2019_2020学年新教材高中数学第10章概率单元质量测评新人教A版必修第二册
- 格式:doc
- 大小:209.00 KB
- 文档页数:11
章末综合检测(十)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;2xx”是不可能事件;②“当≤为某一实数时,可使0 ③“明天天津市要下雨”是必然事件;个全是次品”是随机事件.个,5个次品)中取出5④“从100个灯泡(含有10) ( 其中正确命题的个数是1 .B .0 A3.DC.2C.①④正确.解析:选个,从中任取123个、白球个、黑球2.(2019·黑龙江省大庆中学月考)袋中装有红球)2个,则互斥而不对立的两个事件是(A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.至少有一个白球;红、黑球各一个 D.恰有一个白球;一个白球一个黑球个,逐一分析所给的23解析:选C.袋中装有红球个、白球2个、黑球1个,从中任取选项:在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立;BB中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故在不成立;中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是在C 成立;互斥而不对立的两个事件,故CD在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C.不成立;故选种花种在一个花坛中,余下的2.为美化环境,从红、黄、白、紫34种颜色的花中任选)2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(11 A. B.2352 C.D. 63.解析:选C.从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古42典概型的概率计算公式,所求的概率为=.故选C.63cm)分别为(单位: 4.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm之间的概率约为( )21B. A. 2512D.C. 33解析:选A.从已知数据可以看出,在随机抽取的20位学生中,身高在155.5~170.5cm2之间的有8人,其频率为,故可估计在该校高二年级的所有学生中任抽取一人,其身高在52155.5~170.5cm之间的概率约为.55.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则他们都中靶的概率是( )33B. A.451412D.C. 252547解析:选D.由题意知甲中靶的概率为,乙中靶的概率为,两人打靶相互独立,同时中5104714靶的概率为×=.510256.一个笼子里有3只白兔,2只灰兔,现让它们一一跑出笼子,假设每一只跑出笼子的概率相同,则先跑出笼子的两只兔子中一只是白兔,另一只是灰兔的概率是( )34B. A. 5532D. C.43Abbbhh,则所有可能的情况有只灰兔分别为,,,解析:选2.设3只白兔分别为,22311bhbhbhbhbhbhhbhbhb),,,,,)(),,)((,,)((,,)(,,)(,,)(,,)(,211121122132311221hbhbhbbbbbbbbbbbbb,,,,,,,,,,,,,,,,,,()()()()()()()()()231332123121323122.hhhh种,其中符合一只是白兔,另一只是灰兔的情况有),共2012(,),(,种,1122312.=所以所求概率为520NN) ,则对数.任取一个三位正整数( log是一个正整数的概率是7231 A.B.89922511 D.C. 45030078logNN有2,为正整数的999,共900个,而满足2,~解析:选C.三位正整数有1002319=个,故所求事件的概率为. ,共23900300A,“骰子向上8.抛掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件BAB中至少有一件发生的概率是( ,的点数为奇数”为事件,则事件)51B.A. 21237D. C. 4121111--PAPBPAPBAB中至少有一件发生的概率为,)=()=,D.解析:选.(()=,(1)=,2222113--PAPB)=1-×)·=(,故选D.-(2249.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( )12B. A. 5511D. C. 86ABCDEF的6个顶点中随机选择4个顶点,共有15种选法,解析:选B.如图,在正六边形ABEFBCDEABCFCDEFABCDADEF,共6,,,种情况,故构成,其中构成的四边形是梯形的有,62的四边形是梯形的概率为=.1551ABABBA不发和,都不发生的概率为发生发生不发生的概率与10.设两个独立事件9APA)( 是)(发生的概率生的概率相同,则事件.21 B.A.18921D. C. 33--AABBPP,)=()解析:选D.由 (--APPBPAPB (,)())(()得=ABPAPPBP )[1-)](()]=,即(()[1-BAPP )=)(所以.(1--BAP,()又=91--BPPA.(=则=())32AP.)(=所以3A)的概.如果从不包括大、小王的一堆扑克牌中随机抽取一张,那么取到红心牌(事件1111BCD)事件的概率和取到黑色牌,则取到红色牌(事件(,取到方片牌率为(事件))的概率是43的概率分别是( )7557,A.B. ,121212121132D., C.,4322CABABABPCPA)(不会同时发生,即(,解析:选A.因为)=+是互斥事件,,且所以,=117PB)=+(=.+4312CDCD是必然事件,+是互斥事件,且又,75CDPDPC)=1-=1-所以=,(互为对立事件,则.()121212.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )13 A.B. 101093C.D. 510aaabb.从3,个红球分别为个红球、,2,,2个白球分别为个白球解析:选D.记321312aaaaabaabaaba,(,),,,),(,,,),个,则所包含的结果有中任取3(,(,),(1221131211213abaabaababbabbabb个.由10,(),,,(),,,(),,,)(,,,)(,,,,共)21321221123213223.于每个结果发生的机会均等,因此这些结果的发生是等可能的.-AA表示“所取的3个白球”,则其对立事件个球中表示“所取的3个球中至少有1用-Aaaa).个:(,,没有白球”,则事件包含的结果有13121-PA)=(所以.1019-PAPA)=1(-故=(-)=1.1010二、填空题:本题共4小题,每小题5分.AB两枚均匀的小立方体(立方体的每个面上分别标有数字1,213.小莉与小明一起用,,AxB立方体朝上的数字为玩游戏,以小莉掷的,小明掷的立方体朝上的数字为43,,5,6)2xyxPxyyPxy 上=-,4,来确定点)(,落在已知抛物线),那么他们各掷一次所确定的点+(的概率为________.xy)的情况有,36解析:根据题意,两人各掷立方体一次,每人都有6种可能性,则(种,222yxxPyxx,易得在抛物线上的-2)+4=-(-2)+4,即即(点有36种可能,而=-=+413.33)共个,因此满足条件的概率为=,4),(1,3),(3,点有(212361 答案:12 14.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.乙,丙,),(,(甲,丙,乙),(乙,甲,丙解析:甲,乙,丙站成一排有(甲,乙,丙) 6种.),(丙,乙,甲),共)甲,(丙,甲,乙4,共,(丙,乙,甲)))甲,乙相邻而站有(甲,乙,丙,(乙,甲,丙),(丙,甲,乙种.24.所以甲,乙两人相邻而站的概率为=362 答案:3个球,至少得个的黑球、白球,若从袋中任意摸出2.袋中含有大小相同的总数为1559 .个白球的概率是,则从中任意摸出2个球,得到的都是白球的概率为________1到10个球,解析:因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出21xx,那么,可10种情况,没有得到白球的概率为,设白球个数为,则黑球个数为5-共有103.23知白球有个,黑球有个,因此可知从中任意摸出2个球,得到的都是白球的概率为10.3答案:1016.(2019·高考全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为____________.解析:依题意知,经停该站高铁列车所有车次的平均正点率的估计值为10×0.97+20×0.98+10×0.99=0.98.40答案:0.98三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400;(2)所得的三位数是偶数.解:1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.42P==,所以.(1)大于400的三位数的个数为463(2)三位数为偶数的有156,516,共2个,21P==所以相应的概率为.6318.(本小题满分12分)某社区举办《“环保我参与”有奖问答比赛》活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率311是,甲、丙两个家庭都回答错误的概率是,乙、丙两个家庭都回答正确的概率是.若各家4124庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.解:(1)记“甲回答正确这道题”“乙回答正确这道题”“丙回答正确这道题”分别为事3ABCPA)=,,,则件,(4--?1?CAPP,)·)=((12?且有1?CPPB?.(()·)=41?CAPP?,)[1-]()]·[1-=(12?即1?PBPC?)=()·(.4.32PBPC)=()=所以,(.83(2)有0个家庭回答正确的概率为1515------CBPCPAPPPAB.)=×(=()·)(=)·×(=039648 1个家庭回答正确的概率为有3511311527------CABCABCPPAB.=×+×=×(=)×+×+×+1324484834832157PPP.=-=所以不少于2个家庭回答正确这道题的概率为1=1---10322496质量监督局检测某种产品的三本小题满分12分)(2019·河北省枣强中学期末考试)(19.QzxyyxzQ≤5,则核定该产品为+,用综合指标核定该产品的等级.若个质量指标,=,+ 10一等品.现从一批该产品中,随机抽取件产品作为样本,其质量指标列表如下:产品编号A A A A A(1)利用上表提供的样本数据估计该批产品的一等品率;B为“在取出的2件产品,设事件件产品中,每件(2)在该样品的一等品中,随机抽取2QB的概率.≤4”,求事件产品的综合指标均满足Q,如下表:件产品的综合指标解:(1)计算10QAAAAAA共6,,,件,其中,≤5的有,10269416故该样本的一等品率为=0.6,10从而估计该批产品的一等品率为0.6.AAAAA,(,(),(2)在该样本的一等品中,随机抽取2件产品的所有可能结果为(,,)11214AAAAAAAAAAAAAAAAAA,()),,((,),(,,),(,,),(,),(,),(,),(,)46621104921991062424AAAAAAA)共15,,(种.,),( ),(,)1096610109QAAA,在该样本的一等品中,综合指标均满足的产品编号分别为≤4,,1019BAAAAAA种,3()()(则事件发生的所有可能结果为,,,,,共)10910191.13BP.=)所以=(515某研究机构为了了解各年龄层对高分)(2019·辽宁省凌源三校联考)20.(本小题满分12内的市民进行了调查,并将结果,45]考改革方案的关注程度,随机选取了200名年龄在[20,,35)[25,30),[30第一~五组区间分别为绘制成如图所示的频率分布直方图([20,25),45]).,40),[40,[3545]内的人数;(1)求选取的市民年龄在[40,人在座2,4组用分层随机抽样的方法选取5名市民进行座谈,再从中选取3(2)若从第 内的概率.谈会中做重点发言,求做重点发言的市民中至少有一人的年龄在[35,40)P 45]内的频率为,=0.02×5=0.1解:(1)由题意可知,年龄在[40,20.200×0.1=故年龄在[40,45]内的市民人数为 3∶2,4组人数都多于20,且频率之比为(2)易知,第3组的人数,第组中分45名参加座谈,应从第3,所以用分层随机抽样的方法在第3,4两组市民抽取 人.别抽取3人,2BAAAB ,,,,第4组的2名市民分别为记第3组的3名市民分别为,22311BABAAAAA ,,,)名中选取2名做重点发言的所有情况为(,,),((,)),(则从521111132BBBBABABAAAA ,种.,)),(,共有,(),),(,,),((,),(10221213132223BBAABABBAB ,,(,)2其中第4组的名,,(至少有一名被选中的有:,,(),),()2112121221BABBBA 种,(,共有,(7,,)(),,)2211337所以至少有一人的年龄在[35,40)内的概率为.10AB 是治疗同一种疾病的两种药,用若干试验组进行对比试验,,本小题满分12分)(21.AB ,然后观察疗效,若在一个试只服用只服用2,另每个试验组由4只小白鼠组成,其中2AB 有效的多,就称该试验组为甲类组,设每只小白验组中,服用有效的白鼠的只数比服用21AB 有效的概率为.有效的概率为鼠服用,服用32(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.AAiiB 2.10设解:(1)表示事件“一个试验组中,服用有效的小白鼠有只”,=,,ii1BiiPA )=(×0,1表示事件“一个试验组中,服用,有效的小白鼠有2.只”,据题意有:= 0311124224111111PAPAPBPB )=2××=,==×=,((. =,())=2××=,=(×) 1120393393392242221414144PPBAPBAPBA )=×+×)所求概率为+=+((×)+=(.220110494929934604????P -1.(2)所求概率=′=1- ??9729改革开放以来,人们的支付方式发生了巨大)本小题满分12分)(2019·高考北京卷.22(BA 两种移动支转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月,BA 两种人,发现样本中,付方式的使用情况,从全校所有的1 000名学生中随机抽取了100BA 和仅使用的学生的支付金额分布情况如下:支付方式都不使用的有5人,样本中仅使用支付金额元大于2 000不大于2 000元支付方式A人 3仅使用27人B24人仅使用人1AB两种支付方式都使用的人数;,(1)估计该校学生中上个月B的学生中随机抽取1人,求该学生上个月支付金额大于(2)从样本仅使用2 000元的概率;B的学生中随机抽(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学(2)的结果,能否认为样本仅使用人,发现他本月的支付金额大于2 000元.结合查1生中本月支付金额大于2 000元的人数有变化?说明理由.AB的学生有24+1人,仅使用3=30=由题知,样本中仅使用解:(1)25的学生有27+人,AB两种支付方式都不使用的学生有5人.,AB两种支付方式都使用的学生有100-30-25故样本中,-,5=40人.估计该校学生中40AB两种支付方式都使用的人数为1 000=上个月400. ,100CB的学生中随机抽取1为“从样本仅使用(2)记事件人,该学生上个月的支付金额大于1PC)==(0.04.2 000元”,则25EB的学生中随机抽查1人,该学生本月的支付金额大于(3)记事件为“从样本仅使用2000元”.B知,(2)元的人数没有变化,则由2 000的学生中,本月支付金额大于假设样本仅使用.PE)=0.04.(答案示例1:可以认为有变化.理由如下:PE)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金(额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:EPE)比较小,一般不容易发生,但还是有可能发生的.所以无法确事件是随机事件,(定有没有变化.。
课时素养评价三十九事件的关系和运算(15分钟30分)1.一个射手进行一次射击,事件A:命中环数大于8;事件B:命中环数大于5,则(A.A与B是互斥事件B.A与B是对立事件C.A⊆BD.A⊇B【解析】选C.事件A:命中环数大于8即命中9或10环;事件B:命中环数大于5即命中6或7或8或9或10环,故A⊆B.2.抽查10件产品,设“至少抽到2件次品”为事件A,则A的对立事件是(A.至多抽到2件次品B.至多抽到2件正品C.至少抽到2件正品D.至多抽到1件次品【解析】选D.因为“至少抽到2件次品”就是说抽查10件产品中次品的数目至少有2件,所以A的对立事件是抽查10件产品中次品的数目最多有1件.【补偿训练】从装有十个红球和十个白球的罐子里任取两个球,下列情况中是互斥而不对立的两个事件是( )A.至少有一个红球;至少有一个白球B.恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球【解析】选B.对于A,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球、一个红球,故两事件可能同时发生,所以不是互斥事件;对于B,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任取2个球还有都是红球的情形,故两事件不是对立事件;对于C,“至少有一个红球”为都是红球或一红一白,与“都是白球”显然是对立事件;对于D,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立事件.3.从1,2,…,9中任取两数,其中: ①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述各对事件中,是对立事件的是( A.① B.②④ C.③ D.①③【解析】选C.从1,2,…,9中任取两数,包括一奇一偶、两奇、两偶,共三种互斥事件,所以只有③中的两个事件才是对立事件.4.现有语文、数学、英语、物理和化学共5本书,从中任取1本,记取到语文、数学、英语、物理、化学书分别为事件A、B、C、D、E,则事件取出的是理科书可记为.【解析】由题意可知事件“取到理科书”的可记为B∪D∪E.答案:B∪D∪E5.在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A={出现1点},B={出现3点或4点},C={出现的点数是奇数},D={出现的点数是偶数}.求以上4个事件两两运算的结果.【解析】在投掷骰子的试验中,根据向上出现的点数有6种基本事件,记作A i={出现的点数为i}(其中i=1,2,…,6).则A=A1,B=A3∪A4,C=A1∪A3∪A5,D=A2∪A4∪A6.A∩B=∅,A∩C=A,A∩D=∅.A∪B=A1∪A3∪A4={出现的点数为1或3或4},A∪C=C={出现的点数为1或3或5},A∪D=A1∪A2∪A4∪A6={出现的点数为1或2或4或6}.B∩C=A3={出现的点数为3},B∩D=A4={出现的点数为4}.B∪C=A1∪A3∪A4∪A5={出现的点数为1或3或4或5}.B∪D=A2∪A3∪A4∪A6={出现的点数为2或3或4或6}.C∩D= ,C∪D=A1∪A2∪A3∪A4∪A5∪A6={出现的点数为1,2,3,4,5,6}.(30分钟60分)一、单选题(每小题5分,共20分)1.从一批产品(既有正品也有次品)中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论中错误的是( A.A与C互斥 B.B与C互斥C.任何两个都互斥D.任何两个都不互斥【解析】选D.由题意知事件A,B,C两两不可能同时发生,因此两两互斥.2.打靶3次,事件A i表示“击中i发”,其中i=0,1,2,3.那么A=A1∪A2∪A3表示(A.全部击中B.至少击中1发C.至少击中2发D.以上均不正确【解析】选B.A1∪A2∪A3所表示的含义是A1,A2,A3这三个事件中至少有一个发生,即可能击中1发、2发或3发.3.同时抛掷两枚均匀的骰子,事件“都不是5点且不是6点”的对立事件为(A.一个是5点,另一个是6点B.一个是5点,另一个是4点C.至少有一个是5点或6点D.至多有一个是5点或6点【解题指南】考虑事件“都不是5点且不是6点”所包含的各种情况,然后再考虑其对立事件.【解析】选C.设两枚骰子分别为甲、乙,则其点数的可能值包括以下四种可能:甲是5点且乙是6点,甲是5点且乙不是6点,甲不是5点且乙是6点,甲不是5点且乙不是6点,事件“都不是5点且不是6点”为第四种情况,故其对立事件是前三种情况.【误区警示】解答本题容易忽视根据两个骰子是否为5点或6点对所有可能出现的结果进行分析,导致错误.【补偿训练】抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( A.A与B B.B与CC.A与DD.C与D【解析】选C.A与B互斥且对立;B与C有可能同时发生,即出现6,从而不互斥;A与D不会同时发生,从而A与D互斥,又因为还可能出现2,故A与D不对立;C与D有可能同时发生,从而不互斥.4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一炮弹击中飞机},D={至少有一炮弹击中飞机},下列关系不正确的是( A.A⊆D B.B∩D=C.A∪C=DD.A∪B=B∪D【解析】选 D.“恰有一炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一炮弹击中飞机”包含两种情况:一种是恰有一炮弹击中,一种是两炮弹都击中,所以A∪B≠B∪D.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.则选项中结论正确的是( A.A∪B=C B.D∪B是必然事件C.A∪B=BD.A∪D=C【解析】选AB.A∪B表示的事件为至少有一件次品,即事件C,所以A正确,C不正确;D∪B表示的事件为至少有两件次品或至多有一件次品,包括了所有情况,所以B正确;A∪D表示的事件为至多有一件次品,即事件D,所以D不正确.6.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是(A.两球都不是白球B.两球恰有一个白球C.两球至少有一个白球D.两球都是黑球【解析】选ABD.根据题意,结合互斥事件、对立事件的定义可得,选项A,事件“两球都为白球”和事件“两球都不是白球”不可能同时发生,故它们是互斥事件.但这两个事件不是对立事件,因为它们的和事件不是必然事件.选项B,事件“两球都为白球”和事件“两球恰有一个白球”是互斥而非对立事件.选项C,事件“两球都为白球”和事件“两球至少有一个白球”可能同时发生,故它们不是互斥事件;选项D,事件“两球都为白球”和事件“两球都是黑球”是互斥而非对立事件.三、填空题(每小题5分,共10分)7.下列各对事件:①运动员甲射击一次,“射中9环”与“射中8环”;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”;④甲、乙两运动员各射击一次,“至少有一人射中目标”与“甲射中目标但乙没有射中目标”.其中是互斥事件的有,是包含关系的有.【解析】①甲射击一次“射中9环”与“射中8环”不能同时发生,是互斥事件;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”不是同一试验的结果,不研究包含或互斥关系;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不能同时发生,是互斥事件;④甲、乙两运动员各射击一次,“至少有一人射中目标”,即“甲射中目标但乙没有射中目标”或“乙射中目标但甲没有射中目标”或“甲、乙都射中目标”,具有包含关系.答案:①③④8.已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件次品”,则下列四个结论正确的是.(填序号)①F与G互斥②E与G互斥但不对立③E,F,G任意两个事件均互斥④E与G对立【解析】由题意得事件E与事件F不可能同时发生,是互斥事件;事件E与事件G不可能同时发生,是互斥事件;当事件F发生时,事件G一定发生,所以事件F与事件G不是互斥事件.故①,③错.事件E与事件G中必有一个发生,所以事件E与事件G对立,所以②错误,④正确.答案:④四、解答题(每小题10分,共20分)9.在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题.(1)请举出符合包含关系、相等关系的事件.(2)利用和事件的定义,判断上述哪些事件是和事件.【解析】(1)因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3. 同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1=D1.(2)因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6(或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G=C1+C3+C5,E=F+G,E=D2+D3.10.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生.【解题指南】判别两个事件是否互斥,就要考察它们是否能同时发生;判别两个互斥事件是否对立,就要考察它们是否必有一个发生.【解析】(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们对立.(4)由于选出的是1名男生1名女生时“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.1.如果事件A,B互斥,那么(A.A∪B是必然事件B.∪是必然事件C.与一定互斥D.与一定不互斥【解析】选B.用集合表示法中的“Venn图”解决比较直观,如图所示,∪=I是必然事件.2.从学号为1,2,3,4,5,6的六名同学中选出一名同学担任班长,其中1,3,5号同学为男生,2,4,6号同学为女生,记:C1=“选出1号同学”,C2=“选出2号同学”,C3=“选出3号同学”,C4=“选出4号同学”,C5=“选出5号同学”,C6=“选出6号同学”,D1=“选出的同学学号不大于1”,D2=“选出的同学学号大于4”,D3=“选出的同学学号小于6”,E=“选出的同学学号小于7”,F=“选出的同学学号大于6”,G=“选出的同学学号为偶数”,H=“选出的同学学号为奇数”.据此回答下列问题:(1)上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件?(2)如果事件C1发生,则一定有哪些事件发生?(3)两个事件的交事件也可能为不可能事件,在上述事件中有这样的例子吗?【解析】(1)必然事件有:E;随机事件有:C1,C2,C3,C4,C5,C6,D1 ,D2,D3,G,H;不可能事件有:F.(2)如果事件C1发生,则事件D1,D3,E,H一定发生.(3)有,如:C1和C2;C3和C4等.。
第十章 概率 章末检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件; ②“当x 为某一实数时,可使x 2≤0”是不可能事件; ③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件. 其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选C.①④正确.2.(2019·黑龙江省大庆中学月考)袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .至少有一个白球;红、黑球各一个D .恰有一个白球;一个白球一个黑球解析:选C.袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A 中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A 不成立; 在B 中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B 不成立;在C 中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C 成立;在D 中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D 不成立;故选C.3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56解析:选C.从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古典概型的概率计算公式,所求的概率为46=23.故选C.4.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm )分别为 162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm 之间的概率约为( )A.25B.12C.23D.13解析:选A.从已知数据可以看出,在随机抽取的20位学生中,身高在155.5~170.5cm 之间的有8人,其频率为25,故可估计在该校高二年级的所有学生中任抽取一人,其身高在155.5~170.5cm 之间的概率约为25.5.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则他们都中靶的概率是( )A.35B.34C.1225D.1425解析:选D.由题意知甲中靶的概率为45,乙中靶的概率为710,两人打靶相互独立,同时中靶的概率为45×710=1425.6.一个笼子里有3只白兔,2只灰兔,现让它们一一跑出笼子,假设每一只跑出笼子的概率相同,则先跑出笼子的两只兔子中一只是白兔,另一只是灰兔的概率是( )A.35B.45C.23D.34解析:选A .设3只白兔分别为b 1,b 2,b 3,2只灰兔分别为h 1,h 2,则所有可能的情况有(b 1,h 1),(b 1,h 2),(b 2,h 1),(b 2,h 2),(b 3,h 1),(b 3,h 2),(h 1,b 1),(h 2,b 1),(h 1,b 2),(h 2,b 2),(h 1,b 3),(h 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 1),(b 2,b 3),(b 3,b 1),(b 3,b 2),(h 1,h 2),(h 2,h 1),共20种,其中符合一只是白兔,另一只是灰兔的情况有12种,所以所求概率为1220=35.7.任取一个三位正整数N ,则对数log 2N 是一个正整数的概率是( ) A.1225 B.3899 C.1300D.1450解析:选C.三位正整数有100~999,共900个,而满足log 2N 为正整数的N 有27,28,29,共3个,故所求事件的概率为3900=1300.8.抛掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数为奇数”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512B.12C.712D.34解析:选D.P (A )=12,P (B )=12,P (A -)=12,P (B -)=12.A ,B 中至少有一件发生的概率为1-P (A -)·P (B -)=1-12×12=34,故选D.9.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( ) A.15 B.25 C.16D.18解析:选B.如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率为615=25.10.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.23解析:选D.由P (A B -)=P (B A -),得P (A )P (B -)=P (B )P (A -), 即P (A )[1-P (B )]=P (B )[1-P (A )], 所以P (A )=P (B ). 又P (A - B -)=19,则P (A -)=P (B -)=13.所以P (A )=23.11.如果从不包括大、小王的一堆扑克牌中随机抽取一张,那么取到红心牌(事件A )的概率为14,取到方片牌(事件B )的概率是13,则取到红色牌(事件C )的概率和取到黑色牌(事件D )的概率分别是( )A.712,512B.512,712C.12,12D.34,23解析:选A.因为C =A +B ,且A ,B 不会同时发生,即A ,B 是互斥事件,所以P (C )=P (A )+P (B )=14+13=712.又C ,D 是互斥事件,且C +D 是必然事件,所以C ,D 互为对立事件,则P (D )=1-P (C )=1-712=512.12.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910解析:选D.记3个红球分别为a 1,a 2,a 3,2个白球分别为b 1,b 2.从3个红球、2个白球中任取3个,则所包含的结果有(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 1,b 1,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10个.由于每个结果发生的机会均等,因此这些结果的发生是等可能的.用A 表示“所取的3个球中至少有1个白球”,则其对立事件A -表示“所取的3个球中没有白球”,则事件A -包含的结果有1个:(a 1,a 2,a 3).所以P (A -)=110.故P (A )=1-P (A -)=1-110=910.二、填空题:本题共4小题,每小题5分.13.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y ,来确定点P (x ,y ),那么他们各掷一次所确定的点P (x ,y )落在已知抛物线y =-x 2+4x 上的概率为________.解析:根据题意,两人各掷立方体一次,每人都有6种可能性,则(x ,y )的情况有36种,即P 点有36种可能,而y =-x 2+4x =-(x -2)2+4,即(x -2)2+y =4,易得在抛物线上的点有(2,4),(1,3),(3,3)共3个,因此满足条件的概率为336=112.答案:11214.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________. 解析:甲,乙,丙站成一排有(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),共6种.甲,乙相邻而站有(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种. 所以甲,乙两人相邻而站的概率为46=23.答案:2315.袋中含有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为________.解析:因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,共有10种情况,没有得到白球的概率为110,设白球个数为x ,则黑球个数为5-x ,那么,可知白球有3个,黑球有2个,因此可知从中任意摸出2个球,得到的都是白球的概率为310.答案:31016.(2019·高考全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为____________.解析:依题意知,经停该站高铁列车所有车次的平均正点率的估计值为10×0.97+20×0.98+10×0.9940=0.98.答案:0.98三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率. (1)所得的三位数大于400; (2)所得的三位数是偶数.解:1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数. (1)大于400的三位数的个数为4,所以P =46=23.(2)三位数为偶数的有156,516,共2个, 所以相应的概率为P =26=13.18.(本小题满分12分)某社区举办《“环保我参与”有奖问答比赛》活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.解:(1)记“甲回答正确这道题”“乙回答正确这道题”“丙回答正确这道题”分别为事件A ,B ,C ,则P (A )=34,且有⎩⎨⎧P (A -)·P (C -)=112,P (B )·P (C )=14.即⎩⎨⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14.所以P (B )=38,P (C )=23.(2)有0个家庭回答正确的概率为P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=14×58×13=596.有1个家庭回答正确的概率为P 1=P (A B -C -+A -B C -+A -B -C )=34×58×13+14×38×13+14×58×23=724.所以不少于2个家庭回答正确这道题的概率为P =1-P 0-P 1=1-596-724=2132.19.(本小题满分12分)(2019·河北省枣强中学期末考试)质量监督局检测某种产品的三个质量指标x ,y ,z ,用综合指标Q =x +y +z 核定该产品的等级.若Q ≤5,则核定该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(2)在该样品的一等品中,随机抽取2件产品,设事件B 为“在取出的2件产品中,每件产品的综合指标均满足Q ≤4”,求事件B 的概率.解:(1)计算10件产品的综合指标Q ,如下表:1246910故该样本的一等品率为610=0.6,从而估计该批产品的一等品率为0.6.(2)在该样本的一等品中,随机抽取2件产品的所有可能结果为(A 1,A 2),(A 1,A 4),(A 1,A 6),(A 1,A 9),(A 1,A 10),(A 2,A 4),(A 2,A 6),(A 2,A 9),(A 2,A 10),(A 4,A 6),(A 4,A 9),(A 4,A 10),(A 6,A 9),(A 6,A 10),(A 9,A 10)共15种.在该样本的一等品中,综合指标均满足Q ≤4的产品编号分别为A 1,A 9,A 10, 则事件B 发生的所有可能结果为(A 1,A 9),(A 1,A 10),(A 9,A 10)共3种, 所以P (B )=315=15.20.(本小题满分12分)(2019·辽宁省凌源三校联考)某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在[20,45]内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(第一~五组区间分别为[20,25),[25,30),[30,35),[35,40),[40,45]).(1)求选取的市民年龄在[40,45]内的人数;(2)若从第3,4组用分层随机抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中做重点发言,求做重点发言的市民中至少有一人的年龄在[35,40)内的概率.解:(1)由题意可知,年龄在[40,45]内的频率为P =0.02×5=0.1, 故年龄在[40,45]内的市民人数为200×0.1=20.(2)易知,第3组的人数,第4组人数都多于20,且频率之比为3∶2,所以用分层随机抽样的方法在第3,4两组市民抽取5名参加座谈,应从第3,4组中分别抽取3人,2人.记第3组的3名市民分别为A 1,A 2,A 3,第4组的2名市民分别为B 1,B 2,则从5名中选取2名做重点发言的所有情况为(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共有10种.其中第4组的2名B 1,B 2至少有一名被选中的有:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共有7种,所以至少有一人的年龄在[35,40)内的概率为710.21.(本小题满分12分)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.解:(1)设A i 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i =0,1,2.B i 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2.据题意有:P (A 0)=13×13=19,P (A 1)=2×13×23=49,P (A 2)=23×23=49,P (B 0)=12×12=14,P (B 1)=2×12×12=12. 所求概率为P =P (B 0A 1)+P (B 0A 2)+P (B 1A 2)=14×49+14×49+12×49=49.(2)所求概率P ′=1-⎝⎛⎭⎫1-493=604729. 22.(本小题满分12分)(2019·高考北京卷)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中,A,B两种支付方式都使用的学生有100-30-25-5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。
高一数学必修第二册第十章《概率》单元练习题卷4(共22题)一、选择题(共10题)1. 已知 a ∈{−2,0,1,2,3},b ∈{3,5},则函数 f (x )=(a 2−2)e x +b 为减函数的概率是 ( ) A .310B . 35C . 25D . 152. 从 4 名男生 2 名女生中任选 3 人参加演讲比赛,则所选 3 人中恰有 1 名女生的概率为 ( ) A . 15B . 12C . 35D . 453. 甲、乙两人独立地对同一目标各射击一次,命中率分别为 0.6 和 0.7,在目标被击中的情况下,甲、乙同时击中目标的概率为 ( ) A . 2144B . 1522C . 2150D . 9254. 如果 A ,B 是互斥事件,那么以下等式中一定成立的是 ( ) A . P (A ∪B )=P (A )⋅P (B ) B . P (A ∪B )=P (A )+P (B ) C . P (AB )=P (A )⋅P (B ) D . P (A )+P (B )=15. 甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为 a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为 b ,其中 a,b ∈{1,2,3,4,5,6},若 |a −b|≤1,就称甲、乙“心有灵犀”,现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 ( ) A . 316B . 29C . 718D . 496. 若 P (AB )=19,P(A)=23,P (B )=13,则事件 A 与 B 的关系是 ( ) A .事件 A 与 B 互斥 B .事件 A 与 B 对立C .事件 A 与 B 相互独立D .事件 A 与 B 既互斥又相互独立7. 哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如 12=5+7,在不超过 18 的素数 2,3,5,7,11,13,17 中,随机选取两个不同的数,其和等于 18 的概率是 ( )A.142B.121C.221D.178.下列事件A,B是相互独立事件的是( )A.一枚硬币掷两次,A表示“第一次为正面”,B表示“第二次为反面”B.袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A表示“第一次摸到白球”,B表示“第二次摸到白球”C.掷一枚骰子,A表示“掷出点数为奇数”,B表示“掷出点数为偶数”D.有一个灯泡,A表示“灯泡能用1000小时”,B表示“灯泡能用2000小时”9.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”;③从装有2个红球和2个黑球的口袋内任取2个球,“至少有一个黑球”与“都是红球”;④从装有2个红球和2个黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”.其中属于互斥但不对立的事件的有( )A.0对B.1对C.2对D.3对10.已知0≤a<2,0≤b<4,为估计在a>1的条件下,函数f(x)=x2+2ax+b有两相异零点的概率P.用计算机产生了[{0,1})内的两组随机数a1,b1各2400个,并组成了2400个有序数对(a1,b1),统计这2400个有序数对后得到2×2列联表的部分数据如表:满足b1<a12的数对个数满足b1≥a12的数对个数合计满足a1≤12的数对个数1101200满足a1>12的数对人数550合计2400则数据表中数据计算出的概率P的估计值为( )A.1348B.1124C.1960D.712二、填空题(共6题)11.设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,则该同学在这两个科目中至少选择一个的概率是.12.思考辨析,判断正误A,B为两个事件,则P(A+B)=P(A)+P(B).( )13.甲、乙两人做出拳(锤子、剪刀、布)游戏,则平局的概率为;甲赢的概率为.14. 甲、乙、丙三位同学上课后独立完成自我检测题,甲及格的概率为 45,乙及格的概率为 25,丙及格的概率为 23,则三人中至少有一人及格的概率为 .15. 在一个袋中装有大小、质地均相同的 9 只球,其中红色、黑色、白色各 3 只,若从袋中随机取出两个球,则至少有一个红球的概率为 (结果用最简分数表示).16. 古典概型.(1)定义:如果一个概率模型满足:① 试验中所有可能出现的基本事件只有 个; ② 每个基本事件出现的可能性 .那么这样的概率模型称为古典概率模型,简称为古典概型. (2)计算公式:对于古典概型,任何事件 A 的概率为 P (A )=A 包含的基本事件的个数基本事件的总数.三、解答题(共6题)17. 某篮球爱好者做投篮练习,假设其每次投篮命中的概率是 60%,若该篮球爱好者连续投篮 4 次,求至少投中 3 次的概率,用随机模拟的方法估计上述概率.18. 某校高三年级一次数学考试之后,为了解学生的数学学习情况,随机抽取 n 名学生的数学成绩,制成表所示的频率分布表.(1) 求 a ,b ,n 的值;(2) 若从第三,四,五组中用分层抽样方法抽取 6 名学生,并在这 6 名学生中随机抽取 2 名与张老师面谈,求第三组中至少有 1 名学生与张老师面谈的概率.19. 已知某校甲、乙、丙三个年级的学生志愿者人数分别为 240,160,160.现采用分层抽样的方法从中抽取 7 名同学去某敬老院参加献爱心活动.(1) 应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2) 设抽出的 7 名同学分别用 A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取 2 名同学承担敬老院的卫生工作.(ⅰ)试用所给字母列举出所有可能的抽取结果;(ⅰ)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.20.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“✓”表示购买,“×”表示未购买.(1) 估计顾客同时购买乙和丙的概率;(2) 估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3) 如果顾客购买了甲,则该顾客同时购买了乙、丙、丁中哪种商品的可能性最大?21.运动会前夕,某省派两名女乒乓球运动员参加单打比赛,她们获得冠军的概率分别为37和16,所以她们的粉丝认为该省获得乒乓球女子单打冠军的概率是16+37.该种想法正确吗?为什么?22.垃圾分类,人人有责.2020年12月1日,天津市正式实施《天津市生活垃圾管理条例》,根据条例,市民要把生活垃圾分类后方能够投放.已知滨海新区某校高一、高二、高三3个年级学生的环保社团志愿者人数分别为30,15,15.现按年级进行分层,采用比例分配的分层随机抽样的方法从中抽取4名同学参加垃圾分类知识交流活动.(1) 应从高一、高二、高三3个年级的环保社团志愿者中分别抽取多少人?(2) 设抽出的4名同学分别用A,B,C,D表示,现从中随机抽取2名同学分别在上午和下午作交流发言.(i)写出这个试验的样本空间;(ii)设事件M=“抽取的2名同学来自不同年级”,求事件M发生的概率.答案一、选择题(共10题)1. 【答案】C【解析】若函数f(x)=(a2−2)e x+b为减函数,则a2−2<0,又a∈{−2,0,1,2,3},故只有a=0,a=1满足题意,所以函数f(x)=(a2−2)e x+b为减函数的概率P=25.【知识点】古典概型2. 【答案】C【解析】列举出所有结果易得P=35.【知识点】古典概型3. 【答案】A【解析】根据题意,记“甲击中目标”为事件A,“乙击中目标”为事件B,“目标被击中”为事件C,则P(C)=1−P(A)P(B)=1−(1−0.6)×(1−0.7)=0.88.则在目标被击中的情况下,甲、乙同时击中目标的概率为P(A∩B∣C)=P(A∩B∩C)P(C)=0.6×0.70.88=2144.【知识点】事件的关系与运算4. 【答案】B【知识点】事件的关系与运算5. 【答案】D【解析】由题意知本题是一个古典概型.样本空间共包含36个样本点记“甲、乙心有灵犀”为事件A,A= {(1,1),(1,2),(2,1),(2,2)(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5)(5,6),(6,5),(6,6)},共16个样本点.所以他们“心有灵犀”的概率为P=1636=49.【知识点】古典概型6. 【答案】C【解析】因为P(A)=1−P(A)=1−23=13,所以P(AB)=P(A)P(B),所以事件A与B相互独立.又因为P(AB)≠P(A)+P(B),所以事件A与B并不互斥.【知识点】事件的相互独立性7. 【答案】C【解析】在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,基本事件总数n=C72=21,其和等于18包含的基本事件有:(5,13),(7,11),共2个,所以其和等于18的概率是P=221.【知识点】古典概型8. 【答案】A【解析】B选项由于是不放回摸球,故事件A与B不相互独立,C选项中A与B为对立事件,D选项中事件B受事件A影响,故选A.【知识点】独立事件积的概率9. 【答案】C【解析】①某人射击1次,“射中7环”与“射中8环”两个事件不会同时发生,故为互斥事件,但还可以“射中6环”等,故不是对立事件;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,前者包含后者,故不是互斥事件;③“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,所以这两个事件是对立事件;④“没有黑球”与“恰有一个红球”不可能同时发生,故它们是互斥事件,但还有可能“没有红球”,故不是对立事件.①④是符合要求的.【知识点】事件的关系与运算10. 【答案】C【解析】要使得函数f(x)=x2+2ax+b有两相异零点,4a2−4b>0,所以a2>b,条件中所给的共有2400对有序数对,在这些有序数对中,使得函数有两个相异的零点,共有110+(1200−550)=760,所以数据表中数据计算出的概率P的估计值是7602400=1960.【知识点】古典概型二、填空题(共6题)11. 【答案】0.8【知识点】事件的相互独立性12. 【答案】×【知识点】事件和与事件积,事件和与事件积的概率计算13. 【答案】13;13【解析】设平局(用 △ 表示)为事件 A ,甲赢(用 ⊙ 表示)为事件 B ,乙赢(用 ⋇ 表示)为事件 C .容易得到如图.平局含 3 个基本事件(图中的 △),P (A )=39=13.甲赢含 3 个基本事件(图中的 ⊙),P (B )=39=13.【知识点】古典概型14. 【答案】 2425【解析】设甲及格为事件 A ,乙及格为事件 B ,丙及格为事件 C ,则 P (A )=45,P (B )=25,P (C )=23,所以 P(A)=15,P(B)=35,P(C)=13,则 P(ABC)=P(A)P(B)P(C)=15×35×13=125,所以所求概率 P =1−P(ABC)=2425. 【知识点】独立事件积的概率15. 【答案】712【解析】随机取出 2 个球的基本事件有 C 92=36 种,“至少有一个红球”的事件有 C 31C 61+C 32=21 种,所以至少有一个红球的概率为 2136=712. 【知识点】古典概型16. 【答案】有限;相等【知识点】古典概型三、解答题(共6题)17. 【答案】利用计算机或计算器产生0到9之间取整数值的随机数,用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%,因为投篮4次,所以每4个随机数作为1组,例如5727,7895,0123,⋯,4560,4581,4698,共100组这样的随机数,若所有数组中没有7,8,9,0或只有7,8,9,0中的一个数的数组的个数为n,则至少投中3次的概率近似值为n100.【知识点】频率与概率18. 【答案】(1) 依题意得5n =0.05,an=0.35,20n=b,解得n=100,a=35,b=0.2.(2) 因为第三、四、五组共有60名学生,用分层抽样方法抽取6名学生,则第三、四、五组分别抽取3060×6=3名,2060×6=2名,1060×6=1名.第三组的3名学生记为a1,a2,a3,第四组的2名学生记为b1,b2,第五组的1名学生记为c1,则从6名学生中随机抽取2名,共有15种不同取法,具体如下:{a1,a2},{a1,a3},{a1,b1},{a1,b2},{a1,c1},{a2,a3},{a2,b1},{a2,b2},{a2,c1},{a3,b1},{a3,b2},{a3,c1},{b1,b2},{b1,c1},{b2,c1}.其中第三组的3名学生a1,a2,a3没有一名学生被抽取的情况共有3种,具体如下:{b1,b2},{b1,c1},{b2,c1}.故第三组中至少有1名学生与张老师面谈的概率为1−315=0.8.【知识点】频率分布直方图、古典概型、频率与频数19. 【答案】(1) 由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2) (ⅰ)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ⅰ)由(ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率为P(M)=521.【知识点】古典概型、分层抽样20. 【答案】(1) 从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2) 从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3) 与(1)同理,可得顾客同时购买甲和乙的概率可以估计为2001000=0.2,同时购买甲和丙的概率可以估计为100+200+3001000=0.6,同时购买甲和丁的概率可以估计为1001000=0.1.所以如果顾客购买了甲,则该顾客同时购买丙的可能性最大.【知识点】古典概型21. 【答案】正确.因为两个人分别获得冠军是互斥事件,所以两个人只要有一人获得冠军,则该省就获得冠军,故该省获得冠军的概率为16+37=2542.【知识点】事件的关系与运算22. 【答案】(1) 设抽取高一、高二、高三3个年级的环保社团志愿者人数分别为x,y,z,由分层抽样,得x30=y15=z15=430+15+15=115,解得x=2,y=1,z=1,所以应从高一、高二、高三3个年级的环保社团志愿者中分别抽取2人、1人、1人;(2) (i)样本空间为:Ω={(A,B),(A,C),(A,D),(B,A),(B,C),(B,D),(C,A),(C,B),(C,D),(D,A),(D,B),(D,C)},共有12个样本点,每个样本点都是等可能发生的;(ii)由(1),不妨设抽出的4名同学中,来自高一年级的是A,B,来自高二年级的是C,来自高三年级的是D,因为M={(A,C),(A,D),(B,C),(B,D),(C,A),(C,B),(C,D),(D,A),(D,B),(D,C)},所以n(M)=10,所以事件M发生的概率P(M)=n(M)n(Ω)=1012=56.【知识点】分层抽样、古典概型。
人教版(2019)必修第二册第十章同步训练卷概率注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某城市2017年的空气质量状况如下表所示: 污染指数 30 60 100 110 130 140概率P 110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染.该城市2017年空气质量达到良或优的概率为( )A .35 B .1180 C .119 D .562.抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”;事件B 表示“不小于5的点数出现”.则一次试验中,事件A 或事件B 至少有一个发生的概率为( )A .23 B .13 C .1 2 D .563.下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则()()P A B P A =+ ()P B ;③若事件A ,B ,C 彼此互斥,则()()()1P A P B P C ++=;④若事件A ,B 满足()()1P A P B +=,则A 与B 是对立事件.其中正确命题的个数是( ) A .1 B .2 C .3 D .4 4.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12 B .512 C .14 D .16 5.将一颗质地均匀的骰子(各面上分别标有点数1,2,3,4,5,6)先后抛掷3次,至少出现1次6点向上的概率是( ) A .5216 B .25216 C .31216 D .91216 6.在如图所示的电路中,5个格子表示保险匣,格子中所示数据表示通电时保险丝被熔断的概率,则当开关合上时,电路畅通的概率是( ) A .2936 B .551720 C .2972 D .29144 7.某城市有连接8个小区A 、B 、C 、D 、E 、F 、G 、H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率是( )此卷只装订不密封 班级姓名准考证号考场号座位号A.13B.23C.14D.348.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t生活垃圾.经分拣以后数据统计如下表(单位:t):根据样本估计本市生活垃圾投放情况,下列说法错误的是()厨余垃圾”箱可回收物”箱其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60A.厨余垃圾投放正确的概率为3B.居民生活垃圾投放错误的概率为3 10C.该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱D.厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品有20件,合格品有70件,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A为“是一等品”,B为“是合格品”,C为“是不合格品”,则下列结果正确的是()A.7()10P B=B.9()10P A B=C.()0P A B=D.()()P A B P C=10.抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P,则下列结论中正确的是()A.1234P P P P===B.312P P=C.12341P P P P+++=D.423P P=11.下列对各事件发生的概率判断正确的是()A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是2912.以下对各事件发生的概率判断正确的是()A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.每个大于2的偶数都可以表示为两个素数的和,例如835=+,在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C.将一个质地均匀的正方体骰子(每个面上分别写有数字l,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是5 36D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是1 2三、填空题:本大题共4小题,每小题5分.13.今年由于猪肉涨价太多,更多市民选择购买鸡肉、鸭肉、鱼肉等其它肉类.某天在市场中随机抽出100名市民调查,其中不买猪肉的人有30位,买了肉的人有90位,买猪肉且买其它肉的人共30位,则这一天该市只买猪肉的人数与全市人数的比值的估计值为________.14.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,3 5,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.15.甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件.规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击.已知甲、乙二人射击一次击中的概率均为13,且第一次由甲开始射击.①求前3次射击中甲恰好击中2次的概率____________;②求第4次由甲射击的概率________.16.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的两球同色”,B=“取出的2球中至少有一个黄球”,C=“取出的2球至少有一个白球”,D“取出的两球不同色”,E=“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件:④()1P C E =;⑤()()P B P C=.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:“星队”至少猜对3个成语的概率.18.(12分)计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为45,34,23,在实际操作考试中“合格”的概率依次为12,23,56,所有考试是否合格相互之间没有影响.(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.19.(12分)设甲、乙、丙三位老人是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为005.,甲、丙都需要照顾的概率为01.,乙、丙都需要照顾的概率为0125..(1)甲、乙、丙三位老人在这一小时内需要照顾的概率分别是多少?(2)求这一小时内至少有一位老人需要照顾的概率.20.(12分)一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回.求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)2次取出的4个球中恰有2个红球,2个白球的概率.21.(12分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;a ,求甲的康复时间比乙的康复时间长的概率;(2)如果25(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)22.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?人教版(2019)必修第二册第十章同步训练卷答 案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】由表知空气质量为优的概率是110, 由互斥事件的和的概率公式知,空气质量为良的概率为111632+=,所以该城市2017年空气质量达到良或优的概率1131025P =+=,故选A .2.【答案】A【解析】事件A 表示“小于5的偶数点出现”;事件B 表示“不小于5的点数出现”, ∴()2163P A ==,()2163P B ==,又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A 和事件B 为互斥事件,则一次试验中,事件A 或事件B 至少有一个发生的概率为()()()112333P A B P A P B =+=+=,故选A .3.【答案】A【解析】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A 与B 是互斥事件时,才有()()()P A B P A P B =+,对于任意两个事件A ,B 满足()()()()P A B P A P B P AB =+-,所以是不正确的;③也不正确.()()()P A P B P C ++不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A ={摸到红球或黄球},事件B ={摸到黄球或黑球}, 显然事件A 与B 不互斥,但()()11122P A P B +=+=. 4.【答案】B 【解析】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则()()()1221135343412P A P A P A =+=⨯+⨯=,故选B . 5.【答案】D 【解析】将一颗质地均匀的骰子先后掷3次,这3次之间是相互独立, 记事件A 为“抛掷3次,至少出现一次6点向上”, 则A 为“抛掷3次都没有出现6点向上”, 记事件i B 为“第i 次中,没有出现6点向上”,1,2,3i =,则123A B B B =, 又()56i P B =,所以()351256216P A ⎛⎫== ⎪⎝⎭, 所以()()1259111216216P A P A =-=-=,故选D . 6.【答案】A 【解析】当开关合上时,电路畅通即表示A 至B 畅通且B 至C 畅通, A 至B 畅通的概率1111511114236P ⎡⎤⎛⎫⎛⎫=-⨯--⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, B 至C 畅通的概率2112915630P =-⨯=, 所以电路畅通的概率125292963036P PP =⨯==,故选A . 7.【答案】B 【解析】此人从小区A 前往H 的所有最短路径为A B C E H →→→→,A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,A D F G H →→→→,共6条;记“此人经过市中心O ”为事件M ,则M 包含的基本事件为A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,共4条,()4263P M ∴==,即他经过市中心的概率为23,故选B .8.【答案】D【解析】由表格可得:厨余垃圾投放正确的概率40024001001003==++; 可回收物投放正确的概率240424030305==++; 其他垃圾投放正确的概率6032020605==++.对A ,厨余垃圾投放正确的概率为23,故A 正确;对B ,生活垃圾投放错误有200602020300+++=, 故生活垃圾投放错误的概率为3003100010=,故B 正确;对C ,该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱,故C 正确; 对D ,厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的的投放量的平均数600300100100033x ++==,可得方差22221100010001000[(600)(300)(100)]3333s =⨯-+-+-=380000200009≠,故D 错误,故选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的 选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】ABC【解析】由题意知A ,B ,C 为互斥事件,故C 正确;又因为从100件中抽取产品符合古典概型的条件, 所以7()10P B =,2()10P A =,1()10P C =,则9()10P A B =, 故A 、B 、C 正确,故D 错误, 故选ABC . 10.【答案】CD 【解析】由题意,抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P , 根据独立重复试验的概率计算公式, 可得:3111()28P ==,3211()28P ==,2233113C ()(1)228P =-=,1243113C (1)228P =⋅-=, 由1234P P P P =<=,故A 是错误的; 由313P P =,故B 是错误的; 由12341P P P P +++=,故C 是正确的; 由423P P =,故D 是正确的, 故选CD . 11.【答案】AC 【解析】对于A ,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为211413327⎛⎫-⨯= ⎪⎝⎭,故A 正确; 对于B ,用A 、B 、C 分別表示甲、乙、丙三人能破译出密码,则1()5P A =,1()3P B =,1()4P C =,“三个人都不能破译出密码”发生的概率为42325345⨯⨯=,所以此密码被破译的概率为23155-=,故B 不正确; 对于C ,设“从甲袋中取到白球”为事件A ,则82()123P A ==;设“从乙袋中取到白球”为事件B ,则61()122P B ==,故取到同色球的概率为2111132322⨯+⨯=,故C 正确;对于D ,易得()()P A B P B A =,即()()()()P A P B P B P A ⋅=,即()[1()]()[1()]P A P B P B P A -=-,∴()()P A P B =,又1()9P A B =,∴1()()3P A P B ==,∴2()3P A =,故D 错误,故选AC .12.【答案】BCD【解析】对于A ,画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P (甲获胜)13=,P (乙获胜)13=,故玩一局甲不输的概率是23,故A 错误;对于B ,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有2与3,2与5,2与7,2与11,2与13,3与5,3与7,3与11,3与13,5与7,5与11,5与13,7与11,7与13,11与13共15种结果,其中和等于14的只有一组3与11,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B 正确;对于C ,基本事件总共有6636⨯=种情况,其中点数之和是6的有()1,5,()2,4,()3,3,()4,2,()5,1,共5种情况, 则所求概率是536,故C 正确; 对于D ,记三件正品为1A ,2A ,3A ,一件次品为B ,任取两件产品的所有可能为12A A ,13A A ,1A B ,23A A ,2A B ,3A B ,共6种; 其中两件都是正品的有12A A ,13A A ,23A A ,共3种, 则所求概率为3162P ==,故D 正确, 故选BCD . 三、填空题:本大题共4小题,每小题5分. 13.【答案】04. 【解析】由题意,将买猪肉的人组成的集合设为A ,买其它肉的人组成的集合设为B , 则韦恩图如下:A B 中有30人,()U A B 中有10人, 又不买猪肉的人有30位,∴U B A 中有20人, ∴只买猪肉的人数为10010203040---=, ∴这一天该市只买猪肉的人数与全市人数的比值的估计值为400.4100=, 故答案为0.4.14.【答案】101125【解析】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()145P A =,()235P A =,()325P A =. 该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯=, 故答案为101125.15.【答案】227,1327【解析】①由题意,前3次射击中甲恰好击中2次,即前2次甲都击中目标,但第三次没有击中目标,故它的概率为121233327⨯⨯=.②第4次由甲射击包括甲连续射击3次且都击中;第一次甲射击击中,但第二次没有击中,第三次由乙射击没有击中;第一次甲射击没有击中,且乙射击第二次击中,但第三次没有击中;第一次甲射击没有击中,且乙射击第二次没有击中,第三次甲射击击中; 故这件事的概率为3112221222113333333333327⎛⎫+⨯⨯+⨯⨯+⨯⨯=⎪⎝⎭.16.【答案】①④ 【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”,①由对立事件定义得A 与D 为对立事件,故①正确;②B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③C 与E 有可能同时发生,不是对立事件,故③错误; ④()631155P C =-=,()1415P E =,8()15P CE =, 从而()()()()1P C E P C P E P CE =+-=,故④正确; ⑤C B ≠,从而()()P B P C ≠,故⑤错误, 故答案为①④. 四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】23. 【解析】记事件A ,“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”, 由题意,E ABCD ABCD ABCD ABCD ABCD =++++, 由事件的独立性与互斥性,得()()()P E P ABCD P ABCD =+()()()P ABCD P ABCD P ABCD +++ ()()()()P A P B P C P D =()()()()P A P B P C P D +⋅()()()()P A P B P C P D +()()()()P A P B P C P D +⋅()()()()P A P B P C P D + 323212323132224343434343433-⎛⎫=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭, 所以“星队”至少猜对3个成语的概率为23. 18.【答案】(1)丙;(2)1130. 【解析】(1)设“甲获得合格证书”为事件A ,“乙获得合格证书”为事件B ,“丙获得合格证书”为事件C ,则412()525P A =⨯=,321()432P B =⨯=,255()369P C =⨯=, 因为()()()P C P B P A >>,所以丙获得合格证书的可能性最大. (2)设“三人考试后恰有两人获得合格证书”为事件D , 则214215315()()()()529529529P D P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯ 1130=. 19.【答案】(1)0.2,0.25,0.5.(2)07..【解析】(1)记事件A =“甲在这一小时内需要照顾”,事件B =“乙在这一小时内需要照顾”.事件C =“丙在这一小时内需要照顾”.由题意,知事件,,A B C 两两相互独立.且()()()()()()()()()0.050.10.125P AB P A P B P AC P A P C P BC P B P C ⎧==⎪==⎨⎪==⎩,解得()()()0.20.250.5P A P B P C ⎧=⎪=⎨⎪=⎩,即甲、乙、丙三位老人在这一小时内需要照顾的概率分别是0.2,0.25,0.5. (2)由(1),知()0.8P A =,()0.75P B =,()0.5P C =, 所以这一小时内至少有一位老人需要照顾的概率()()()()110.7P P ABC P A P B P C =-=-=.20.【答案】(1)3100;(2)2150. 【解析】记“第1次取出的2个球都是白球”为事件A ,“第2次取出的2个球都是红球”为事件B ,因为每次取出后再放回,所以A 、B 是相互独立事件.(1)由古典概型知,3()10P A =,1()10P B =, 因此,313()()()1010100P AB P A P B ==⨯=, 故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是3100. (2)画出树状图得到相关事件的样本点数,如图所示:由图知,样本点总数为100,设“2次取出的4个球中恰有2个红球,2个白球”为事件C , 则事件C 中含有的样本点数为31661342⨯+⨯+⨯=, 因此4221()10050P C ==, 故2次取出的4个球中恰有2个红球,2个白球的概率是2150. 21.【答案】(1)37;(2)1049;(3)11a =或18. 【解析】(1)甲有7种取法,康复时间不少于14天的有3种取法,所以概率37P =. (2)如果25a =,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,共有49种取法,甲的康复时间比乙的康复时间长的列举如下(13,12),(14,12),(14,13),(15,12),(15,13),(15,14),(16,12)(16,13),(16,15),(16,14)有10种取法, 所以概率1049P =. (3)把B 组数据调整为a ,12,13,14,15,16,17或12,13,14,15,16,17,a ,可见当11a =或18a =时,与A 组数据方差相等.(可利用方差公式加以证明,但本题不需要)22.【答案】(1)005.;(2)045.;(3)1200. 【解析】把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为ABC 、AB 1、AB 2、AB 3、AC 1、AC 2、AC 3、A 12、A 13、A 23、BC 1、BC 2、BC 3、B 12、B 13、B 23、C 12、C 13、C 23、123,共20个.(1)事件E={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123号3个球,()10.0520P E ==. (2)事件F ={摸出的3个球为2个黄球1个白球},事件F 包含的基本事件有9个,()90.4520P F ==. (3)事件G ={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},()20.120P G ==,假定一天中有100人次摸奖, 由摸出的3个球为同一颜色的概率可估计事件G 发生有10次,不发生90次, 则一天可赚90110540⨯-⨯=,每月可赚1200元.。
单元素养评价(五)(第十章)(120分钟150分)一、单选题(每小题5分,共40分)1.下列说法中正确的个数为( )①彩票的中奖率为千分之一,那么买一千X彩票就肯定能中奖;②抛掷一枚均匀的硬币,如果前两次都是反面,那么第三次出现正面的可能性就比反面大;③在袋子中放有2白2黑大小相同的四个小球,甲乙玩游戏的规则是从中不放回地依次随机摸出两个小球,如两球同色则甲获胜,否则乙获胜,那么这种游戏是公平的.A.1B.2C.3D.0【解析】选D.对于①,彩票的中奖率为千分之一,但买一千X彩票不一定能中奖,故错误;对于②,抛掷一枚均匀的硬币,如果前两次都是反面,第三次出现正面的可能性与出现反面一样大,故错误;对于③,在袋子中放有2白2黑大小相同的四个小球,甲乙玩游戏的规则是从中不放回地依次随机摸出两个小球,如两球同色则甲获胜,否则乙获胜,则甲获胜的概率为,那么这种游戏是不公平的,故错误.故说法正确的个数为0个.2.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A.对立事件B.不可能事件C.互斥但不对立事件D.既不互斥又不对立事件【解析】选C.甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.3.已知小红的钱包中有2枚“壹分”,2枚“贰分”,3枚“伍分”的硬币,她随意地从钱包中取出2枚硬币观察其面值.这一试验的基本事件总数n等于( )A.6B.7C.8D.9【解析】选A.由题意知,基本事件有(1,1),(1,2),(1,5),(2,2),(2,5),(5,5),故6个.4.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的是二等品或三等品”的概率为( )A.0.7B.0.65C.0.35D.0.3【解析】选D.由题意知,事件A、B、C互为互斥事件,记事件D=“抽到的是二等品或三等品”,则P(D)=P(B∪C)=P(B)+P(C)=0.2+0.1=0.3.5.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷56粒,则这批米内夹谷约为( )A.1 365石B.336石C.168石D.134石【解析】选B.设这批米内夹谷约为x石,则根据题意得到=⇒x=336.6.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人获得一等奖的概率分别为和,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A.B.C.D.【解析】选D.根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是×+×=.7.一个袋子中装有编号分别为1,2,3,4的4个小球,现有放回地摸球,规定每次只能摸一个球,若第一次摸到的球的编号为x,第二次摸到的球的编号为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为( )A. B.C. D.【解析】选 A.由题意可知,两次摸球得到的所有数对(x,y)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2)(4,3),(4,4),共16个,其中满足xy=4的数对有(1,4),(2,2),(4,1),共3个.故所求事件的概率为.8.袋里装有大小相同的黑、白两色的手套,黑色手套3只,白色手套2只.现从中随机地取出2只手套,如果2只是同色手套则甲获胜,2只手套颜色不同则乙获胜.则甲、乙获胜的机会是( ) A.一样大B.甲大C.乙大D.不能确定【解析】选C.乙获胜的概率为,甲获胜的概率为,乙获胜的概率大于甲获胜的概率.二、多选题(每小题5分,共20分,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.下列事件中,是随机事件的为( )A.在学校校庆的田径运动会上,学生X涛获得1 000米跑冠军B.在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯C.从标有1,2,3,4的4X号签中任取一X,为5号签D.在标准大气压下,水在0℃时结冰【解析】选AB.C是不可能事件,D是必然事件,AB是随机事件. 10.由经验得知,在人民商场付款处排队等候付款的人数及其概率如表:排队人数0 1 2 3 45人及以上概率0.11 0.16 0.3 0.29 0.1 0.04则( )A.有1人或2人排队的概率为0.19B.有大于4人排队的概率为0.04C.有5人以下排队的概率是0.96D.至多有2人排队的概率为0.29【解析】选BC.记“没有人排队”为事件A,“1人排队”为事件B,“2人排队”为事件C,“5人及以上排队”为事件D.A、B、C、D彼此互斥,故有1人或2人排队的概率为P(B∪C)=0.16+0.3=0.46;有大于4人排队的概率为P(D)=0.04;有5人以下排队的概率是P()=1-0.04=0.96;至多有2人排队的概率为P(A+B+C)=P(A)+P(B)+P(C)=0.11+0.16+0.3=0.57.11.某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400](单位:克)中,经统计频率分布直方图如图所示.某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10 000个,经销商提出以下两种收购方案:方案①:所有芒果以9元/千克收购;方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.则( )A.抽取的100个芒果质量的平均数为251B.若按分层随机抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,则这2个芒果都来自同一个质量区间的概率为C.种植园选择方案①获利更多D.种植园选择方案②获利更多【解析】选BD.由频率分布直方图知,这组数据的平均数≈0.07×125+0.15×175+0.20×225+0.30×275+0.25×325+0.03×375=255,A错.利用分层随机抽样从这两个X围内抽取5个芒果,则质量在[200,250)内的芒果有2个,记为a1,a2,质量在[250,300)内的芒果有3个,记为b1,b2,b3;从抽取的5个芒果中抽取2个共有10种不同情况:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3).记事件A为“这2个芒果都来自同一个质量区间”,则A有4个样本点:(a1,a2),(b1,b2),(b1,b3),(b2,b3),从而P(A)==,B正确.方案①收入:y1=×10 000×9=×10 000×9=22 950(元);方案②:低于250克的芒果收入为(0.07+0.15+0.2)×10 000×2=8 400(元);不低于250克的芒果收入为(0.25+0.3+0.03)×10 000×3=17 400(元);故方案②的收入为y2=8 400+17 400=25 800(元).由于22 950<25 800,所以选择方案②获利多,C错D对.12.已知关于x的二次函数f(x)=ax2-bx+1,设集合P={1,2,3},Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数a和b得到数对(a,b).则( )A.所有的数对(a,b)共有30种可能B.函数y=f(x)有零点的概率为C.使函数y=f(x)在区间[1,+∞)上单调递增的数对(a,b)共有13个D.函数y=f(x)在区间[1,+∞)上单调递增的概率为【解析】选BC.(a,b)有(1,-1),(1,1),(1,2),(1,3),(1,4),(2,-1),(2,1),(2,2),(2,3),(2,4),3,-1),(3,1),(3,2),(3,3),(3,4),共15种情况.函数y=f(x)有零点等价于Δ=b2-4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况满足条件.所以函数y=f(x)有零点的概率为=.因为a>0,函数y=f(x)图象的对称轴为直线x=,在区间[1,+∞)上单调递增,所以有≤1,满足条件的(a,b)为(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),(2,3),(2,4),(3,-1),(3,1),(3,2),(3,3),(3,4),共13种.所以函数y=f(x)在区间[1,+∞)上单调递增的概率为.三、填空题(每小题5分,共20分)13.在集合中任取一个元素,所取元素恰好满足方程cos x=的概率是.【解析】基本事件总数为10,满足方程cos x=的基本事件数为3,故所求概率P=.答案:14.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“不是整数”的概率为,“是整数”的概率为.【解析】因为在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,所以基本事件总数n=4×3=12.“不是整数”包含的基本事件有,,,,,,,,共8个,所以“不是整数”的概率为=.“是整数”与“不是整数”是对立事件,其概率为1-=.答案:15.为了调查某某阿克苏野生动物保护区内鹅喉羚的数量,调查人员逮到这种动物400只,标记后放回.一个月后,调查人员再次逮到该种动物800只,其中有标记的有2只,估算该保护区有鹅喉羚只.【解析】设保护区内有鹅喉羚x只,每只鹅喉羚被逮到的概率是相同的,所以=,解得x=160 000.答案:160 00016.甲、乙两位同学玩游戏,对于给定的实数a1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a1乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把a1除以2后再加上6,这样就可得到一个新的实数a2,对实数a2仍按上述方法进行一次操作,又得到一个新的实数a3,当a3>a1时,甲获胜,否则乙获胜,若甲胜的概率为,则a1的取值X围是.【解析】由题意可知,进行两次操作后,可得如下情况:当a3=2(2a1-6)-6=4a1-18时,其出现的概率为=,当a3=(2a1-6)+6=a1+3时,其出现的概率为=,当a3=2-6=a1+6时,其出现的概率为=,当a3=+6=+9时,其出现的概率为=,因为甲获胜的概率为,即a3>a1的概率为,则满足或整理得a1≤6或a1≥12.答案:(-∞,6]∪[12,+∞)四、解答题(共70分)17.(10分)对一批U盘进行抽检,结果如表:抽出件数a 50 100 200 300 400 500次品件数b 3 4 5 5 8 9次品频率(1)计算表中次品的频率.(2)从这批U盘中任意抽取一个是次品的概率约是多少?(3)为保证买到次品的顾客能够及时更换,要销售2 000个U盘,至少需进货多少个U盘? 【解析】(1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任意抽取一个是次品的概率约是0.02.(3)设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(1-0.02)≥2 000,因为x是正整数,所以x≥2 041,即至少需进货2 041个U盘.18.(12分)一个口袋内装有大小相等的1个白球和已有不同编号的三个黑球,从中任意摸出2个球.(1)共有多少个不同的基本事件,这样的基本事件是否为等可能的?该试验是古典概型吗?(2)摸出的两个球都是黑球记为事件A,问事件A包含几个基本事件?(3)计算事件A的概率.【解析】(1)任意摸出两球,共有{白球和黑球1},{白球和黑球2},{白球和黑球3},{黑球1和黑球2},{黑球1和黑球3},{黑求2和黑球3}6个基本事件.因为4个球的大小相同,所以摸出每个球是等可能的,故6个基本事件都是等可能事件.由古典概型定义知,这个试验是古典概型.(2)从4个球中摸出2个黑球包含3个基本事件.即事件A包含3个基本事件.(3)因为试验中基本事件总数n=6,而事件A包含的基本事件数m=3.所以P(A)===.19.(12分)计算机考试分理论考试与实际操作考试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”并颁发“合格证书”.甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.(1)若甲、乙、丙三人同时进行理论与实际操作两项考试,则谁获得“合格证书”的可能性大?(2)求甲、乙、丙三人进行理论与实际操作两项考试后,恰有两人获得“合格证书”的概率. 【解析】(1)记“甲获得′合格证书′”为事件A,“乙获得′合格证书′”为事件B,“丙获得′合格证书′”为事件C,则P(A)=×=,P(B)=×=,P(C)=×=,从而P(C)>P(B)>P(A),所以丙获得“合格证书”的可能性大.(2)记“甲、乙、丙三人进行理论与实际操作两项考试后,恰有两人获得′合格证书′”为事件D,则P(D)=P(AB)+P(A C)+P(BC)=××+××+××=.20.(12分)受轿车在保修期内的维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,甲品牌车保修期为3年,乙品牌车保修期为2年,现从该厂已售出的两种品牌的轿车中分别随机抽取50辆,统计在保修期内首次出现故障的车辆数据如表:品牌甲乙首次出现故障的时间x/年0<x≤11<x≤22<x≤3x>30<x≤11<x≤2x>2轿车数量/辆2 13 44 2 3 45(1)从该厂生产的甲种品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率.(2)从该厂生产的乙种品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率. (注:将频率视为概率)【解析】(1)设A,B,C分别表示甲品牌轿车首次出现故障在第1年,第2年和第3年之内,设D 表示甲品牌轿车首次出现故障在保修期内,因为A,B,C是彼此互斥的,其概率分别为P(A)==,P(B)=,P(C)=,所以P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=,即首次出现故障发生在保修期内的概率为.(2)乙品牌轿车首次出现故障发生在保修期内的概率为=.21.(12分)(2020·高考)某校为举办甲、乙两项不同活动,分别设计了相应方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如表:男生女生支持不支持支持不支持方案一200人300人400人100人方案二350人150人250人250人假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率的估计值记为p0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)【解析】(1)样本中,男生支持方案一的频率为=,女生支持方案一的频率为=,用样本估计总体,用频率估计概率,所以估计该校男生支持方案一的概率为,女生支持方案一的概率为.(2)记事件A i(i=1,2)为抽取的第i个男生支持,事件B为抽取的女生支持,则P(A i)=,P(B)=,所求概率p=P(A1A2+A1B+A2B)=P(A1A2)+P(A1B)+P(A2B)=××(1-)+×(1-)×+(1-)××=;(3)p0==.估计全校男生支持方案二的概率为=,女生支持方案二的概率为=.除一年级以外男生有100名,女生有100名,估计其中支持方案二的有×100(名),×100(名),p1==,所以p0>p1.22.(12分)在人流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3个黄色、3个白色的乒乓球(各球的体积、质地完全相同),旁边立着一块小黑板写着摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)求摸出的3个球都为白球的概率.(2)求摸出的3个球为2个黄球1个白球的概率.(3)假定一天中有100人参与摸球游戏,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱.【解析】把3个黄色乒乓球分别标记为A,B,C,3个白色乒乓球分别标记为1,2,3.从6个球中随机摸出3个球的样本空间Ω={ABC,AB1,AB2,AB3,AC1,AC2,AC3,BC1,BC2,BC3,A12,A13,A23,B12,B13,B23,C12,C13,C 23,123},共20个样本点,这20个样本点发生的可能性是相等的.(1)设事件E={摸出的3个球都为白球},则事件E包含的样本点有1个,即摸出123,则P(E)==0.05.(2)设事件F={摸出的3个球为2个黄球1个白球},则事件F包含的样本点有9个,P(F)==0.45.(3)设事件G={摸出的3个球为同一颜色}={摸出的3个球都为白球或摸出的3个球都为黄球},则事件G包含的样本点有2个,故P(G)==0.1.假定一天中有100人参与摸球游戏,由摸出的3个球为同一颜色的概率可估计事件“摊主送给摸球者5元钱”发生10次,事件“摸球者付给摊主1元钱”发生90次,故可估计该摊主一天可赚90×1-10×5=40(元),每月可赚1 200元.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十章 概率 单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(共40分)1、(4分)某高校有智能餐厅A 、人工餐厅B ,甲第一天随机地选择一餐厅用餐,如果第一天去A 餐厅,那么第二天去A 餐厅的概率为0.6;如果第一天去B 餐厅,那么第二天去A 餐厅的概率为0.8.则甲第二天去A 餐厅用餐的概率为( )A. 0.75B. 0.7C. 0.56D. 0.382、(4分)同时投掷两个质地均匀的骰子,两个骰子的点数至少有一个是奇数的概率为( )A.736B.1136C.1112D.343、(4分)有4张卡片,上面分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为( )4、(4分)某学生参与一种答题游戏, 需要从 ,,A B C 三道试题中选出一道进行回答, 回答正确即可获得奖品. 若该 学生选择 ,,A B C 的概率分别为0.3,0.4,0.3, 答对 ,,A B C 的概率分别为0.4,0.5,0.6, 则其获得奖品的 概率为( )A. 0.5B. 0.55C. 0.6D. 0.755、(4分)甲乙两人在数独APP 上进行“对战赛”,每局两人同时解一道题,先解出题人赢得一局,假设无平局,且每局甲乙两人赢的概率相同,先赢3局者获胜,则甲获胜且比赛恰进行了4局的概率是( )A. 310B.38C.116D.3166、(4分)一个人连续射击三次,事件“至少有一次击中目标”的对立事件是( )A.至多有一次击中目标 B.三次都击不中目标C.三次都击中目标D.只有一次击中目标7、(4分)从某高中2021名学生中选取50名学生参加数学竞赛,若采用以下方法选取:先用简单随机抽样方法从2021名学生中剔除21名,再从余下的2000名学生中随机抽取50名.则其中学生丙被选取和被剔除的概率分别是( )A.140,212021B.502021,212021C.140,212000D.212000,5020218、(4分)一个人打靶时连续射击两次,事件“两次都不中靶”的对立事件是( )A.至多有一次中靶 B.两次都中靶C.只有一次中靶D.至少有一次中靶9、(4分)同时掷3枚硬币,那么互为对立事件的是( )的A.至少有1枚正面和最多有1枚正面B.最多1枚正面和恰有2枚正面C.至多1枚正面和至少有2枚正面D.至少有2枚正面和恰有1枚正面10、(4分)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为2 3和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A.34B.23C.57D.512二、填空题(共25分)11、(5分)从红、绿、黄、紫、白、蓝 6 种颜色中任选 2 种不同的颜色, 则没有选红色的概率为____________.12、(5分)一颗标有数字16~的骰子连续郑两次,朝上的点数依次记为a b、,使得复数()()i4ia b b a+-为实数的概率是____________.13、(5分)天气预报元旦假期甲地降雨的概率是0.2,乙地降雨的概率是0.3,假定在这段时间内两地之间是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为____________.14、(5分)从集合12,3,2ìüíýîþ中任取两个不同的数,a b, 则log0ab>的概率为_______________.15、(5分)某学校团委在2021年春节前夕举办教师“学习强国”知识答题赛,其中高一年级的甲、乙两名教师组队参加答题赛,比赛共分两轮,每轮比赛甲、乙两人各答一题.已知甲答对每个题的概率为23,乙答对每个题的概率为12.假定甲、乙两人答题正确与否互不影响,则比赛结束时,甲、乙两人共答对三个题的概率为____________.三、解答题(共35分)16、(8分)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求2n m<+的概率.17、(9分)某连锁超市旗舰店在元旦当天推出一个购物满百元抽奖活动,凡是一次性购物满百元者可以从抽奖箱中一次性任意摸出2个小球(抽奖箱内共有5个小球,每个小球大小形状完全相同,这5个小球上分别标有1,2,3,4,5 这5个数字).(1)列出摸出的2个小球的所有可能的结果.(2)已知该超市活动规定:摸出的2个小球都是偶数为一等奖;摸出的2个小球都是奇数为二等奖.请分别求获得一等奖的概率与获得二等奖的概率.18、(9分)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量(单位:辆)如下表:轿车A轿车B轿车C 舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值.(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率.(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分为:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.19、(9分)某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命超过1000小时的概率均为12,且各个元件能否正常工作相互独立,求该部件的使用寿命超过1000小时的概率.参考答案1、答案:A 解析:2、答案:D解析:一共有6636´=种情况,两个均为偶数共有339´=种,故至少有一个奇数的概率931364=-=3、答案:C 解析:略4、答案:A解析:该学生获得奖品的概率为0.30.40.40.50.30.60.5´+´+´=.5、答案:D 解析:6、答案:B解析:一个人连续射击三次事件“至少有一次击中目标”的对立事件是“三次都击不中目标”.故选B.7、答案:B解析:由已知丙被剔除的概率是1212021P =,那么丙不被剔除的概率是2212000120212021P =-=,只有在丙不被剔除的情况下,丙才可能被抽取,因此概率为50200050200020212021P =´=.故选:B.8、答案:D解析:一个人打靶时连续射击两次,事件“两次都不中靶”的对立事件是:至少有一次中靶。
第十章章末检测(时间:120分钟,满分150分)一、选择题(本大题共8小题,每小题5分,共40分.) 1.以下事件是随机事件的是( ) A .下雨屋顶湿 B .秋后柳叶黄 C .有水就有鱼D .水结冰体积变大【答案】C 【解析】A ,B ,D 是必然事件.故选C .2.盘子里有肉馅、素馅和豆沙馅的包子共10个,从中随机取出1个,若是肉馅包子的概率为25,不是豆沙馅包子的概率为710,则素馅包子的个数为( )A .1B .2C .3D .4【答案】C 【解析】由题意可知这个包子是肉馅或素馅的概率为710,所以它是素馅包子的概率为710-25=310,故素馅包子的个数为10×310=3.故选C .3.据天气预报:在春节假期湖北武汉地区降雪的概率为0.2,湖南长沙地区降雪的概率为0.3.假定这段时间内两地是否降雪相互之间没有影响,则0.44等于( )A .两地都降雪的概率B .两地都不降雪的概率C .至少有一地降雪的概率D .恰有一地降雪的概率【答案】C 【解析】武汉和长沙两地都降雪的概率P (A )=0.2×0.3=0.06,故A 错误;两地都不降雪的概率P (B )=(1-0.2)(1-0.3)=0.56,故B 错误;至少有一地降雪的概率P (C )=1-(1-0.2)(1-0.3)=0.44,故C 正确;恰有一地降雪的概率P (D )=0.2×(1-0.3)+(1-0.2)×0.3=0.38,故D 错误.故选C .4.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,得到的点数之和是几就选几班,这种选法( )A .公平,每个班被选到的概率都为112B .公平,每个班被选到的概率都为16C .不公平,6班被选到的概率最大D .不公平,7班被选到的概率最大【答案】D 【解析】P (1)=0,P (2)=P (12)=136,P (3)=P (11)=118,P (4)=P (10)=112,P (5)=P (9)=19,P (6)=P (8)=536,P (7)=16.故选D .5.(2019年湖北高一期中)某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10,则该射手在一次射击中不够8环的概率为( )A .0.90B .0.30C .0.60D .0.40【答案】D 【解析】由题意知射手在一次射击中不够8环的对立事件是射手在一次射击中不小于8环,∵射手在一次射击中不小于8环包括击中8环,9环,10环,这三个事件是互斥的,∴射手在一次射击中不小于8环的概率是0.20+0.30+0.10=0.60,∴射手在一次射击中不够8环的概率是1-0.60=0.40.故选D .6.(2020年佛山月考)《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有大小两种,大灯下缀2个小灯是小灯球,大灯下缀4个小灯是大灯球,若这座楼阁的大灯共360个,小灯共1 200个,随机选取1个灯球,则这个灯球是大灯球的概率为( )A .13B .23C .14D .34【答案】B 【解析】设小灯球有x 个,大灯球有y 个,根据题意可得⎩⎪⎨⎪⎧x +y =360,2x +4y =1 200,解得x =120,y =240,则灯球的总数为x +y =360个,故这个灯球是大灯球的概率为p =240360=23.故选B . 7.某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x 为这种商品每天的销售量,y 为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A .19B .110C .15D .18【答案】B 【解析】日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a ,b ,c ,日销售量为21个的2天记为A ,B ,从这5天中任选2天,可能的情况有10种:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),其中选出的2天日销售量都为21个的情况只有1种,故所求概率p =110.故选B .8.(2020年广州高一期末)甲、乙两人罚球的命中率分别为12,13,两人分别罚球2次,则他们共命中3次的概率为( )A .16B .19C .112D .13【答案】A 【解析】根据题意得,甲、乙共命中3次的概率p =2×12×12×13×⎝⎛⎭⎫1-13+2×12×⎝⎛⎭⎫1-12×13×13=2×⎝⎛⎭⎫118+136=16.故选A . 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列事件中是随机事件的是( ) A .明年8月18日,北京市不下雨 B .在标准大气压下,水在4℃时结冰C .从标有1,2,3,4的四张号签中任取一张,恰为1号签D .向量的模不小于0【答案】AC 【解析】A ,C 为随机事件,B 为不可能事件,D 为必然事件.故选AC .10.一个人连续射击2次,则下列各事件关系中,说法正确的是( ) A .事件“两次均击中”与事件“至少一次击中”互为对立事件 B .事件“第一次击中”与事件“第二次击中”互斥 C .事件“恰有一次击中”与事件“两次均击中”互斥D .事件“两次均未击中”与事件“至少一次击中”互为对立事件【答案】CD 【解析】对于A ,事件“至少一次击中”包含“一次击中”和“两次均击中”,所以不是对立事件,A 错误;对于B ,事件“第一次击中”包含“第一次击中、第二次击中”和“第一次击中、第二次不中”,所以与事件“第二次击中”不是互斥事件,B 错误;对于C ,事件“恰有一次击中”是“一次击中、一次不中”,它与事件“两次均击中”是互斥事件,C 正确;对于D ,事件“两次均未击中”的对立事件是“至少一次击中”,D 正确.故选CD .11.从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事件是( ) A .“至少有一个黑球”与“都是黑球” B .“至少有一个黑球”与“至少有一个红球” C .“恰好有一个黑球”与“恰好有两个黑球” D .“至少有一个黑球”与“都是红球”【答案】AB 【解析】“至少有一个黑球”中包含“都是黑球”,A 正确;“至少有一个黑球”与“至少有一个红球”可能同时发生,B 正确;“恰好有一个黑球”与“恰好有两个黑球”不可能同时发生,C 不正确;“至少有一个黑球”与“都是红球”不可能同时发生,D 不正确.故选AB .12.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号车站开始,在每个车站下车是等可能的,则( )A .甲、乙两人下车的所有可能的结果有9种B .甲、乙两人同时在第2号车站下车的概率为19C .甲、乙两人同时在第4号车站下车的概率为13D .甲、乙两人在不同的车站下车的概率为23【答案】ABD 【解析】甲、乙两人下车的所有可能的结果为(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4),共9种,A 正确,甲、乙两人同时在第2号车站和第4号车站下车的概率都是19,B 正确,C 错误.甲、乙两人在不同的车站下事的概率为1-3×19=23,D 正确.故选ABD .三、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上) 13.我国西部一个地区的年降水量在下列区间内的概率如表所示:【答案】0.25 【解析】“年降水量在[200,300](mm)范围内”由“年降水量在[200,250)(mm)范围内”和“年降水量在[250,300](mm)范围内”两个互斥事件构成,因此概率为0.13+0.12=0.25.14.下列各对事件:①运动员甲射击一次,“射中9环”与“射中8环”;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”; ④甲、乙两运动员各射击一次,“至少有一人射中目标”与“甲射中目标但乙没有射中目标”.其中互斥事件的有________.【答案】①③ 【解析】①和③不可能同时发生,是互斥事件.②中“甲射中10环”与“乙射中9环”相互之间没有影响,是相互独立事件.15.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点出现”,则事件A ∪B 发生的概率为________.(B 表示B 的对立事件)【答案】23 【解析】事件A 包含的基本事件为“出现2点”或“出现4点”;B 表示“大于等于5的点出现”,包含的基本事件为“出现5点”或“出现6点”.显然A 与B 是互斥的,故P (A ∪B )=P (A )+P (B )=13+13=23.16.(2019年西安高一期中)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,则军火库发生爆炸的概率为________.【答案】0.225 【解析】军火库发生爆炸的概率p =0.025+0.1+0.1=0.225.四、解答题(本大题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1,2,3,4.现从盒子中随机抽取卡片.(1)若一次抽取3张卡片,求3张卡片上的数字之和大于7的概率;(2)若第一次抽取1张卡片,放回后再抽取1张卡片,求至少有一次抽到数字3的概率. 解:(1)设A 表示事件“抽取的3张卡片上的数字之和大于7”,任取3张卡片,3张卡片上的数字的全部可能结果是(1,2,3),(1,2,4),(1,3,4),(2,3,4),共4个.其中数字之和大于7的是(1,3,4),(2,3,4),共2个,故P (A )=12.(2)设B 表示事件“至少有一次抽到数字3”,第一次抽取1张卡片,放回后再抽取1张卡片的全部可能结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.至少有一次抽到数字3的结果有(1,3),(2,3),(3,1),(3,2),(3,3),(3,4),(4,3),共7个.故所求事件的概率为P (B )=716.18.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,求事件A 的概率.解:(1)由题意可知n 1+1+n =12,解得n =2.(2)记标号为2的两个小球分别为21,22,不放回地随机抽取2个小球的所有基本事件为(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A 包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个,所以P (A )=412=13.19.“抢红包”的活动给节假日增添了一份趣味,某组织进行了一次关于“是否参与抢红包活动”的调查活动,在几个大型小区随机抽取50名居民进行问卷调查,对问卷结果进行了统计,并将调查结果统计如下表:年龄/岁[10,20)[20,30)[30,40)[40,50)[50,60)[60,70] 调查人数4614128 6参与的人数341263 2民年龄的中位数和平均数(结果精确到0.1);(2)在被调查的居民中,若从年龄在[10,20),[20,30)内的居民中各随机选取1人参加抽奖活动,求选中的2人中仅有1人没有参与抢红包活动的概率.解:(1)补全频率分布直方图,如图所示:这50名居民年龄的平均数约为(15×0.008+25×0.012+35×0.028+45×0.024+55×0.016+65×0.012)×10=41.4.设中位数为x,则0.08+0.12+0.28+0.024(x-40)=0.5,解得x≈40.8,所以这50名居民年龄的中位数约为40.8.(2)记年龄在[10,20)内的居民为a1,A2,A3,A4(其中居民a1没有参与抢红包活动),年龄在[20,30)内的居民为b1,b2,B3,B4,B5,B6(其中居民b1,b2没有参与抢红包活动).从年龄在[10,20),[20,30)内的居民中各选取1人的情形有(a1,b1),(a1,b2),(a1,B3),(a1,B4),(a1,B5),(a1,B6),(A2,b1),(A2,b2),(A2,B3),(A2,B4),(A2,B5),(A2,B6),(A3,b1),(A3,b2),(A3,B3),(A3,B4),(A3,B5),(A3,B6),(A4,b1),(A4,b2),(A4,B3),(A4,B4),(A4,B5),(A4,B6),共24种.其中仅有1人没有参与抢红包活动的情形有10种,所以选中的2人中仅有1人没有参与抢红包活动的概率p=1024=5 12.20.(2020年宜宾模拟)手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),将数据分组为(50,70],(70,90],(90,110],(110,130],(130,150],(150,170],(170,190],(190,210],绘制出如下频率分布直方图:(1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;(2)若该单位有职工200人,试估计职工一天行走步数不大于13 000的人数;(3)在(2)的条件下,该单位从行走步数大于15 000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间(150,170]的概率.解:(1)由题意,得0.002×20+0.006×20+0.008×20+a×20+0.010×20+0.008×20+0.002×20+0.002×20=1,解得a=0.012.设中位数为110+x,则0.002×20+0.006×20+0.008×20+0.012x=0.5,解得x=15,所以中位数是125.(2)由200×(0.002×20+0.006×20+0.008×20+0.012×20)=112,所以估计职工一天步行数不大于13 000步的人数为112.(3)在区间(150,170]中有200×0.008×20=32人,在区间(170,190]中有200×0.002×20=8人,在区间(190,210]中有200×0.002×20=8人,按分层抽样抽取6人,则从(150,170]中抽取4人,(170,190]中抽取1人,(190,210]中抽取1人.设从(150,170]中抽取职工为a,b,c,d,从(170,190]中抽取职工为E,从(190,210]中抽取职工为F,则从6人中抽取2人的情况有ab,ac,ad,aE,aF,bc,bd,bE,bF,cd,cE,cF,dE,dF,EF共15种情况,其中满足两人均来自区间(150,170]的有ab,ac,ad,bc,bd,cd共6种情况,所以p=615=25.所以两人均来自区间(150,170]的概率为25.21.(2019年哈尔滨三模)棉花的优质率是以其纤维长度来衡量的,纤维越长的棉花品质越高.棉花的品质分类标准为:纤维长度(单位:mm)小于等于28的为粗绒棉,纤维长度在(25,33]为细绒棉,纤维长度大于33的为长绒棉,其中纤维长度在38以上的棉花又名“军海1号”.某采购商从新疆某一棉花基地抽测了100根棉花的纤维长度,得到数据绘制成频数分布表如下:纤维长度/mm小于或等于25(25,33](33,38]大于38棉花的50%以上”的要求?(2)用分层抽样的方法从长绒棉中抽取6根棉花,再从6根棉花中取两根进行检验,求抽到的两根棉花只有一根是“军海1号”的概率.解:(1)将频率作为概率,根据以上数据, 长绒棉占全部棉花的比例为40+20100=60%,∴该基地的这批棉花符合“长绒棉占全部棉花的50%以上”的要求.(2)用分层抽样的方法从长绒棉中抽取6根棉花,其中“军海1号”抽到的根数为6×2020+40=2. 再从6根棉花中取两根进行检验,基本事件总数n =15,抽到的两根棉花只有一根是“军海1号”包含的基本事件个数m =8,∴抽到的两根棉花只有一根是“军海1号”的概率p =m n =815.22.(2019年北京朝阳区高一期末)某市从高二年级随机选取1 000名学生,统计他们选修物理、化学、生物、政治、历史和地理六门课程(前3门为理科课程,后3门为文科课程)的情况,得到如下统计表,其中“√”表示选课,“空白”表示未选.(1) (2)在这1 000名学生中,从选择方案一、二、三的学生中各选取2名学生,如果在这6名学生中随机选取2名,求这2名学生除选修物理以外,另外两门选课中有相同科目的概率;(3)利用表中数据估计该市选课偏文(即选修至少两门文科课程)的学生人数多还是偏理(即选修至少两门理科课程)的学生人数多,并说明理由.解:(1)选修物理的共有220+200+180=600人,其中选修政治的有220人,所以从选修物理的学生中随机选取1人,求该学生选修政治的概率P 1=220600=1130.(2)设选择方案一的2名学生为a 1,a 2,选择方案二的2名学生为b 1,b 2,选择方案三的2名学生为c 1,c 2,从这6名学生中随机选取2人,有(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 2,b 2),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 2,c 1),(b 2,c 2),(c 1,c 2)共15种情况,其中除选修物理以外,另外两门选课中有相同科目的有(a 1,a 2),(a 1,c 1),(a 1,c 2),(a 2,c 1),(a 2,c 2),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 2,c 1),(b 2,c 2),(c 1,c 2)共11种情况,所以所求概率P 2=1115.(3)调查者中选偏文的共有175+135+90=400人,频率为0.4,选修偏理的有1 000-400=600人,频率为0.6.所以估计全市选课偏文的学生大约占0.4,选课偏理的大约占0.6.所以估计全市选课偏理的学生多.。
第十章单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数是( )①2022年8月18日,北京市不下雨;②在标准大气压下,水在4 ℃时结冰;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④x∈R,则|x|的值不小于0.A.1 B.2C.3 D.4答案 B解析①③为随机事件,②为不可能事件,④为必然事件.2.下列说法正确的个数为( )①彩票的中奖率为千分之一,那么买一千张彩票就肯定能中奖;②抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性就比反面大;③在袋子中放有2白2黑大小相同的四个小球,甲、乙玩游戏的规则是从中不放回的依次随机摸出两个小球,如两球同色则甲获胜,否则乙获胜,那么这种游戏是公平的.A.1 B.2C.3 D.0答案 D解析对于①,彩票的中奖率为千分之一,但买一千张彩票不一定能中奖,故错误;对于②,抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性与出现反面一样大,故错误;对于③,根据古典概型概率计算公式可得,甲获胜的概率为13,故这种游戏是不公平的,故错误.所以说法正确的个数为0个,故选D.3.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.52,摸出白球的概率是0.28,那么摸出黑球的概率是( )A.0.2 B.0.28C.0.52 D.0.8答案 A解析设“摸出红球”为事件M,“摸出白球”为事件N,“摸出黑球”为事件E,则P(M)+P(N)+P(E)=1,所以P(E)=1-P(M)-P(N)=1-0.52-0.28=0.2.故选A.4.若干个人站成一排,其中为互斥事件的是( )A.“甲站排头”与“乙站排头”B .“甲站排头”与“乙不站排尾”C .“甲站排头”与“乙站排尾”D .“甲不站排头”与“乙不站排尾” 答案 A解析 由互斥事件的定义可得,“甲站排头”与“乙站排头”为互斥事件.5.若“A ∪B ”发生(A ,B 中至少有一个发生)的概率为0.6,则A -,B -同时发生的概率为( )A .0.6B .0.36C .0.24D .0.4答案 D解析 “A ∪B ”发生指A ,B 中至少有一个发生,它的对立事件为A ,B 都不发生,即A -,B -同时发生.6.在5盒酸奶中,有2盒已经过了保质期,从中任取2盒,取到的酸奶中有已过保质期的概率为( )A.13B.23C.710D.15答案 C解析 对5盒酸奶编号1~5,4,5代表过期.从中任取2盒,则样本点有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,这10个样本点出现的可能性相等.含4,5的有7个,所以所求概率为710,故选C. 7.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13B.512C.12D.712答案 A解析 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,共12种情况,这12种情况发生的可能性是相等的.而星期六安排一名男生、星期日安排一名女生有A 1B 1,A 1B 2,A 2B 1,A 2B 2,共4种情况,则所求事件发生的概率为P =412=13.故选A.8.甲邀请乙、丙、丁三人加入了微信群“兄弟”,为庆祝兄弟相聚,甲发了一个9元的红包,被乙、丙、丁三人抢完,已知三人均抢到整数元,且每人至少抢到2元,则丙领到的钱数不少于乙、丁的概率是( )A.13B.310C.25D.34答案 C解析 列出乙、丙、丁三人分别得到的钱数,有(2,2,5),(2,3,4),(2,4,3),(2,5,2),(3,2,4),(3,3,3),(3,4,2),(4,2,3),(4,3,2),(5,2,2),共有10种情况,这10种情况发生的可能性是相等的.而丙领到的钱数不少于乙、丁的情况有(2,4,3),(2,5,2),(3,3,3),(3,4,2),共计4种,故所求概率为410=25.故选C.9.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则下列事件的概率为89的是( )A .颜色相同B .颜色不全同C .颜色全不同D .无红球 答案 B解析 有放回地取球3次,共27种可能结果,其中颜色相同的结果有3种,其概率为327=19;颜色不全同的结果有24种,其概率为2427=89;颜色全不同的结果有6种,其概率为627=29;无红球的结果有8种,其概率为827.故选B. 10.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.23B.13C.19D.118答案 A解析 由题设条件可得,P (A )P (B -)=P (A -)P (B ),P (A -)P (B -)=19,又P (A )=1-P (A -),P (B )=1-P (B -),所以P (A -)=P (B -)=13.所以P (A )=1-P (A -)=23.11.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表: 所用时间(分钟) [0,20) [20,40) [40,60) [60,80) [80,100]人数 25501555公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y (元)与乘车时间t (分钟)的关系是y =200+40⎣⎢⎡⎦⎥⎤t 20,其中⎣⎢⎡⎦⎥⎤t 20表示不超过t20的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A .0.5B .0.7C .0.8D .0.9答案 D解析 由题意知y ≤300,即200+40⎣⎢⎡⎦⎥⎤t 20≤300,即⎣⎢⎡⎦⎥⎤t 20≤2.5,解得0≤t <60,由表可知t ∈[0,60)的人数为90,故所求概率为90100=0.9. 12.为了调查某厂2000名工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20件产品的工人中随机地选取2位工人进行培训,则这2位工人不在同一组的概率是( )A.110 B.715C.815D.1315答案 C解析 根据题中频率分布直方图可知产品件数在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4,设生产产品件数在[10,15)内的2人分别是A ,B , 设生产产品件数在[15,20)内的4人分别是C ,D ,E ,F ,则从生产低于20件产品的工人中随机地选取2位工人的结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,这15种结果出现的可能性相等.2位工人不在同一组的结果有(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),共8种.则选取的这2人不在同一组的概率为815.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.口袋中有形状和大小完全相同的五个球,编号分别为1,2,3,4,5,若从中一次随机摸出两个球,则摸出的两个球的编号之和大于6的概率为________.答案 25解析 列出满足题意的编号情况:2与5,3与5,4与5,3与4,共4种.又总共有10种情况,且这10种情况发生的可能性是相等的,故所求概率为410=25.14.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.答案 13解析 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,这9种情况发生的可能性是相等的.他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13.15.A ,B ,C ,D 四名学生按任意次序站成一排,则A 或B 在边上的概率为________. 答案 56解析 A ,B ,C ,D 四名学生按任意次序站成一排,基本事件数共24种,这24种基本事件发生的可能性是相等的,如下图所示.A ,B 都不在边上共4种,所以A 或B 在边上的概率为P =1-424=56.16.设两个相互独立的事件A 与B ,若事件A 发生的概率为p ,事件B 发生的概率为1-p ,则A 与B 同时发生的概率的最大值是________.答案 14解析 A 与B 同时发生,即事件AB 发生,根据相互独立事件的概率的乘法公式,得P (AB )=P (A )P (B )=p (1-p )=p -p 2=-⎝ ⎛⎭⎪⎫p -122+14.当p =12时,P (AB )取得最大值14.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁4种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为 100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.18.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表(单位:人):参加书法社团未参加书法社团参加演讲社团85(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解 (1)记“该同学至少参加上述一个社团”为事件A ,则P (A )=8+2+545=13.所以该同学至少参加上述一个社团的概率为13.(2)从5名男同学和3名女同学中各随机选1人的所有的样本点有:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 5,B 1),(A 5,B 2),(A 5,B 3),共15个,这15个样本点发生的可能性是相等的.其中A 1被选中且B 1未被选中的有(A 1,B 2),(A 1,B 3),共2个,所以A 1被选中且B 1未被选中的概率为P =215.19.(本小题满分12分)某地区有小学21所,中学14所,大学7所,现采用比例分配的分层随机抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率. 解 (1)从小学中抽取的学校数目为6×2121+14+7=3,从中学中抽取的学校数目为6×1421+14+7=2,从大学中抽取的学校数目为6×721+14+7=1. (2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6),共15种,每种结果出现的可能性相等.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种.所以P (B )=315=15.所以抽取的2所学校均为小学的概率为15.20.(本小题满分12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,求事件A 的概率.解 (1)由题意可知,取到标号为2的小球的概率为12,可得n 1+1+n =12,解得n =2.(2)不放回地随机抽取2个小球的所有样本点为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,这12个样本点发生的可能性是相等的.事件A 包含的样本点为(0,21),(0,22),(21,0),(22,0),共4个.所以P (A )=412=13. 21.(本小题满分12分)在某次1500米体能测试中,甲、乙、丙三人各自通过测试的概率分别为25,34,13,求:(1)3人都通过体能测试的概率; (2)只有2人通过体能测试的概率; (3)只有1人通过体能测试的概率.解 设事件A 表示“甲通过体能测试”,事件B 表示“乙通过体能测试”,事件C 表示“丙通过体能测试”.由题意有:P (A )=25,P (B )=34,P (C )=13.(1)设M 1表示事件“甲、乙、丙3人都通过体能测试”,即M 1=ABC . 由事件A ,B ,C 相互独立,可得P (M 1)=P (ABC )=P (A )P (B )P (C )=25×34×13=110. 所以3人都通过体能测试的概率为110.(2)设M 2表示事件“甲、乙、丙3人中只有2人通过体能测试”,则M 2=AB C -∪A B -C ∪A-BC ,由于事件A ,B ,C ,A -,B -,C -均相互独立,并且事件AB C -,A B -C ,A -BC 两两互斥,因此所求概率为P (M 2)=P (A )P (B )P (C -)+P (A )P (B -)P (C )+P (A -)P (B )P (C )=25×34×⎝⎛⎭⎪⎫1-13+25×⎝⎛⎭⎪⎫1-34×13+⎝ ⎛⎭⎪⎫1-25×34×13=2360. 所以只有2人通过体能测试的概率为2360.(3)设M 3表示事件“甲、乙、丙3人中只有1人通过体能测试”,则M 3=A B - C -∪A -B C -∪A - B -C ,由于事件A ,B ,C ,A -,B -,C -均相互独立,并且事件A B - C -,A -B C -,A - B -C 两两互斥,因此所求概率为P (M 3)=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C )=25×⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫1-25×34×⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫1-25×⎝ ⎛⎭⎪⎫1-34×13=512. 所以只有1人通过体能测试的概率为512.22.(本小题满分12分)某中学作为蓝色海洋教育特色学校,随机抽取100名学生,进行一次海洋知识测试,按测试成绩(假设考试成绩均在[65,90)内)分组如下:第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90).得到频率分布直方图如图.(1)求测试成绩在[80,85)内的频率;(2)从第三、四、五组学生中用比例分配的分层随机抽样的方法抽取6名学生组成海洋知识宣讲小组,定期在校内进行义务宣讲,并在这6名学生中随机选取2名参加市组织的蓝色海洋教育义务宣讲队,求第四组至少有1名学生被抽中的概率.解 (1)测试成绩在[80,85)内的频率为1-(0.01+0.07+0.06+0.02)×5=0.2.(2)第三组的人数为0.06×5×100=30,第四组的人数为0.2×100=20,第五组的人数为0.02×5×100=10,所以第三组抽取3人,第四组抽取2人,第五组抽取1人.设第三组抽到的3人为A1,A2,A3,第四组抽到的2人为B1,B2,第五组抽到的1人为C.从6名学生中随机选取2名学生的所有可能结果有15种:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C),(A2,A3),(A2,B1),(A2,B2),(A2,C),(A3,B1),(A3,B2),(A3,C),(B1,B2),(B1,C),(B2,C),这15种结果出现的可能性相等.设“第四组2名学生中至少有1名学生被抽中”为事件M,则事件M包含的样本点有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),(B1,C),(B2,C),共9种.所以,第四组至少有1名学生被抽中的概率P(M)=915=35.- 11 -。