快速傅立叶变换
- 格式:pptx
- 大小:1.00 MB
- 文档页数:61
⽂中内容均为个⼈理解,如有错误请指出,不胜感激前⾔先解释⼏个⽐较容易混淆的缩写吧FMT 快速莫⽐乌斯变化—>感谢stump提供多项式复数在介绍复数之前,⾸先介绍⼀些可能会⽤到的东西(好像画的不是很标准。
)定义设a ,b 为实数,i 2=−1,形如a +bi 的数叫复数,其中i 被称为虚数单位,复数域是⽬前已知最⼤的域在复平⾯中,x 代表实数,y 轴(除原点外的点)代表虚数,从原点(0,0)到(a ,b )的向量表⽰复数a +bi模长:从原点(0,0)到点(a ,b )的距离,即√a 2+b 2幅⾓:假设以逆时针为正⽅向,从x 轴正半轴到已知向量的转⾓的有向⾓叫做幅⾓运算法则加法:因为在复平⾯中,复数可以被表⽰为向量,因此复数的加法与向量的加法相同,都满⾜平⾏四边形定则(就是上⾯那个)乘法:⼏何定义:复数相乘,模长相乘,幅⾓相加代数定义:(a +bi )∗(c +di )=ac +adi +bci +bdi 2=ac +adi +bci −bd=(ac −bd )+(bc +ad )i单位根下⽂中,默认n 为2的正整数次幂在复平⾯上,以原点为圆⼼,1为半径作圆,所得的圆叫单位圆。
以圆点为起点,圆的n 等分点为终点,做n 个向量,设幅⾓为正且最⼩的向量对应的复数为ωn ,称为n 次单位根。
根据复数乘法的运算法则,其余n −1个复数为ω2n ,ω3n ,…,ωn n 注意ω0n =ωn n =1(对应复平⾯上以x 轴为正⽅向的向量)那么如何计算它们的值呢?这个问题可以由欧拉公式解决ωk n =cos k ∗2πn +i sin k ∗2πn例如图中向量AB 表⽰的复数为8次单位根单位根的幅⾓为周⾓的1n在代数中,若z n =1,我们把z 称为n 次单位根单位根的性质ωk n =cos k2πn +i sin k 2πn (即上⾯的公式)ω2k 2n =ωk n证明:ω2k 2n =cos2k ∗2π2n +i sin2k ∗2π2n =ωk nωk +n2n =−ωk n ωn2n =cos n 2∗2πn +i sin n 2∗2πn =cos π+i sin π=−1ω0n =ωn n =1讲了这么多,貌似跟我们的正题没啥关系啊。
快速傅里叶变换推导摘要:1.快速傅里叶变换的概念与意义2.傅里叶变换的定义与性质3.快速傅里叶变换的算法原理4.快速傅里叶变换的实际应用正文:一、快速傅里叶变换的概念与意义快速傅里叶变换(Fast Fourier Transform,FFT)是一种高效的计算离散傅里叶变换(Discrete Fourier Transform,DFT)及其逆变换的算法。
DFT 是一种将时间域信号转换到频率域的方法,常用于信号处理、图像处理等领域。
然而,当信号长度很长时,DFT 的计算复杂度较高,因此,为了加速计算,提出了快速傅里叶变换算法。
二、傅里叶变换的定义与性质傅里叶变换是一种将信号从时域转换到频域的方法。
对于一个信号f(t),其傅里叶变换结果为频谱F(ω),可以通过以下公式计算:F(ω) = ∫[f(t) * e^(-jωt) dt],其中积分范围为-∞到∞。
傅里叶变换具有以下性质:1.傅里叶变换是线性的,即满足线性性质的信号可以通过傅里叶变换分开。
2.傅里叶变换是可逆的,即频域信号可以通过傅里叶逆变换转换回时域信号。
3.傅里叶变换具有时域与频域之间的帕斯卡三角关系,即频谱的幅度与相位分别对应时域信号的幅度与相位。
三、快速傅里叶变换的算法原理快速傅里叶变换算法的原理是将DFT 分解成更小的子问题,并重复利用子问题的计算结果。
具体来说,如果将信号长度为N 的DFT 表示为:X_k = ∑[x_n * e^(-j2πnk/N)],其中n 为时域索引,k 为频域索引。
那么,如果将信号长度分解为2 的幂次方形式(如N = 2^m),则可以将DFT 分解为两个较短的DFT 的加权和,即:X_k = ∑[x_n * e^(-j2πnk/N)] = ∑[x_n * e^(-j2πn(k-m)/2^m)] + e^(-j2πkm/2^m) * ∑[x_n * e^(-j2πn(k+m)/2^m)]其中,第一个和式计算偶数项的DFT,第二个和式计算奇数项的DFT。
快速傅里叶变换浅析快速傅里叶变换(Fast Fourier Transform,FFT)是一种用于将信号在时域和频域之间转换的高效算法。
它广泛应用于数字信号处理、图像处理、音频处理以及其他各种领域。
本文将简要介绍FFT的原理、应用及其优缺点。
一、快速傅里叶变换的原理快速傅里叶变换是傅里叶变换(Fourier Transform,FT)的一种快速算法。
FT是将一个信号分解成不同频率的正弦波组成的频谱。
而FFT则通过将信号分解成更小的子问题并利用许多对称性质来大大减少计算量。
在FFT中,信号被表示为一组复数形式的采样点。
通过对这些采样点进行分解和重组,可得到信号的频谱。
FFT算法的核心思想是将信号分解成大小相等的子问题,并通过迭代的方式快速计算出频谱。
不同大小的子问题需要使用不同的算法,其中最常用的是基2快速傅里叶变换算法(Cooley-Tukey算法)。
二、快速傅里叶变换的应用1. 信号处理领域FFT在信号处理领域得到了广泛应用,例如音频和图像处理。
在音频处理中,FFT可以将时域的音频信号转换为频域,从而实现音频的分析、滤波、压缩等操作。
在图像处理中,FFT可以将图像转换为频域表达,从而实现图像增强、滤波、纹理分析等操作。
2. 通信领域FFT在通信领域也有着重要的应用。
例如,在调制解调器中,FFT被用于将时域的信号转换为频域,以进行调制解调操作。
另外,FFT还可以用于信号的编码、解码和信道估计等方面,提高通信系统的性能。
3. 数值计算领域FFT在数值计算领域也扮演着重要的角色。
例如,在大规模线性方程组的求解中,FFT被用于加速计算过程。
FFT还可以应用于信号滤波、噪声消除、信号重建和频谱分析等方面。
三、快速傅里叶变换的优缺点1. 优点(1)高效性:相比于传统的傅里叶变换算法,FFT具有更高的计算效率,能够在较短的时间内完成复杂的频谱计算。
(2)节省空间:FFT所需的内存空间较少,可以适用于有限的计算资源。
快速傅里叶变换(fast Fourier transform), 即利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称,简称FFT。
快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。
采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。
快速傅里叶变换数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N^2次运算。
当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)^2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N 点的DFT变换。
这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+N^2/2。
继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。
而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N 点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。
基本思想编辑FFT的基本思想是把原始的N点序列,依次分解成一系列的短序列。
充分利用DFT计算式中指数因子所具有的对称性质和周期性质,进而求出这些短序列相应的DFT并进行适当组合,达到删除重复计算,减少乘法运算和简化结构的目的。
此后,在这思想基础上又开发了高基和分裂基等快速算法,随着数字技术的高速发展,1976年出现建立在数论和多项式理论基础上的维诺格勒傅里叶变换算法(WFTA)和素因子傅里叶变换算法。
它们的共同特点是,当N是素数时,可以将DFT算转化为求循环卷积,从而更进一步减少乘法次数,提高速度。
快速傅⾥叶变换快速傅⾥叶变换快速傅⾥叶变换(FFT )是根据计算量的最⼩化原理来设计和实施离散傅⾥叶变换(DFT)计算的⽅法。
1965年,库利(T.W.Cooley )和图基(J.W.tukey )发表了著名的《计算机计算傅⾥叶级数的⼀种算法》论⽂。
从此掀起了快速傅⾥叶变换计算⽅法研究的热潮。
快速傅⾥叶变换(FFT )的出现,实现了快速、⾼效的信号分析和信号处理,为离散傅⾥叶变换(DFT)的⼴泛应⽤奠定了基础。
1.1离散傅⾥叶变换(DFT)的计算设x(n)是⼀个长度为M 的有限长序列,则定义x(n)的N 点离散傅⾥叶变换为∑-===10)()]([)(N n kn NW n x n x DFT k X 其中由于计算⼀个X(k)值需要N 次复乘法和(N-1)次复数加法,因⽽计算N 个X(k)值,共需N2次复乘法和N(N-1)次复加法。
每次复乘法包括4次实数乘法和2次实数加法,每次复加法包括2次实数加法,因此计算N 点的DFT 共需要4N2次实数乘法和(2N2+2N ·(N-1))次实数加法。
当N 很⼤时,这是⼀个⾮常⼤的计算量。
1.2减少DFT 计算量的⽅法减少DFT 的计算量的主要途径是利⽤k N W 的性质和计算表达式的组合使⽤,其本质是减少DFT 计算的点数N 以便减少DFT 的计算量。
k N W 的性质:(1)对称性: (2)周期性: (3) 可约性: (4) 特殊点:选择其中⼀个证明N N j k N j N k N j N k N e e e W 222)2(22πππ--+-+==ππj k N j e e --=2k N j e π2--=k N W -=FFT 算法是基于可以将⼀个长度为N 的序列的离散傅⾥叶变换逐次分解为较短的离散傅⾥叶变换来计算这⼀基本原理的。
这⼀原理产⽣了许多不同的算法,但它们在计算速度上均取得了⼤致相当的改善。
0,1,,1k N =-()*nk nk N N W W -=()()nk N n k n N k N N NW W W ++==nk mnk N mN W W =//nk nk m N N mW W =01N W =/21N N W =-(/2)k N k N NW W +=-在这⾥讨论两类基本的FFT 算法。
数字信号处理中的快速傅里叶变换快速傅里叶变换(Fast Fourier Transform, FFT)是数字信号处理中一种重要的算法,用于将时域信号转换为频域信号。
通过将信号分解成不同频率的正弦和余弦波,可以提取出信号的频谱信息,进而进行频域分析和滤波等操作。
本文将介绍快速傅里叶变换的原理、算法流程以及在数字信号处理中的应用。
一、快速傅里叶变换的原理快速傅里叶变换是以傅里叶变换为基础的一种高效的算法。
傅里叶变换是将一个周期函数(或有限长的信号)分解成若干个不同频率的正弦和余弦波的叠加。
这些正弦和余弦波的频率和振幅反映了原始信号的频谱特征。
传统的傅里叶变换算法复杂度较高,难以在实时信号处理中应用。
而快速傅里叶变换通过巧妙地利用信号的对称性和周期性,将传统傅里叶变换的复杂度从O(n^2)降低到O(nlogn),大大提高了计算效率。
二、快速傅里叶变换的算法流程快速傅里叶变换算法采用分治法的思想,将信号逐步分解成更小的子问题,并通过递归地计算子问题的频域结果来获得最终的结果。
其算法流程如下:1. 输入原始信号,设信号长度为N。
2. 如果N为1,则直接返回原始信号。
3. 将原始信号分为偶数项和奇数项两部分。
4. 对偶数项序列进行快速傅里叶变换,得到频域结果D1。
5. 对奇数项序列进行快速傅里叶变换,得到频域结果D2。
6. 根据傅里叶变换的性质,将D1和D2组合成整体的频域结果,得到最终结果。
7. 返回最终结果。
三、快速傅里叶变换在数字信号处理中的应用1. 频谱分析:快速傅里叶变换可以将信号从时域转换到频域,通过分析信号的频谱特征,可以提取信号的频率成分,并得到各频率成分的振幅和相位信息。
在音频、图像处理等领域,频谱分析是常见的操作,可以实现音乐信号的频谱可视化、图像去噪和图像压缩等任务。
2. 滤波操作:快速傅里叶变换可以将信号转换到频域后进行滤波操作。
在通信系统中,为了提高信号抗干扰能力和传输效率,通常使用滤波器对信号进行处理。