20042014湖北版十年高考统计表理
- 格式:doc
- 大小:45.50 KB
- 文档页数:1
2014湖北高考报名人数2014湖北高考报名人数,湖北省2014年高考报名已于昨日正式启动,预计我省报名人数为409879人。
相关部门预测,2014年湖北省高考预测报名人数409879人,比2013年实际报名人数(438143人)减少28264人,预测人数中理科生的下滑幅度较大。
更多关于高职高专类学校和专业相关问题可以询问QQ 601463312 欢迎大家了解。
以下是湖北省某些地区高考报名人数情况:武汉:今年武汉市共有55139人报名参加高考,比2013年减少3402人,艺术生(文、理)为10216人,比2013年减少了904人恩施:从恩施州教育局获悉,恩施州2014年全国统一高考报名工作已经结束,全州报名参加高考总人数为23506人,比去年减少217人,为近年来参加高考人数首次下降。
全州今年报名参加普通高考的人数为20542人,比去年减少62人,其中文史类9213人、理工类7716人、艺术类1977人、体育类1636人;报名参加高职类统考的人数为2964人,比去年减少155人。
十堰:十堰2014年共有19549人报名参加高考,其中城区7123人。
从报考类别看,普通文科6527人、艺术文科2210人、体育文科683人、普通理科8341人、艺术理科541人、体育理科406人、高职491人、少年班9人、技能高考(会计、护理、建筑技术、旅游、计算机、电子、机械)341人。
2014年宜昌市高考预测报名人数22320人,比2013年的实际报名人数(23806人)将减少1486人;其中,普通文科7307人,艺术文科1930人,体育文科436人;普通理科10578人,艺术理科385人,体育理科355人;高职文科257人,高职理科1070人。
技能高考904人,高职单招266人。
此次,长阳、五峰籍考生回户口所在地报考本着考生自愿的原则。
凡自愿回户口所在地报考的考生,需填写《宜昌市普通高考应届生回户口所在地报考申请表》。
2014年普通高等学校招生全国统一考试(湖北卷)数学(理工类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2014湖北,理1)i 为虚数单位,(1-i 1+i)2=( ). A .-1 B .1C .-iD .i答案:A解析:(1-i 1+i)2=(1-i )2(1+i )2=-2i2i=-1,故选A .2.(2014湖北,理2)若二项式(2x +a x )7的展开式中1x3的系数是84,则实数a=( ). A .2 B .√45C .1D .√24答案:C解析:二项式通项T r+1=C 7r (2x )7-r (ax -1)r =27-r a r C 7r x 7-2r.由题意知7-2r=-3,则r=5.令22a 5C 75=84,解得a=1.3.(2014湖北,理3)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C”是“A ∩B=⌀”的( ).A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 答案:C解析:如图可知,存在集合C ,使A ⊆C ,B ⊆∁U C ,则有A ∩B=⌀.若A ∩B=⌀,显然存在集合C.满足A ⊆C ,B ⊆∁U C.故选C .4.(2014湖北,理4)根据如下样本数据:得到的回归方程为y ^=bx+a ,则( ). A .a>0,b>0 B .a>0,b<0 C .a<0,b>0D .a<0,b<0答案:B解析:由样本数据可知y 值总体上是随x 值的增大而减少的.故b<0,又回归直线过第一象限,故纵截距a>0.故选B . 5.(2014湖北,理5)在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( ).A .①和②B .③和①C .④和③D .④和②答案:D解析:如图所示A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2),B ,C ,D 点在面yOz 上的射影分别为B 1,C 1,D 1,它们在一条线上,且C 1为B 1D 1的中点.从前往后看时,看不到棱AC ,正视图中AC 1应为虚线.故正视图应为图④.点A ,D ,C 在面xOy 内的射影分别为O ,B ,C 2,俯视图为△OC 2B ,故选图②.综上选D .6.(2014湖北,理6)若函数f (x ),g (x )满足∫ 1-1f (x )g (x )d x=0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x+1,g (x )=x-1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( ). A .0 B .1 C .2 D .3答案:C解析:对于①,∫ 1-1sin 12x ·cos 12x d x=∫ 1-112sin x d x=12∫ 1-1sin x d x =12(-cos x )|-11=12{-cos 1-[-cos(-1)]}=12(-cos 1+cos 1) =0.故①为一组正交函数;对于②,∫ 1-1(x+1)(x-1)d x=∫ 1-1(x 2-1)d x =(13x 3-x)|-11=13-1-(-13+1) =23-2=-43≠0, 故②不是一组正交函数;对于③,∫ 1-1x ·x 2d x=∫ 1-1x 3d x=(14x 4)|-11=0. 故③为一组正交函数,故选C .7.(2014湖北,理7)由不等式组{x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组{x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( ). A .18B .14C .34D .78答案:D解析:如图,由题意知平面区域Ω1的面积S Ω1=S △AOM =12×2×2=2.Ω1与Ω2的公共区域为阴影部分,面积S 阴=S Ω1-S △ABC =2-12×1×12=74. 由几何概型得该点恰好落在Ω2内的概率P=S 阴S Ω1=742=78.故选D .8.(2014湖北,理8)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( ). A .227B .258C .15750D .355113答案:B解析:由题意可知:L=2πr ,即r=L 2π,圆锥体积V=13Sh=13πr 2h=13π·(L 2π)2h=112πL 2h ≈275L 2h ,故112π≈275,π≈258,故选B . 9.(2014湖北,理9)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ).A .4√33B .2√33C .3D .2答案:A解析:设椭圆长半轴为a 1,双曲线实半轴长为a 2,|F 1F 2|=2c.由余弦定理4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3.而|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2可得a 12+3a 22=4c 2.令a 1=2c cos θ,a 2=√3sin θ,即a 1c +a 2c =2cos θ+√3sin θ =2(cosθ√3=4√33(√32cosθ+12sinθ) =4√33sin (θ+π3). 故最大值为4√33,故选A .10.(2014湖北,理10)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x-a 2|+|x-2a 2|-3a 2).若∀x ∈R ,f (x-1)≤f (x ),则实数a 的取值范围为( ).A .[-16,16]B .[-√66,√66]C .[-13,13]D .[-√33,√33]答案:B解析:由题意得,若a=0,f (x )=x ,显然成立;若a ≠0,当x ≥0时,f (x )={x -3a 2,x >2a 2,-a 2,a 2<x ≤2a 2,-x ,0≤x ≤a 2,作出x ≥0的图象 ,利用f (x )是奇函数作出整个定义域上的图象如图:而f (x-1)的图象是由f (x )的图象向右平移1个单位得到的,要满足对任意实数x ,都有f (x-1)≤f (x ),至少应向右平移6a 2个单位,所以6a 2≤1,解得-√66≤a ≤√66,且a ≠0.综上,实数a 的取值范围是[-√66,√66].二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.(2014湖北,理11)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ= . 答案:±3 解析:由题意得(a +λb )·(a -λb )=0,即a 2-λ2b 2=0,则a 2=λ2b 2.∴λ2=a 2b2=√222(√1+(-1))=182=9.∴λ=±3. 12.(2014湖北,理12)直线l 1:y=x+a 和l 2:y=x+b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2= . 答案:2解析:由题意,得圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,即√2=√2√2=cos 45°=√22,所以a 2=b 2=1,故a 2+b 2=2.13.(2014湖北,理13)设a是一个各位数字都不是0且没有重复数字的三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=.答案:495解析:不妨取a=815,则I(a)=158,D(a)=851,b=693;则取a=693,则I(a)=369,D(a)=963,b=594;则取a=594,则I(a)=459,D(a)=954,b=495;则取a=495,则I(a)=459,D(a)=954,b=495.故输出结果b=495.14.(2014湖北,理14)设f(x)是定义在(0,+∞)上的函数,且f(x)>0.对任意a>0,b>0,若经过点(a,f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为M f(a,b).例如,当f(x)=1(x>0)时,可得M f(a,b)=c=a+b2,即M f(a,b)为a,b的算术平均数.(1)当f(x)=(x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)=(x>0)时,M f(a,b)为a,b的调和平均数2aba+b.(以上两空各只需写出一个符合要求的函数即可)答案:(1)√x(2)x(或填(1)k1√x,(2)k2x,其中k1,k2为正常数均可)解析:经过点(a,f(a)),(b,-f(b))的直线方程为y+f(b)=f(a)+f(b)a-b(x-b).令x=c,y=0得c=af(b)+bf(a)f(a)+f(b);(1)令c=√ab,则得√a f(b)=√b f(a),可令f(x)=√x.前面等式成立.(2)令c=2aba+b,则得af(b)=bf(a),可令f(x)=x,前面等式成立.(二)选考题(请考生在第15,16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)15.(2014湖北,理15)(选修4—1:几何证明选讲)如图,P为☉O外一点,过P点作☉O的两条切线,切点分别为A,B.过PA的中点Q作割线交☉O于C,D两点.若QC=1,CD=3,则PB=.答案:4解析:由题意知PA=PB.PA切☉O于点A,由切割线定理可得QA2=QC·QD=1×(1+3)=4.∴QA=2,∴PA=2×2=4=PB.16.(2014湖北,理16)(选修4—4:坐标系与参数方程)已知曲线C1的参数方程是{x=√t,y=√3t3(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为. 答案:(√3,1)解析:由曲线C 1的参数方程{x =√t ,y =√3t3,得y=√33x (x ≥0),①曲线C 2的极坐标方程为ρ=2,可得方程x 2+y 2=4,②由①②联立解得{x =√3,y =1,故C 1与C 2交点的直角坐标为(√3,1).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分11分)(2014湖北,理17)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-√3cos π12t-sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?分析:由函数f (t )为a cos t+b sin t 型,故可利用辅助角公式对f (t )化简为f (t )=10-2sin (π12t +π3),再根据t ∈[0,24),把π12t+π3的范围求出,再利用单位圆或者正弦函数的图象求出sin (π12t +π3)的范围,从而求得f (t )的最大与最小值.对于第(2)问,要求实验室温度不高于11 ℃,即满足不等式f (t )>11的t 的范围就是实验室需要降温的时间段,可利用正弦曲线或单位圆来解三角不等式. 解:(1)因为f (t )=10-2(√32cosπ12t +12sin π12t)=10-2sin (π12t +π3),又0≤t<24,所以π3≤π12t+π3<7π3,-1≤sin (π12t +π3)≤1. 当t=2时,sin (π12t +π3)=1;当t=14时,sin (π12t +π3)=-1.于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin (π12t +π3), 故有10-2sin (π12t +π3)>11, 即sin (π12t +π3)<-12.又0≤t<24,因此7π6<π12t+π3<11π6,即10<t<18.在10时至18时实验室需要降温.18.(本小题满分12分)(2014湖北,理18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由.分析:(1)根据{a n }是等差数列,首项a 1已知,可设公差为d ,由a 1,a 2,a 5成等比数列,即a 22=a 1a 5建立关于d 的方程求出d 来,可得通项公式a n .第(2)问可由(1)问求出的a n ,求出数列{a n }的前n 项和S n ,解不等式S n >60n+800.若有解则存在正整数n ,若无解则不存在.解:(1)设数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d=0,解得d=0或d=4.当d=0时,a n =2;当d=4时,a n =2+(n-1)·4=4n-2,从而得数列{a n }的通项公式为a n =2或a n =4n-2. (2)当a n =2时,S n =2n.显然2n<60n+800, 此时不存在正整数n ,使得S n >60n+800成立. 当a n =4n-2时,S n =n [2+(4n -2)]2=2n 2. 令2n 2>60n+800,即n 2-30n-400>0, 解得n>40或n<-10(舍去),此时存在正整数n ,使得S n >60n+800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n-2时,存在满足题意的n ,其最小值为41.19.(本小题满分12分)(2014湖北,理19)如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.分析:解决立体几何问题往往用两种方法来解决.一是几何法,二是向量法.对于第(1)问,欲证直线BC 1∥平面EFPQ ,首先想到的是利用线面平行的判定定理,即能否在平面EFPQ 内找到一条直线与BC 1平行,当λ=1时,由P ,F 分别是DD 1与AD 的中点,利用中位线定理可得FP ∥AD 1,从而得BC 1∥FP ,于是得证.对于第(2)问,研究是否存在λ的值使面EFPQ 与面PQMN 成直二面角,可根据条件利用几何法作出二面角的平面角,再令此平面角为90°,看λ是否有解.若有解就存在,若无解则不存在.若用向量法,由于是立方体,可建立空间直角坐标系,要把各点各向量的坐标写准确.第(1)问还可利用向量共线,在平面EFPQ 内找到一直线与BC 1平行来解决,或求出平面EFPQ 的法向量n 1,利用n 1·BC 1⃗⃗⃗⃗⃗⃗⃗ =0来证明BC 1∥平面EFPQ.对于第(2)问分别求面EFPQ 与平面MNPQ 的法向量n ,m ,若存在λ使两平面成直二面角,则m ·n =0有解,若不存在则无解.方法一(几何方法)(1)证明:如图①,连接AD 1,由ABCD-A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1.图①所以BC 1∥FP.而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ. (2)解:如图②,连接BD.图②因为E ,F 分别是AB ,AD 的中点, 所以EF ∥BD ,且EF=12BD. 又DP=BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形, 故PQ ∥BD ,且PQ=BD , 从而EF ∥PQ ,且EF=12PQ.在Rt △EBQ 和Rt △FDP 中,因为BQ=DP=λ,BE=DF=1, 于是EQ=FP=√1+λ2,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO=O ,故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH=90°. 连接EM ,FN ,则由EF ∥MN ,且EF=MN ,知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点, 所以GH=ME=2.在△GOH 中,GH 2=4,OH 2=1+λ2-(√22)2=λ2+12,OG 2=1+(2-λ)2-(√22)2=(2-λ)2+12,由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±√22,故存在λ=1±√22,使面EFPQ 与面PQMN 所成的二面角为直二面角.方法二(向量方法)以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图③所示的空间直角坐标系D-xyz.图③由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-2,0,2),FP ⃗⃗⃗⃗⃗ =(-1,0,λ),FE ⃗⃗⃗⃗⃗ =(1,1,0).(1)证明:当λ=1时,FP⃗⃗⃗⃗⃗ =(-1,0,1), 因为BC 1⃗⃗⃗⃗⃗⃗⃗ =(-2,0,2), 所以BC 1⃗⃗⃗⃗⃗⃗⃗ =2FP⃗⃗⃗⃗⃗ ,即BC 1∥FP. 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ.(2)解:设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由{FE ⃗⃗⃗⃗ ·n =0,FP⃗⃗⃗⃗ ·n =0,可得{x +y =0,-x +λz =0,于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1). 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角, 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0, 解得λ=1±√22.故存在λ=1±√22,使面EFPQ 与面PQMN 所成的二面角为直二面角.20.(本小题满分12分)(2014湖北,理20)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)X 限制,并有如下关系:若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?分析:(1)根据题中所给数据分别求出不同年入流量对应的不同概率.用样本估计总体的方法估计未来的年入流量.因各年的年入流量相互独立,可利用二项分布求出至多有1年的年入流量超过120的概率.(2)分别求出安装1台,2台,3台发电机时,水电站年总利润的数学期望,比较它们的期望值,选择最佳方案. 解:(1)依题意,p 1=P (40<X<80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X>120)=550=0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为p=C 40(1-p 3)4+C 41(1-p 3)3p 3=(910)4+4×(910)3×(110)=0.947 7.(2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故1台发电机运行的概率为1,对应的年利润Y=5 000,E (Y )=5 000×1=5 000. ②安装2台发电机的情形.依题意,当40<X<80时,1台发电机运行,此时Y=5 000-800=4 200,因此P (Y=4 200)=P (40<X<80)=p 1=0.2; 当X ≥80时,2台发电机运行,此时Y=5 000×2=10 000,因此P (Y=10 000)=P (X ≥80)=p 2+p 3=0.8;由此得Y 的分布列如下:Y4 200 10 000P 0.20.8所以,E (Y )=4 200×0.2+10 000×0.8=8 840.③安装3台发电机的情形.依题意,当40<X<80时,1台发电机运行,此时Y=5 000-1 600=3 400,因此P (Y=3 400)=P (40<X<80)=p 1=0.2;当80≤X ≤120时,2台发电机运行,此时Y=5 000×2-800=9 200,因此P (Y=9 200)=P (80≤X ≤120)=p 2=0.7;当X>120时,3台发电机运行,此时Y=5 000×3=15 000,因此P 由此得Y 的分布列如下所以,E (Y )=3 400×0.2+9 200×0.7+15 000×0.1=8 620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.21.(本小题满分14分)(2014湖北,理21)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C. (1)求轨迹C 的方程.(2)设斜率为k 的直线l 过定点P (-2,1).求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.分析:第(1)问求动点M 的轨迹C 的方程,就是找出动点M (x ,y )中x 与y 的关系,依据点M 到点F (1,0)的距离比它到y 轴距离多1建立等式|MF|=|x|+1,而|MF|可用两点间距离公式表示,化简整理可得轨迹C 的方程.而对于第(2)问,由于直线过定点(-2,1),可用点斜式得直线方程y-1=k (x+2),讨论直线l 与曲线C 公共点个数问题可转化为直线与曲线方程联立得到的方程组解的个数问题.由第(1)问知曲线C 的方程分为两段:一段是抛物线,一段为射线,而由直线与抛物线联立得到的是二次项含字母的方程,需对二次项系数以及根的判别式作出讨论,还要注意与抛物线联立后有解时x 的取值为非负这一条件.解:(1)设点M (x ,y ),依题意得|MF|=|x|+1,即√(x -1)2+y 2=|x|+1,化简整理得y 2=2(|x|+x ). 故点M 的轨迹C 的方程为y 2={4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y=0(x<0). 依题意,可设直线l 的方程为y-1=k (x+2).由方程组{y -1=k (x +2),y 2=4x ,可得ky 2-4y+4(2k+1)=0.①ⅰ)当k=0时,此时y=1.把y=1代入轨迹C 的方程,得x=14.故此时直线l :y=1与轨迹C 恰好有一个公共点(14,1). ⅱ)当k ≠0时,方程①的判别式为Δ=-16(2k 2+k-1).② 设直线l 与x 轴的交点为(x 0,0),则由y-1=k (x+2),令y=0,得x 0=-2k+1k.③ (a)若{Δ<0,x 0<0,由②③解得k<-1,或k>12.即当k ∈(-∞,-1)∪(12,+∞)时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(b)若{Δ=0,x 0<0,或{Δ>0,x 0≥0,由②③解得k ∈{-1,12},或-12≤k<0.即当k ∈{-1,12}时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈[-12,0)时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈[-12,0)∪{-1,12}时,直线l 与轨迹C 恰好有两个公共点.(c)若{Δ>0,x 0<0,由②③解得-1<k<-12,或0<k<12.即当k ∈(-1,-12)∪(0,12)时,直线l 与C 1有两个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合ⅰ,ⅱ可知,当k ∈(-∞,-1)∪(12,+∞)∪{0}时,直线l 与轨迹C 恰好有一个公共点; 当k ∈[-12,0)∪{-1,12}时,直线l 与轨迹C 恰好有两个公共点; 当k ∈(-1,-12)∪(0,12)时,直线l 与轨迹C 恰好有三个公共点.22.(本小题满分14分)(2014湖北,理22)π为圆周率,e =2.718 28…为自然对数的底数. (1)求函数f (x )=lnxx的单调区间; (2)求e 3,3e ,e π,πe ,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.分析:第(1)问是求函数的单调递增递减区间,因此可求函数的导数f'(x ),令f'(x )>0求单调递增区间,令f'(x )<0求单调递减区间.第(2)问是研究给定数值大小关系问题,结合给定数的特点有的是底一样,指数不一样,有的指数一样而底不一样,因此可利用函数的单调性初步判断出3e <πe <π3,e 3<e π<3π.因此求6个数中的最大数就是比较π3与3π,最小数就是比较3e 与e 3,我们可借助于第(1)问中的结论来达到目的.而第(3)问是在(2)问的基础上转化为比较e 3与πe ,e π与π3的大小,充分利用第(1)问得到的结论.合理赋值使问题得到解决. 解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=lnxx,所以f'(x )=1-lnxx 2. 当f'(x )>0,即0<x<e 时,函数f (x )单调递增; 当f'(x )<0,即x>e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e), 单调递减区间为[e,+∞).(2)因为e <3<π,所以eln 3<eln π,πln e <πln 3, 即ln 3e <ln πe ,ln e π<ln 3π.于是根据函数y=ln x ,y=e x ,y=πx 在定义域上单调递增, 可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中. 由e <3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln33<ln ee. 由ln ππ<ln33,得ln π3<ln 3π,所以3π>π3; 由ln33<ln e e,得ln 3e <ln e 3,所以3e <e 3. 综上,6个数中的最大数是3π,最小数是3e . (3)由(2)知,3e <πe <π3<3π,3e <e 3. 又由(2)知,ln ππ<ln ee,得πe <e π,故只需比较e 3与πe 和e π与π3的大小. 由(1)知,当0<x<e 时,f (x )<f (e)=1e, 即lnx x<1e.在上式中,令x=e 2π,又e 2π<e, 则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-eπ.①由①得,eln π>e (2-e π)>2.7×(2-2.723.1)>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3e π>6-e >π,即3lnπ>π,所以eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大的顺序为3e,e3,πe,eπ,π3,3π.。
湖北省普通⾼校招⽣集中录取⼯作全部结束。
2014年湖北省共有40.27万⼈报名参加⾼考,从录取结果看,本科共录取17.9万多⼈,⾼职⾼专共录取15.6万⼈,两者相加,截⾄⽬前共有33.5万名新⽣上榜,⼤学录取率约为83%。
省招办介绍,在本科录取阶段,全国207所⼀本⾼校在鄂录取42942⼈,今年湖北省⼀本录取率⾸次突破10%;480所⼆本⾼校在鄂录取53072⼈,252所三本⾼校在鄂录取42581⼈,三者相加,今年⾼考约近⼀半⼈可以读本科,本科录取率约为45%。
在⾼职⾼专录取阶段,200多所四批(⼀)院校在鄂录取6.4余万⼈,488所四批(⼆)院校在鄂录取近9.2万⼈。
省招办提醒考⽣,请录取新⽣按时到⾼校报到,9⽉17⽇⾄19⽇,省招办将注销未按时报到考⽣录取资格,注销录取资格后,将不能参加补录。
今年湖北省⾼职⾼专补录时间安排在9⽉23⽇⾄29⽇,其中,9⽉23⽇⾄25⽇进⾏⾼职⾼专(⼀)、艺术和体育⾼职⾼专、⾼职统考和技能⾼考⾼职⾼专补录,考⽣填报志愿时间为9⽉23⽇;9⽉27⽇⾄29⽇进⾏⾼职⾼专(⼆)和⾼职统考补录,考⽣填报志愿时间为9⽉27⽇。
在常规录取阶段未录取的考⽣可以参加⾼职⾼专补录,本科不补录。
补录执⾏院校所在批次线,按考⽣填报的补录志愿从⾼分到低分投档。
2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D.i3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件4.根据如下样本数据得到的回归方程为a bx y+=ˆ,则( )A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和②7.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.35511310.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=,若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( )二.填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数.(1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)(二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB.16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.。
34i,即求出值【解析】作出可行域,如图:【解析】由弦切角定理得FBD EACBAE ,又AF BD AB BF =,排除A 、C. DBC ,排除B 、故选D.本题利用角与弧的关系,得到角相等,,所以||||cos1202AB AD AB AD =︒=-,所以AE AB AD λ=+,AF AB AD μ=+.因为1AE AF =,所以()()1AB AD AB AD λμ++=,即2λ2-②,①+②得5λμ+=,故选C. 【提示】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义求得2120ππ4π2233+=m 【考点】空间立体图形三视图、体积.结合图象可知01a <<或9a >.][),4∞+,所以][)9,∞+.结合图象可得01a <<或9a >.1sin 2x x ⎛+ ⎝3cos 2x x -43π3x 的范围,再利用正弦函数的性质求出再已【考点】三角函数中的恒等变换应用,三角函数的周期性及其求法1203373734960C C C C +=. 3463k k C C -(k =3463k kC C -(k =(0,0,2)P.由E为棱PC的中点,得(1,1,1)E.证明:向量(0,1,1)BE=,(2,0,0)DC=,故0BE DC=.所以,)向量(1,2,0)BD=-,(1,0,PB=设(,,)n x y z=0,0,n BDn PB⎧=⎪⎨=⎪⎩即-⎧,可得(2,1,1)n=为平面的一个法向量,||||6n BEn BEn BE==⨯与平面PBD3)向量(1,2,0)BC=,(2,CP=-,(2,2,0)AC=,(1,0,0)AB=由点F在棱PC上,设CF CPλ=,0≤故()1,2BF BC CF BC CPλλλ=+=+=-.,得0BF AC=,因此,2(1即12BF⎛=-设(1,n x y=为平面FAB的法向量,则110,0,n ABn BF⎧=⎪⎨=⎪⎩即,可得1(0,n=-FAB的一个法向量的法向量1(0,1,0)n=121212,||||10n nn nn n-==31010.【提示】(1)以A 为坐标原点,建立如图所示的空间直角坐标系,求出BE ,DC 的方向向量,根据0BE DC =,可得BE DC ⊥;(2)求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值; (3)根据BFAC ,求出向量BF 的坐标,进而求出平面F AB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F ABP 的余弦值2,有10(F P x =+,1(,)F B c c =由已知,有110F P F B =,即1.②由①和②可得234x cx +可得1F P ,1F B .利用圆的性质可得11F B F P ⊥,于是110F B F P =,得到040cx =,解得1n n a q -++1n n b q -++1,2,,n 及n a (1n a -++-()1q ++-q。
2014年湖北卷理科A 卷一、选择题(本大题共10小题,每小题5分,共50分)1. i 为虚数单位,211i i -⎛⎫= ⎪+⎝⎭( )A .-1B .1C .-iD .i【解析】()()2221121121i i i i i i ---⎛⎫===- ⎪+⎝⎭+. 【答案】A .2. 若二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中31x 的系数是84,则实数a =( )A .2 BC .1 D【解析】72a x x ⎛⎫+ ⎪⎝⎭的通项是()777217722kk k k k kk k a T C x a C x x ---+⎛⎫==⋅⋅⋅ ⎪⎝⎭, 令7-2k =-3得:k =5 ∴31x的系数是2527284a C ⋅⋅=,即a 5=1,∴a =1. 【答案】C .3. 设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆U C ð” 是“A ∩B =∅” 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】若存在集合C 使得A ⊆C ,B ⊆U C ð,则A ∩B =∅,否则有x ∈A ∩B , 由A ⊆C ,得x ∈C ,由B ⊆U C ð,得x ∈U C ð,即x C ∉,矛盾;若A ∩B =∅,则取C =A ,有A ⊆C ,B ⊆U C ð,故“存在集合C 使得A ⊆C ,B ⊆U C ð” 是“A ∩B =∅” 的充要条件。
【答案】C .4.得到的回归方程为y =bx+a ,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0 【解析】画出散点图知a >0,b <0 【答案】B .5. 在如图所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号为①、②、③、④的四个图,则该四面体的正视图和府视图分别为( )A .①和②B .③和①C .④和③D .④和②【解析】设A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2), 作出四面体ABCD ,四面体ABCD 的府视图是⊿OBC 1,即图② 正视图是Rt ⊿AEF 和AG ,即图④. 【答案】D .6. 若函数f (x ),g (x )满足()()110f x g x dx -=⎰,则称f (x ),g (x )为区间[-1,1] 上的一组正交函数,给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]的正交函数的组数是( )A .0B .1C .2D .3【解析】对于①,()()()11111111022f xg x dx sin xdx cos x ---==-=⎰⎰;对于②,()()()11123111141033f x g x dx x dx x x ---⎛⎫=-=-=-≠ ⎪⎝⎭⎰⎰;对于③,113411104x dx x--==⎰; 【答案】C .7. 由不等式0020x y y x ⎧⎪⎨⎪--⎩≤≥≤确定的平面区域记为Ω1,不等式12x y x y +⎧⎨+-⎩≤≥,确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A .18B .14C .34D .78【解析】如右图,区域Ω1为⊿AOC 及其内部,面积为12×2×2=2;区域Ω2为直线x +y =1与直线x +y =-2之间的部分,Ω1与Ω2的公共部分是四边形AOBD ,面积为2-12×1×12=74,故所求概率为p =78.【答案】D .8. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么近似公式2275V L h ≈. 相当于将圆锥体积公式中的π近似取为( )A .227 B .258 C .15750 D .355113【解析】∵2221133212L V r h h L h ππππ⎛⎫=== ⎪⎝⎭,∴由2275V L h ≈得: 22217512L h L h π≈,即258π≈. 【答案】B . 9. 已知F 1、F 2是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )ABC .3D .2 【解析】设椭圆和双曲线的方程分别为2222111x y a b +=、2222221x y a b -=,|PF 1|=m ,|PF 2|=n .则m +n =2a 1,|m -n |=2a 2,在中由余弦定理,(2c )2=m 2+n 2-2mncos 60°=m 2+n 2-mn∴4c 2=(m +n )2-3mn =2143a mn -,且4c 2=(m -n )2+mn =224a mn +,消去m 、n 得:2221234a a c +=,即2212134e e +=由柯西不等式得:22222121211111613e e e e ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎢⎥++⋅+=⎢⎥ ⎪ ⎪ ⎪ ⎢⎥⎝⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦≤可计算得当e 1=3e 2=3时,等号成立。
2014年高考分数线一览表2014年高考31省份录取分数线1、上海:文科一本444分,二本390分;理科一本423分,二本351分。
艺术类本科专业文科254分,理科228分;体育类本科专业文科273分,理科246分。
2、青海:文史类一本473分,二本426分;理工类一本406分,二本362分。
3、海南:本科第一批文史类666分,理工类606分;二本文史类590分,理工类542分。
4、湖南:文史类一本562分,二本501分,三本(A)473分,三本(B)453分,高职专科200分;理工类一本522分,二本442分,三本(A)406分,三本(B)386分,高职专科200分。
5、福建:本科一批理工类506分,文史类561分。
6、广东:第一批本科文科579分,理科560分。
第二批A,文科534分,理科504分;第二批B,文科483分,理科465分。
第三批专科A,文科425分,理科400分;第三批专科B,文科290分,理科280分。
7、陕西:一本文科548分,理科503分;二本文科492分,理科452分。
8、山西:一本文科526分,理科534分;二本文科478分,理科462分。
9、江苏:一本文科333分,理科345分;二本文科301分,理科312分。
10、山东:文科本科一批分数线为579分,理科本科一批分数线为572分。
11、河南:本科一批文科536分,理科547分;本科二批文科483分,理科476分;本科三批文科425分,理科400分。
12、黑龙江:本科一批理科529分,文科541分;本科二批理科414分,文科454分。
13、安徽:文科一本541分,二本500分,三本469分;理科一本489分,二本438分,三本409分。
14、湖北:第一批本科理工533分,文史535分;第二批本科理工471分,文史482分;第三批本科理工380分,文史417分。
15、云南:本科一批文史类565分,理工类525分;本科二批文史类500分,理工类445分;本科三批文史类450分,理工类400分;专科一批文史类430分,理工类370分。
2004年普通高等学校招生湖北卷理工类数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.与直线042=+-y x 的平行的抛物线2x y =的切线方程是( )A .032=+-y xB .032=--y xC .012=+-y xD .012=--y x 2.复数ii 31)31(2++-的值是( )A .-16B .16C .41-D .i 4341- 3.已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为( )A .21x x+ B .212x x+-C .212x x+ D .21x x+- 4.已知,,为非零的平面向量. 甲:则乙,:,=⋅=⋅( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件5.若011<<b a ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④2>+baa b 中,正确的不等式有( )A .1个B .2个C .3个D .4个6.已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( )A .59 B .3 C .779 D .49 7.函数]1,0[)1(log )(在++=x a x f a x上的最大值和最小值之和为a ,则a 的值为( )A .41B .21 C .2D .48.已知数列{n a }的前n 项和),,2,1]()21)(1(2[])21(2[11=+---=--n n b a S n n n 其中a 、b 是非零常数,则存在数列{n x }、{n y }使得( )A .}{,n n n n x y x a 其中+=为等差数列,{n y }为等比数列B .}{,n n n n x y x a 其中+=和{n y }都为等差数列C .}{,n n n n x y x a 其中⋅=为等差数列,{n y }都为等比数列D .}{,n n n n x y x a 其中⋅=和{n y }都为等比数列9.函数1)(3++=x ax x f 有极值的充要条件是( )A .0>aB .0≥aC .0<aD .0≤a10.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是( )A .P QB .Q PC .P=QD .P Q=11.已知平面βα与所成的二面角为80°,P 为α、β外一定点,过点P 的一条直线与α、β所成的角都是30°,则这样的直线有且仅有( )A .1条B .2条C .3条D .4条12.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312∈++=t t y ππ二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.设随机变量ξ的概率分布为====a k a ak P k 则为常数,,2,1,,5)( ξ . 14.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 种.(以数字作答)15.设A 、B 为两个集合,下列四个命题: ①A ⊄B ⇔对任意B x A x ∉∈有, ②A ⊄ B ⇔=B A φ③A ⊄B ⇔AB④A ⊄ B ⇔存在B x A x ∉∈使得,其中真命题的序号是 .(把符合要求的命题序号都填上)16.某日中午12时整,甲船自A 处以16km/h 的速度向正东行驶,乙船自A 的正北18km处以24km/h 的速度向正南行驶,则当日12时30分时两船之间距间对时间的变化率是 km/h.三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知)32sin(],,2[,0cos 2cos sin sin 622παππααααα+∈=-+求的值.18.(本小题满分12分) 如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱 CD 上的动点.(I )试确定点F 的位置,使得D 1E ⊥平面AB 1F ;(II )当D 1E ⊥平面AB 1F 时,求二面角C 1—EF —A 的大小(结果用反三角函数值表示).AC A 1C 119.(本小题满分12分)如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,问与的夹角θ取何值时⋅的值最大?并求出这个最大值.A BC20.(本小题满分12分)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B.(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 21.(本小题满分12分) 某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成 400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施 所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9 和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防 方案使总费用最少. (总费用...=采取预防措施的费用+发生突发事件损失的期望值.) 22.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列 (I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示);(II )设;)(:,,2,1,1A b A b b n A a b n nn n n +-==-=+证明(III )若 ,2,121||=≤n b n n 对都成立,求a 的取值范围.2004年普通高等学校招生湖北卷理工类数学试题参考答案一、选择题1.D 2.A 3.C 4.B 5.B 6.D 7.B 8.C 9.C 10.A 11.D 12.A 二、填空题13.4 14.240 15.(4) 16.-1.6 三、解答题17.本小题考三角函数的基本公式以及三角函数式的恒等变形等基础知识和基本运算技能,满分12分. 解法一:由已知得:0)cos sin 2)(cos 2sin 3(=-+αααα 0cos sin 20cos 2sin 3=-=+⇔αααα或 由已知条件可知).,2(,2,0cos ππαπαα∈≠≠即所以 .32tan ,0tan -=∴<αα于是3sin2cos 3cos2sin )32sin(παπαπα+=+.tan 1tan 123tan 1tan sin cos sin cos 23sin cos cos sin )sin (cos 23cos sin 22222222222αααααααααααααααα+-⨯++=+-⨯++=-+= 代入上式得将32tan -=α..3265136)32(1)32(123)32(1)32()32sin(222即为所求+-=-+--⨯+-+--=+πα解法二:由已知条件可知所以原式可化为则,2,0cos παα≠≠AC A 1C 1..32tan .0tan ),,2(.0)1tan 2)(2tan 3(.02tan tan 62下同解法一又即-=∴<∴∈=-+=-+ααππααααα18.本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力,满分12分. 解法一:(I )连结A 1B ,则A 1B 是D 1E 在面ABB 1A ;内的射影∵AB 1⊥A 1B ,∴D 1E ⊥AB 1, 于是D 1E ⊥平面AB 1F ⇔D 1E ⊥AF. 连结DE ,则DE 是D 1E 在底面ABCD 内的射影.∴D 1E ⊥AF ⇔DE ⊥AF.∵ABCD 是正方形,E 是BC 的中点. ∴当且仅当F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.…………6分 (II )当D 1E ⊥平面AB 1F 时,由(I )知点F 是CD 的中点. 又已知点E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC , 设AC 与EF 交于点H ,则CH ⊥EF ,连结C 1H ,则CH 是 C 1H 在底面ABCD 内的射影. C 1H ⊥EF ,即∠C 1HC 是二面角C 1—EF —C 的平面角.在Rt △C 1CH 中,∵C 1C=1,CH=41AC=42, ∴tan ∠C 1HC=224211==CH C C . ∴∠C 1HC=arctan 22,从而∠AHC 1=22arctan -π. 故二面角C 1—EF —A 的大小为22arctan -π.解法二:以A 为坐标原点,建立如图所示的空间直角坐标系 (1)设DF=x ,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B (1,0,1),D 1(0,1,1),E )0,21,1(,F (x ,1,0)BPFAB E D CD F x x D AF E D F AB E D AB E D AB E D x AF AB E D 111111111111,.21210,011)0,1,(),1,0,1(),1,21,1(平面的中点时是故当点即平面于是即⊥==-⇔=⋅⇔⇔⊥⊥=-=⋅∴==--=∴(1)当D 1E ⊥平面AB 1F 时,F 是CD 的中点,又E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC ,设AC 与EF 交于点H ,则AH ⊥EF. 连结C 1H ,则CH 是C 1H 在底面ABCD 内的射影.∴C 1H ⊥EF ,即∠AHC 1是二面角C 1—EF —A 的平面角.31898983||||cos ).0,43,43(),1,41,41(),0,43,43(),1,1,1(11111-=⨯-=⋅=∠∴--==HC HA AHC HC H C.31arccos .31arccos )31arccos(11----=-=∠ππ的大小为故二面角即A EF C AHC19.本小题主要考查向量的概念,平面向量的运算法则,考查运用向量及函数知识的能力,满分12分.)()(,,,.0,:AC AQ AB AP CQ BP AC AQ CQ AB AP BP AQ AP -⋅-=⋅∴-=-=-==⋅∴⊥ 解法一 .cos 2121)(222222θa a BCPQ a BCPQ a a a +-=⋅+-=⋅+-=-⋅--=⋅+⋅--=⋅+⋅-⋅-⋅=.0.,)(0,1cos 其最大值为最大时方向相同与即故当⋅==θθ解法二:以直角顶点A 为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系..)()())(().2,2(),,(),,(),,().,(),,(.||,2||),,0(),0,(),0,0(,||||22by cx y x b y y x c x y x b c b y x y c x y x Q y x P a BC a PQ b C c B A b AC c AB -++-=--+--=⋅∴--=-=---=-=∴--====则的坐标为设点且则设.0,,)(0,1cos .cos .cos .cos 2222其最大值为最大时方向相同与即故当a a a by cx abycx ⋅==+-=⋅∴=-∴-==θθθθθ20.本小题主要考查直线、双曲线的方程和性质,曲线与方程的关系,及其综合应用能力,满分12分.解:(Ⅰ)将直线整理得后的方程代入双曲线的方程,12122=-+=y x C kx y l.022)2(22=++-kx x k ……①依题意,直线l 与双曲线C 的右支交于不同两点,故.22.022022,0)2(8)2(,0222222-<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-k k k k k k k k 的取值范围是解得(Ⅱ)设A 、B 两点的坐标分别为),(11y x 、),(22y x ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x k k x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0).则由FA ⊥FB 得:.0)1)(1())((.0))((21212121=+++--=+--kx kx c x c x y y c x c x 即整理得.01))(()1(221212=+++-++c x x c k x x k ……③把②式及26=c 代入③式化简得 .066252=-+k k解得))(2,2(566566舍去或--∉-=+-=k k 可知566+-=k 使得以线段AB 为直径的圆经过双曲线C 的右焦点. 21.本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分. 解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元); ②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元) ③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元); ④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.22.本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→.24,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得(II ).11,11Ab a A b a a a A b a n n n n n n ++=++=+=++得由都成立对即 ,2,1)(.)(11111=+-=+-=++-=++-=∴++n A b A b b A b A b A b A A b A a b n nn n n n n n(III ).21|)4(21|,21||21≤++-≤a a ab 得令.,2,121||,23.23,14.21|)4(21|22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a n n (i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(k k b k k n ≤≥=k k k k k A b A A b A b b 21||1|)(|||||1⨯+≤+=+故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k.212121||,23.2||,1212||||.2,14,23,422411222++=⨯≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k k k k k k k b a A b A b A A b A a a a aa a a A 时故当即时而当由于即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立.故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b nn。
2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)试题及参考答案一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii A. 1- B. 1 C. i - D. i 2. 若二项式7)2(xa x +的展开式中31x的系数是84,则实数=a A.2 B.54 C. 1 D.42 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 4.根据如下样本数据A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0), (1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A. ①和②B.③和①C. ④和③D.④和② 6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是A.0B.1C.2D.37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为 A.81 B.41 C. 43 D.87 8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为 A.227 B.258C.15750D.355113 9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为A.3B.3C.3D.2 10.已知函数f (x )是定义在R 上的奇函数,当0x ≥时,2221()(||)|2|3).2f x x a x a a =-+--若,(1)(),x R f x f x ∀∈-≤则实数a 的取值范围为( )A.11[,]66-B.[C. 11[,]33-D.[二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设向量)3,3(=,)1,1(-=b ,若)()(b a b a λλ-⊥+,则实数λ= . 12.直线a x y l +=:1和b x y l +=:2将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += .13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如右图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可) (二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为三、解答题:本大题共6小题,共75分.解答题应写出文字说明、证明过程或演算步骤..17、(本小题满分11分)某实验室一天的温度(单位:C ︒)随时间t (单位:h )的变化近似满足函数关系;)24,0[,12sin12cos310)(∈--=t t t t f ππ(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于11C ︒,则在哪段时间实验室需要降温?18(本小题满分12分)已知等差数列}{n a 满足:21=a ,且321,,a a a 成等比数列. (1) 求数列}{n a 的通项公式.(2) 记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得80060+>n S n ?若存在,求n 的最小值;若不存在,说明理由.19(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP . (1)当1=λ时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。