤0,x +3>0的解集是( ) A .x >-3 B .-3≤x <2 C .-3<x ≤2 D .x ≤2一元一次不等式组解集的求解策略(1)一元一次不等式组的解集就是每个不等式解集的交集;(2)求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).1.解不等式组⎩⎪⎨⎪⎧2x +5>3x +2,x +43≤3x +34+1,并在数轴上表示该不等式组的解集.解绝对值不等式【例2】 不等式|5-4x |>9的解集为________.1.(变设问)不等式|5-4x |≤9的解集为________.2.(变设问)若不等式|kx -5|≤9的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤72,则实数k =________.1.|x |<a 与|x |>a 型不等式的解法不等式 a >0 a =0 a <0 |x |<a{x |-a <x <a }∅∅ |x |>a {x |x >a 或x <-a } {x |x ∈R 且x ≠0}R2.|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 (1)|ax +b |≤c ⇔-c ≤ax +b ≤c ; (2)|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .2.不等式2<|2x +3|≤4的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -72<x <-52或-12<x ≤12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -72<x <-52或-12<x <12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -72≤x <-52或-12<x ≤12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -72≤x ≤-52或-12<x ≤12一元二次不等式的解法【例3(1)2x 2+7x +3>0; (2)-4x 2+18x -814≥0; (3)-2x 2+3x -2<0.解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正.(2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.(3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根.(4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图.(5)写解集.根据图像写出不等式的解集.3.解下列不等式.(1)2x2-3x-2>0;(2)x2-4x+4>0;(3)-x2+2x-3<0;(4)-3x2+5x-2>0.含参数的一元二次不等式的解法2解含参数的一元二次不等式的一般步骤提醒:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并.4.解关于x的不等式:ax2-2≥2x-ax(a<0).三个“二次”的关系[1.利用函数y=x2-2x-3的图像说明当y>0、y<0、y=0时x的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?3.设一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|x<x1或x>x2},{x|x1<x<x2}(x1<x2),则x1+x2,x1x2为何值?【例5】已知关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},求关于x 的不等式cx2+bx+a<0的解集.1.(变结论)本例中的条件不变,求关于x的不等式cx2-bx+a>0的解集.2.(变条件)若将本例中的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤2.求不等式cx 2+bx +a <0的解集.已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循:(1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式; (3)约去 a , 将不等式化为具体的一元二次不等式求解.1.不等式(组)的解集要写成集合形式,不等式组的解集是每个不等式解集的交集.2.解绝对值不等式的关键就是去掉绝对值,利用绝对值不等式的几何意义求解,体现了数形结合的思想.3.解一元二次不等式的常见方法(1)图像法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c图像的简图;③由图像得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得{x|x>n或x<m};若(x-m)(x-n)<0,则可得{x|m<x<n}.有口诀如下:大于取两边,小于取中间.4.含参数的一元二次型的不等式在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).(3)关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.5.由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.1.思考辨析(1)mx2-5x<0是一元二次不等式.()(2)若a>0,则一元二次不等式ax2+1>0无解.()(3)若一元二次方程ax2+bx+c=0的两根为x1,x2(x1<x2),则一元二次不等式ax2+bx+c<0的解集为{x|x1<x<x2}.()(4)若|x|>c的解集为R,则c≤0.()2.已知数轴上A(3),B(-5),则线段AB中点M的坐标为________.3.如果1x<2和|x|>13同时成立,那么x的取值范围是________.4.解下列不等式:(1)x(7-x)≥12;(2)x2>2(x-1).第11 页共11 页。
初中数学记忆顺口溜大全1、有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.【注】“大”减“小”是指绝对值的大小.2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变.(a-b)2n+1=-(b-a)2n+1,(a-b)2n=(b-a)2n6、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.7、完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.8、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.9、“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)10、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.11、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.12、一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.13、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.14、分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.15、最简根式的条件:最简根式三条件,幂指、根指号内不把分母含,(数)(数)要互质,幂指比根指小一点.16、特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上 y 为 0,x 为0 在 y 轴.17、象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.18、平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行 x 轴,纵坐标相等横不同;直线平行于 y 轴,点的横坐标仍照旧.19、对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x 轴对称 y 相反,y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号.20、自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.21、函数图象的移动规律:若把一次函数解析式写成 y?k(x?0)?b,二次函数的解析式写成y?a(x?h)2?k的形式,则可用下面的口诀(此处符号编辑错误)左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.22、一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数 k 与 b,作用之大莫小看,k 是斜率定夹角,b 与 y 轴来相见,k 为正来右上斜,x 增减 y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远.23、二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与 y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见,y 轴作为参考线,左同右异中为 0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.24、反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k 为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.25、巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.26、三角函数的增减性:正增余减特殊三角函数值记忆:首先记住 30 度、45度、60 度的正弦值、余弦值的分母都是 2、正切、余切的分母都是 3,分子记口诀“123,321,三九二十七”既可.27、平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.28、梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.29、添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.30、圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.31、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.32、正多边形诀窍歌:份相等分割圆,n 值必须大于三,依次连接各分点,内接正 n 边形在眼前.经过分点做切线,切线相交 n 个点.n 个交点做顶点,外切正 n 边形便出现.正 n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果 n 值为偶数,中心对称很方便.正 n 边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形 2n 个整,依此计算便简单.33、函数学习口决:正比例函数是直线,图象一定过原点,k 的正负是关键,决定直线的象限,负 k 经过二四限,x 增大 y 在减,上下平移 k 不变,由引得到一次线,向上加 b 向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正 k 落在一三限,x 增大 y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y 的顺序可交换.二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小 y 轴看,△的符号最简便,x 轴上数交点,a、b 同号轴左边,抛物线平移 a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.34、实数定义域:实数讲究定义域,四项原则须注意。
关于求不等式组整数解个数的字母取值范围题巧解
(朝阳市13中学------陈玉明)
X + 2﹥3 ①
例题:已知不等式组有5个整数解,求a的取值范围。
X﹣a﹤1 ②
解:解不等式1得:x﹥1
解不等式2得:x﹤1+a
所以不等式组的解集为:1﹤x﹤1+a
又因为此不等式组有5个整数解即为2.3.4.5.6
所以6﹤1+a﹤7 解得5﹤a≤6
若x-a﹤1改为x﹣a≤1.其它条件不变所以6≤1+a﹤7 则解集变为5≤1+a﹤6
变式:X + 2<3 ①
例题:已知不等式组有5个整数解,求a的取值范围。
X﹣a>1 ②
解:解不等式1得:x<1
解不等式2得:x﹥1+a
所以不等式组的解集为:1+a≤x﹤1
又因为此不等式组有5个整数解即为0.﹣1.-2.-3.-4。
所以-5≤1+a﹤-4 解得-6≤a﹤-5
若x-a﹥1改为x﹣a≥1.其它条件不变
则解集变为-5﹤1+a≤-4 解得-6﹤a≤-5
规律总结:含有字母不等式解集,主要看最值或者说是边值距离原点远近来判断。
若原不等式解集含字母那端是用‘﹥’或‘﹤’是链接,则最后解集远实近空。
若原不等式解集含字母那端是用‘≤’或‘≥’是链接,则最后解集远空近实。
(空心-实心)。
“顺口溜+手语”突破教学难点
顺口溜是民间广为流传的、深受人们喜爱的一种语言表达形式。
顺口溜的特点是顺口简洁、巧妙有趣、方便记忆,十分适合学生的学习心理特点。
在教学中,结合教学内容巧妙地运用顺口溜,能够帮助学生速记过程、掌握方法、化难为易,激发学生学习绘图的兴趣、增强记忆效果。
在学习人教版数学七年级下册第九章第三节一元一次不等式组的时候,学生对于四种不等式组的解集总是混淆,为了帮助学生理解与记忆,我在“顺口溜+手语”的帮助下,学生牢牢记住了四种解集。
具体如下图解
在多年的教学中,我善于挖掘教材,能与学生研讨,并共同总结,用简单的语言
编写顺口溜,或者加上手语,或者变出小短剧。
在教学中如何发现、编辑和应用更多更好的顺口溜和肢体语言,还需进一步研究和探索。
只要我们不断尝试,一定能编出更多更恰好的顺口溜以及肢体语言,为我们的教学锦上添花。
口袂巧取泊著式殂的解集口诀巧取耒写式组的解集在教禽北师衣版八耳怨千册一无一决亲菁式(创的时候,禽唆在修习禾菁式位的解注莉解集后,我戒观禽或在求解这个泊著式殂的解集时相省费时间,而虫也客易出错。
因签要疝出这个耒著爼的解集,传俛的解法是:屯通过让修唆屯在赦抽上把耒菁式组屮各个耒著式的解集素斥出来,而虫毎一个解集都足要疫过“三更【更界止、定空实皿,定方向,銘后再找出各个解集的公#奮今。
传疣的这个方法的优势是衫彖具俸,耒足这处在扌, 農敖柚上乗斥各个耒菁式的解集殊纟耗时间、占空间,签了探补这一耒足,帮助修望节省时间,農禽或做了衣蜃的朮解一无一决亲菁式殂的解集后,我和禽唆对蜃各个解集一起总猪出了一耆耒用画赦轴也滋快速取创耒菁式解集的口茯,简闕易祀,朗朗/口。
亲菁式爼解集的口侯取法,同衣取衣,同小取小,丈小小丈取屮,女丈小小取空。
(囁提;一个舍帘鬲个亲菁式的一无一决亲菁式狙屮的鬲个耒著式最后畅己證变咸最简形式,即己疫朮出各囱的解四句的佥丈解轉禺下(用x素斥杀応赦,虫破a>b丿:(1)同丈取丈“同衣取V屮的“同弋'就是画个亲写式同是衣于号“〉S “取就是取鬲个報彳辍衣者作签眾菁式狙的解集即也皋原眾著式触最后祀參:{x> a{x> bA a. b当申取木的那一个,即艮菁式徂的解集是,"x >a(2丿同小取小“同小取月严屮的“同小"就是画个亲写式同是小扌号“V”,“取小”就是取鬲个赦申載小者作鬲耒著式組的解集{xv a{xv b即直案原眾著式組最后祀為;A a. b省申取小的那一个,即耒菁式爼的解集是/ x v b(3丿丈小小女取屮女小小共取彳间''屮,“女4'彳的“女''是犒第一个耒尊式是“女孑”(>)号,“小”犒第一个耒尊式是右边是鬲个做彳辍“缶”的一个(b八同瞬,“缶丈”屮的“缶”是犒第二个艮著式是“小于” (V) 号,“木”犒第二个耒著式的右边是鬲个赦申裟“女"的一个(a丿•矗皋是这甯的槁况,原艮菁式触的解集是鬲个赦a、b之间的部今即也皋原眾著式触最后化為,{x> b而a>b,则眾菁式組的解集是'b v x v a(4)丈女缶小取空屁皋耒等式值屮一个泊著式的解集是丈孑女赦,另一个泊著式的解集是缶孑小赦,那么这个泊著式狙的解集是空集,就是没帝解集,无解。
口诀巧取不等式组的解集
口诀巧取不等式组的解集
在教学北师大版八年级下册一元一次不等式(组)的时候,学生在学习不等式组的解法和解集后,我发现学生在求解这个不等式组的解集时相当费时间,而且也容易出错。
因为要求出这个不等组的解集,传统的解法是:先通过让学生先在数轴上把不等式组中各个不等式的解集表示出来,而且每一个解集都是要经过“三定”:定界点、定空实心,定方向,然后再找出各个解集的公共部分。
传统的这个方法的优势是形象具体,不足这处在于,在数轴上表示各个不等式的解集非常耗时间、占空间,为了弥补这一不足,帮助学生节省时间,在学生做了大量的求解一元一次不等式组的解集后,我和学生对照各个解集一起总结出了一首不用画数轴也能快速取到不等式解集的口诀,简明易记,朗朗上口。
不等式组解集的口诀取法:同大取大,同小取小,大小小大取中,大大小小取空。
(前提:一个含有两个不等式的一元一次不等式组中的两个不等式最后均已经变成最简形式,即已经求出各自的解集)
四句的含义解释如下(用x表示未知数,且设a>b):
(1)同大取大
“同大取大”中的“同大”就是两个不等式同是大于号“>”,“取
大”就是取两个数中较大者作为不等式组的解集
即如果原不等式组最后化为:
{x>a
{x>b
在a、b当中取大的那一个,即不等式组的解集是:x>a (2)同小取小
“同小取小”中的“同小”就是两个不等式同是小于号“<”,“取小”就是取两个数中较小者作为不等式组的解集
{x<a
{x<b
即如果原不等式组最后化为:
在a、b当中取小的那一个,即不等式组的解集是:x<b (3)大小小大取中
大小小大取中间”中,“大小”中的“大”是指第一个不等式是“大于”(>)号,“小”指第一个不等式是右边是两个数中较“小”的一个(b).同样,“小大”中的“小”是指第二个不等式是“小于”(<)号,“大”指第二个不等式的右边是两个数中较“大”的一个(a).如果是这样的情况,原不等式组的解集是两个数a、b 之间的部分
即如果原不等式组最后化为:
{x>b
{x<a
而a>b,则不等式组的解集是:b<x<a
(4)大大小小取空
如果不等式组中一个不等式的解集是大于大数,另一个不等式的解集是小于小数,那么这个不等式组的解集是空集,就是没有解集,无解。
“大大”中第一个“大”是指第一个不等式是“大于”(>)号,后一个“大”指第一个不等式是右边是两个数中较“大”的一个(a).同样,”,“小小”中的第一个“小”是指第二个不等式是“小于”(<)号,后一个“小”指第二个不等式的右边是两个数中较“小”的一个(b).如果是这样的情况,原不等式组就没有解,是空集。
即如果原不等式组最后化为:
{x>a
上而a>b,无解。