【最新】沪科版八年级下册期中考试数学试题及答案
- 格式:doc
- 大小:158.58 KB
- 文档页数:7
沪科版八年级下册数学期中考试试题一、单选题1x 的取值范围是( ) A .x >1 B .x≥1 C .x≥0,x≠1 D .x >0 2.下列方程中,是关于x 的一元二次方程的是( )A .x+21x=0 B .3x 2﹣2xy ﹣5y 2=0 C .ax 2+bx+c =0 D .(x ﹣1)(x+2)=13.下列四组线段中,可以构成直角三角形的是( )A B .0.3,0.4,0.5C .1 3D .2,3,44.以下运算错误的是( )A =B .2CD 2=a >0)5.已知方程x 2﹣(k+1)x+3k =0的一个根是2,则k 为( )A .﹣2B .﹣3C .3D .16.实数a ,b )A .a+bB .﹣a+bC .a ﹣bD .﹣a ﹣b 7.在平面直角坐标系中,点A 的坐标为(﹣3,0),点B 的坐标为(0,4),以点A 为圆心,AB 的长为半径画弧交x 轴正半轴于点C ,则C 点坐标为( )A .(2,0)B .(3,0)C .(4,0)D .(5,0)8.我们把形如(a ,b 型无理数,如2是( )A 型无理数BCD 9.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则a 2+b 2+ab 的值为( )A .3B .4C .5D .610.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积41,小正方形的面积是1,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b )2的值为( )A .25B .41C .62D .8111.如果一个直角三角形的两条边长分别为6和10,那么这个三角形的第三边长为( )A .8B .10C .D .8或12.已知关于x 的一元二次方程2230x x a ++=有一个根是-2,那么a 的值是( ) A .-2 B .-1 C .2 D .10二、填空题13.若x ,y 1,则xy =_____.14n =_____.15.方程()()()1222x x x -+=+的根是______________________;16.已知关于x 的一元二次方程(2)0mx x x ++=有两个相等的实数根,则m 的值是__________.三、解答题17.计算:(1 ;(2)((-()2.18.解方程:(1)x 2-6x+3=0 (2)4(1)(1)x x x -=-.19.观察下列各式,回答问题:=;;=.(1)根据上面三个等式提供的信息,写出第四个等式;(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并证明你的结论.20.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC中,①ACB=90°,AC+AB=10,BC=4,求AC的长.21.已知关于x的方程x2﹣(2k+1)x+k2=2有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x12+x22=11,求k的值.22.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断ABC的形状,并说明理由;(2)求AB边上的高.23.某服装专卖店在销售中发现,一款衬衫每件进价为70元,销售价为100元时,每天可售出20件,今年受“疫情”影响,为尽快减少库存,商店决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么平均可多售出2件.(1)每件衬衫降价多少元时,平均每天赢利750元?(2)要想平均每天赢利1000元,可能吗?请说明理由.24.阅读材料:我们在学习二次根式时,熟悉了分母有理化及其应用.其实,有一个类似的方法叫做“分子有理化”,即分母和分子都乘以分子的有理化因式,从而消掉分子中的根分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问再例如,求y.解:由x+2≥0,x﹣2≥0可知x≥2,而y2.所以y的最大值是2.当x=2利用上面的方法,完成下述两题:(1(2)求y的最大值.参考答案1.B【解析】根据二次根式及分式有意义的条件直接列不等式求解即可.【详解】解:由题意得,x﹣1≥0,x≠0,解得,x≥1,故选:B.【点睛】本题主要考查二次根式及分式的概念,熟练掌握二次根式及分式有意义的条件是解题的关键.2.D【解析】【分析】根据一元二次方程的定义(只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程叫一元二次方程)判断即可.【详解】解:A、一元二次方程首先必须是整式方程,故本选项不符合题意;B、是二元二次方程,故本选项不符合题意;C、当a=0时,就不是一元二次方程,故本选项不符合题意;D、去括号得:x2+x﹣2=1,是一元二次方程,故本选项不符合题意;故选:D.【点睛】本题考查了对一元二次方程的定义的理解和运用,解题的关键是明确一元二次方程满足条件:①是整式方程,①只含有一个未知数,①所含未知数的项的最高次数是2.3.B【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、2+2≠2,不能构成直角三角形,故不符合题意;B、0.32+0.42=0.52,能构成直角三角形,故符合题意;C、12+2≠32,不能构成直角三角形,故不符合题意;D 、22+32≠42,不能构成直角三角形,故不符合题意.故选:B .【点睛】本题考查勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.4.C【解析】利用二次根式的乘法法则对A 、B 进行判断;利用二次根式的化简对C 、D 进行判断.【详解】A .原式=A 选项的运算正确;B .原式=,所以,B 选项的运算正确;C .原式=5,所以C 选项的运算错误;D .原式=,所以D 选项的运算正确.故选C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.A【解析】根据题意,将根2代入方程中,解关于字母k 的方程即可解题.【详解】把2x =代入方程2(1)30x k x k -++=得,42(1)30k k -++=,即20k +=,2k ∴=-故选:A .【点睛】本题考查一元二次方程的根,其中涉及一元一次方程的解法,是基础考点,难度较易,掌握相关知识是解题关键.6.D【解析】从数轴可知-3<b<-2,1<a<2|a+b|,再根据绝对值的性质,去掉绝对值符号即可.【详解】解:①从数轴可知:﹣3<b<﹣2,1<a<2,a b=+=﹣(a+b)=﹣a﹣b.||故选:D.【点睛】本题考查了二次根式的性质,绝对值的应用,主要考查学生的化简能力.7.A【解析】根据题意求出AB的长,以A为圆心作圆,与x轴正半轴于点C,求出C的坐标即可.【详解】解:①点A、B的坐标分别为(﹣3,0)、(0,4),①OA=3,OB=4,①AB5,①AC=5,①C点坐标为(2,0).故选:A.【点睛】本题考查了勾股定理、坐标与图形的性质,作出辅助圆是解题的关键.8.C【解析】先利用完全平方公式计算,再化简得到原式断.【详解】解:2=2+=12+2故选:C.【点睛】本题考查了最简二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.也考查了无理数.9.C【解析】根据一元二次方程根与系数的关系直接进行求解即可.【详解】解:①a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,①a+b=2,ab=﹣1,①a2+b2+ab=(a+b)2﹣ab=4+1=5.故选:C.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.10.D【解析】【分析】先求出四个直角三角形的面积,再根据再根据直角三角形的边长求解即可.【详解】解:①大正方形的面积41,小正方形的面积是1,ab=40,①四个直角三角形的面积和是41﹣1=40,即4×12即2ab=40,a2+b2=41,①(a+b)2=40+41=81.故选:D.【点睛】本题主要考查了勾股定理,三角形的面积,全等图形等知识点就,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.11.D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意6和10可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当6和10是两条直角边时,第三边324,当6和10分别是一斜边和一直角边时,第三边,所以第三边可能为8或.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.12.C【解析】【分析】根据一元二次方程的解的定义,将x=−2代入关于x的一元二次方程2++=,列x x a230出关于a的一元一次方程,通过解方程即可求得a的值.【详解】根据题意知,x=−2是关于x的一元二次方程2++=的根,230x x a①(−2)2+3×(−2)+a=0,即−2+a=0,解得,a=2.故选:C.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解使方程的左右两边相等.13.2【解析】【分析】直接将x、y代入xy中,利用平方差公式求解即可.【详解】解:①x,y1,①xy)1)=3﹣1=2;故答案为:2.【点睛】本题考查二次根式的乘法运算,利用平方差公式求解是解答的关键.14.-1【解析】【分析】根据同类二次根式的概念列出方程,解方程求出n,根据最简二次根式的概念判断,得到答案.【详解】解:①①n2﹣2n=n+4,解得,n1=﹣1,n2=4,当n=4①n=﹣1,故答案为:﹣1.【点睛】本题考查的是同类二次根式的概念、最简二次根式的概念,掌握把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.15.12x=-,23x=.【解析】【分析】把右边的项移到左边,提公因式法因式分解求出方程的根.【详解】解:(1)(2)2(2)0x x x -+-+=(2)(12)0x x +--=(2)(3)0x x +-=20x +=或30x -=12x ∴=-,23x =.故答案是:12x =-,23x =.【点睛】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解可以求出方程的根.注意方程两边不能同时除以(x+2),因为(x+2)可能为0.16.12- 【解析】【分析】根据方程有两个相等的实数根,可得b 2-4ac=0,方程化为一般形式后代入求解即可.【详解】原方程化为一般形式为:mx 2+(2m+1)x=0,①方程有两个相等的实数根①(2m+1)2-4m×0=012m =- 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.17.(1)4(2)15【解析】【分析】(1)先算乘除,后算加减,注意最后的结果要化为最简二次根式;(2)原式分别运用平方差公式和完全平方公式进行计算即可.【详解】(1=4=4(2)((-()2=13(13---=15【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.18.(1)1233x x==(2)121,4x x==【解析】【详解】试题分析:本题考查了一元二次方程的解法,(1)根据完全平方公式进行配方,用配方法求解;(2)用提公因式法分解因式求解.(1)()2221263039636333x xx xxxxx-+=-+=-=∴-=∴=+=(2)()()()()()1241141-101?4014x x xx x xx xxx-=---=--=∴==()19.(1(2(n=+【解析】【分析】(1)利用已知进而得出第①个等式各部分的变化情况;(2)利用已知中数据的变化规律进而得出答案.【详解】解:(1==(2(n=+=(n+①等式成立.【点睛】此题主要考查了二次根式的化简,正确观察数据的变化规律是解题关键.20.21 5【解析】【分析】直接利用勾股定理进而得出AC的长.【详解】解:①在①ABC中,①ACB=90°,①AC2+BC2=AB2,①AC+AB=10,BC=4,设AC=x,则AB=10﹣x,①x2+42=(10﹣x)2,解得:x=215,答:AC的长为215.【点睛】此题主要考查了勾股定理的应用,正确得出等式方程是解题关键.21.(1)k>﹣94;(2)k=1【解析】【分析】(1)根据根的判别式得出关于k的不等式,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=2k+1,x1•x2=k2-2,根据完全平方公式变形后代入,得出(2k+1)2-2(k2-2)=11,再求出即可.【详解】解:(1)①方程有两个不相等的实数根,①①=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k+9>0,解得:k>﹣94.故k的取值范围是k>﹣94;(2)根据根与系数的关系得:x1+x2=2k+1,x1•x2=k2﹣2,①方程的两个实数根为x1、x2,且满足x12+x22=11,①(x1+x2)2﹣2x1•x2=11,(2k+1)2﹣2(k2﹣2)=11,解得:k=﹣3或1,①关于x的方程x2+(2k+1)x+k2﹣2=0有两个不相等的实数根,必须k>﹣94,①k=﹣3舍去,所以k=1.【点睛】本题考查了根的判别式和根与系数的关系,能熟记根的判别式和根与系数的关系的内容是解此题的关键.22.(1)ABC为直角三角形,理由见解析;(2)2【解析】【分析】(1)根据题意,可以分别求得BC、AC、AB的长,然后利用勾股定理的逆定理,即可判断①ABC的形状;(2)根据等积法,可以求得AB边上的高.【详解】解:(1)①ABC为直角三角形,理由:由图可知,AC==BC=AB5,①AC2+BC2=AB2,①①ABC是直角三角形;(2)设AB边上的高为h,由(1)知,AC=BC AB=5,①ABC是直角三角形,①12BC AC•=12AB h•,即12152⨯h,解得,h=2,即AB边上的高为2.【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)降价15元;(2)不可能,理由见解析.【解析】【分析】(1)设每件衬衫降价x元,则平均每天可售出(20+2x)件,根据题意可得方程,然后求解即可;(2)由(1)可得(100﹣70﹣x)(20+2x)=1000,然后根据根的判别式进行求解即可.【详解】解:(1)设每件衬衫降价x元,则平均每天可售出(20+2x)件,依题意,得:(100﹣70﹣x)(20+2x)=750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15.①尽快减少库存,①x=15.答:每件衬衫降价15元时,平均每天赢利750元.(2)不可能,理由如下:依题意,得:(100﹣70﹣x)(20+2x)=1000,整理,得:x2﹣20x+200=0.①①=(﹣20)2﹣4×1×200=﹣400<0,①此方程无实数根,①不可能盈利1000元.【点睛】本题主要考查一元二次方程的应用,关键是根据题意得到一元二次方程,然后求解即可.24.(1(2+3【解析】【分析】(1(2)先根据二次根式有意义的条件确定x的取值范围,然后再对无理数部分分子有理化,然后再求最大值即可.【详解】=解:(1(2)①x+1≥0,x﹣1≥0,①x≥1,①y33,当x=1①y3.【点睛】本题考查了分母有理化的应用以及阅读理解能力,根据分母有理化理解分子有理化的方法是解答本题的关键.。
沪科版八年级下期期中数学试卷带答案一、选择题(本大题共10小题,共30.0分)1.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是A. B. C. D.2.二次根式中字母x的取值范围是A. B. C. D.3.下列方程中,是关于x的一元二次方程的是A.B.D.C.4.下列计算正确的是B. C. D.A.5.用配方法将方程变形,正确的是B. C. D.A.6.将化简,正确的结果是B. C. D.A.7.下列性质中,平行四边形不一定具备的是A. 邻角互补B. 对角互补C. 对边相等D. 对角线互相平分8.当5个整数从小到大排列,其中位数是4,如果这组数据的唯一众数是6,则5个整数的和最大是A. 21B. 22C. 23D. 249.已知关于x的方程有实数根,则a的取值范围是A. B. C. 且 D.10.如图,在▱ABCD中,对角线相交于点于点于点F,连结,则下列结论:;;;图中共有四对全等三角形其中正确结论的个数是A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18.0分)11.当时,二次根式的值是______.12.如果一个n边形的内角和等于它的外角和的3倍,则______.13.如果,则a的取值范围是______.14.已知一组数据,平均数和方差分别是,那么另一组数据的平均数和方差分别是,______.15.关于x的方程的解是均为常数,,则方程的解是______.16.在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交BC于点E,过点A作直线CD的垂线交CD于点F,若,则的值为______.三、解答题(本大题共7小题,共52.0分)17.我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.我选择第______个方程.18.已知关于x的一元二次方程,其中分别为三边的长.如果是方程的根,试判断的形状,并说明理由;如果方程有两个相等的实数根,试判断的形状,并说明理由;如果是等边三角形,试求这个一元二次方程的根.19.计算:计算:结果保留根号;当时,求代数式的值.20.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:从平均数和方差结合看;从折线图上甲、乙两个汽车销售公司销售数量的趋势看分析哪个汽车销售公司较有潜力.21.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______件,每件盈利______元;用x的代数式表示每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.22.如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.23.将一副三角尺如图拼接:含角的三角尺的长直角边与含角的三角尺的斜边恰好重合已知是AC上的一个动点.当点P运动到的平分线上时,连接DP,求DP的长;当点P在运动过程中出现时,求此时的度数;当点P运动到什么位置时,以为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.答案和解析【答案】1. B2. D3. C4. B5. D6. A7. B8. A9. A10. B11. 212. 813.14.15.16.或17.或或或18. 解:把代入方程得,则,所以为等腰三角形;根据题意得,即,所以为直角三角形;为等边三角形,,方程化为,解得.19. 解:;,.8甲汽车销售公司比乙汽车销售公司的销售情况较稳定;因为甲汽车销售公司每月销售的数量在平均数上下波动,而乙汽车销售公司每月销售的数量处于上升势头,从六月份起都比甲汽车销售公司销售数量多,所以乙汽车销售公司的销售有潜力.21. ;22. 证明:在▱ABCD中,,,又,≌,,,又,四边形AGCH为平行四边形,.23. 解:在中,,.如图,作.中,,.平分,,,,.当P点位置如图所示时,根据中结论,,又,,..当P点位置如图所示时,同可得..故的度数为或;当点P运动到边AC中点如图,即时,以为顶点的平行四边形的顶点Q恰好在边BC上.四边形DPBQ为平行四边形,,,,即.而在中,,根据勾股定理得:,为等腰直角三角形,,,是平行四边形DPBQ的高,.【解析】1. 解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2. 解:二次根式有意义,,解得.故选:D.根据二次根式及分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.3. 解:A、是分式方程,故A错误;B、时是一元一次方程,故B错误;C、是一元二次方程,故C正确;D、是二元二次方程,故D错误;故选:C.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4. 解:A、,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C 、,故C错误;D、,故D错误.故选:B.根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质:.5. 解:把方程的常数项移到等号的右边,得到,方程两边同时加上一次项系数一半的平方,得到,配方得.故选:D.在本题中,把常数项移项后,应该在左右两边同时加上一次项系数6的一半的平方.本题考查了配方法解一元二次方程配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6. 解:原式.故选:A.根据二次根式的乘法,可化简二次根式,可得答案.本题考查了二次根式的性质与化简,二次根式的乘法运算是解题关键.7. 解:A、平行四边形邻角互补,正确,不合题意;B、平行四边形对角不一定互补,错误,符合题意;C、平行四边形对边相等,正确,不合题意.D、平行四边形对角线互相平分,正确,不合题意;故选:B.直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.8. 解:根据中位数的定义5个整数从小到大排列时,其中位数为4,前两个数不是众数,因而一定不是同一个数.则前两位最大是,根据众数的定义可知后两位最大为这5个整数最大为:这5个整数可能的最大的和是21.故选:A.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题为统计题,考查众数与中位数的意义中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,叫做这组数据的中位数众数是一组数据中出现次数最多的数.9. 解:当,即时,原方程为,解得:,符合题意;当,即时,关于x的方程有实数根,,解得:且.综上所述:a的取值范围为.故选:A.分二次项系数和两种情况考虑,当时,解一元一次方程可得出x的值,由此得出符合题意;当时,根据根的判别式,即可去除k的取值范围综上即可得出结论.本题考查了解一元一次方程、根的判别式以及解一元一次不等式,分二次项系数和两种情况考虑是解题的关键.10. 解:四边形ABCD是平行四边形,的面积的面积,于点于点F,的面积的面积,正确;四边形CFAE是平行四边形,故正确;,正确;由以上可得出:≌≌≌,≌≌≌≌等故错误.故正确的有3个.故选:B.根据平行四边形的性质与判定以及全等三角形的判定与性质分别分析得出即可.此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,证明四边形CFAE是平行四边形是解题关键.11. 解:当时,二次根式.把代入二次根式,即可得解为2.本题主要考查二次根式的化简求值,比较简单.12. 解:由题意得:,解得:,故答案为:8.根据多边形内角和公式和外角和为可得方程,再解方程即可.此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.13. 解:,,解得:,故答案为:.由可知,解之可得答案.本题主要考查二次根式的性质,熟练掌握二次根式的性质:及绝对值的性质是解题的关键.14. 解:数据的平均数是2,数据的平均数是;数据的方差是,数据的方差是;故答案为:3;6.根据方差和平均数的变化规律可得:数据的平均数是,方差是,再进行计算即可.本题考查方差的计算公式的运用:一般地设有n个数据,,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15. 解:关于x的方程的解是均为常数,,方程变形为,即此方程中或,解得或.故答案为:.把后面一个方程中的看作整体,相当于前面一个方程中的x求解.此题主要考查了方程解的定义注意由两个方程的特点进行简便计算.16. 解:四边形ABCD是平行四边形,,如图:,,在中:,在中,,;如图:,,在中:,在中,,;综上可得:的值为或.故答案为:或.根据平行四边形面积求出AE和AF,然后根据题意画出图形:有两种情况,求出BE、DF的值,求出CE和CF的值,继而求得出答案.此题考查了平行四边形的性质以及勾股定理此题难度适中,注意掌握分类讨论思想思想与数形结合思想的应用.17. 解:我选第个方程,解法如下:,这里,,,则;我选第个方程,解法如下:,整理得:,分解因式得:,可得或,解得:;我选第个方程,解法如下:,这里,,,则;我选第个方程,解法如下:,变形得:,分解因式得:,可得或,解得:此方程利用公式法解比较方便;此方程利用因式分解法解比较方便;此方程利用公式法解比较方便;此方程利用因式分解法解比较方便.此题考查了解一元二次方程因式分解法,公式法,及直接开平方法,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.18.把代入方程得,整理得,从而可判断三角形的形状;根据判别式的意义得,即,然后根据勾股定理可判断三角形的形状;利用等边三角形的性质得,方程化为,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.19.先把化成,再去掉括号,然后合并即可;先对要求的式子进行配方,然后把x的值代入计算即可.此题考查了二次根式的化简求值,掌握混合运算的步骤和配方法的步骤是解题的关键.20.根据平均数、方差、中位数的概念求值,并填表;根据方差分析稳定性,根据销售趋势看销售前景即可求出答案.此题考查了平均数、方差、中位数的求法及意义,以及从不同角度评价数据的能力.21. 解:设每件童装降价x元时,每天可销售件,每件盈利元,故答案为:;根据题意,得:解得:答:每件童装降价20元或10元,平均每天赢利1200元;不能,此方程无解,故不可能做到平均每天盈利2000元.根据:销售量原销售量因价格下降而增加的数量,每件利润实际售价进价,列式即可;根据:总利润每件利润销售数量,列方程求解可得;根据中相等关系列方程,判断方程有无实数根即可得.本题主要考查一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.22. 由平行四边形的对边平行且相等,再利用平行线的性质得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等得到,进而得到,利用一组对边平行且相等的四边形为平行四边形得到AGCH为平行四边形,即可得证.此题考查了平行线的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.作,由AB的长求得BC、AC的长在等腰中,;在中,求得PC的长则由勾股定理即可求得DP的长.由得BC与DF的关系,则DP与DF的关系也已知,先求得的度数,则的度数也可求出,需注意有两种情况.由于四边形DPBQ为平行四边形,则为AC中点,作出平行四边形,求得面积.本题考查了解直角三角形的应用,综合性较强,难度系数较大.。
沪科版数学八年级下册期中考试试卷一、单选题1.下列根式中是最简二次根式的是( )AB CD2.下列运算正确的是 ( )A =B =C -3=D .3=3.下列方程中,是一元二次方程的为( ) A .x 2+3x=0B .2x+y=3C .210x x-= D .x (x 2+2)=04.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .4B .6C .16D .555的结果是( )A B .CD .6.下列四组线段中,可以构成直角三角形的是( )A .1B .4,5,6C .2,3,4D .1.5,2,2.57.关于x 的一元二次方程()22210m x x -++=有实数根,则m 的取值范围是( ) A .3m ≤B .3m ≥C .3m ≤且2m ≠D .3m <8.若等腰三角形的一边长为6,另两边长分别是关于x 的方程x 2-(k+5)x+3k+6=0的两个根,则k=( ). A .4B .6C .6±D .2549.实数a ,b +b 的结果是( )A.1 B.b+1C.2a D.1-2a10.如图Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A ′DB的度数为()A.30°B.20°C.10°D.40°二、填空题11.若3a=-,则代数式269a a-+的值是__________.x y(2@6)@8=_____________.12.定义运算“@”的运算法则为:@13.观察分析下列数据:0,根据数据排列的规律得到第13个数据应是__________.三、解答题14.有一块田地的形状和尺寸如图所示,求它的面积.--115()216.解一元二次方程(配方法):2670x x--=17.自2019年1月8日15日起,合肥市进入冰雪灾害天气,如图,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,求这棵树折断之前的高度.18.已知x=-1是一元二次方程x2-mx-2=0的一个根,求m的值和方程的另一个根.19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=(1)求证:∠C=90°;(2)求BD的长.20.阅读理解:把分母中的根号化去叫做分母有理化,例如:5==;2111-1⨯===等运算都是分母有理化,根据上述材料,(1(2110+++21.如图所示,有一长方形的空地,长为x米,宽为12米,建筑商把它分成甲、乙、丙三部分,甲和乙为正方形.现计划甲建筑成住宅区,乙建成商场丙开辟成公园.()1请用含x的代数式表示正方形乙的边长;;()2若丙地的面积为32平方米,请求出x的值.22.为了深化瑶海教育改革发展,办好人民满意的教育,自2017年以来,瑶海区加大了教育经费的投入,2017年该区投入教育经费6250万元,2019年投入教育经费9000万元,假设该区这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2020年该区投入教育经费多少万元.23.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.参考答案1.B【解析】【分析】满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A. 非最简;最简;C.非最简;D. =.故选:B【点睛】考核知识点:理解最简二次根式的条件.2.B【解析】【分析】A.被开方数相同的最简二次根式才能加减;B C.把被开方数(-3)2化为9再计算;D.最简二次根式相加减,二次根式不变,有理数部分相加减.【详解】解:A的被开方数不相同,不能相加减;B则原计算正确;C3,则原计算错误;D.故选B.【点睛】本题考查二次根式的加减,把二次根式化为最简二次根式,合并其中的同类二次根式;对于不是同类二次根式的,则保留作为结果的一项即可.3.A【解析】【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A. 符合一元二次方程定义,正确;B. 含有两个未知数,错误;C. 不是整式方程,错误;D. 未知数的最高次数是3,错误.故选:A.【点睛】考查一元二次方程的定义,掌握一元二次方程的定义是解题的关键.4.C【解析】∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC,∵∠ABC=∠CDE,AC=CE,∴△ABC≌△CDE,∴BC=DE.∴(如上图),根据勾股定理的几何意义,b的面积=a的面积+c的面积,∴b的面积=a的面积+c的面积=5+11=16.故选C.5.D【解析】【分析】根据二次根式性质,先化简,再合并.【详解】=+故选D【点睛】考核知识点:同类二次根式的加减法.6.D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+)2=3≠32,不可以构成直角三角形,故A选项错误;B、42+52=41≠62,不可以构成直角三角形,故B选项不正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、1.52+22=6.25=2.52,可以构成直角三角形,故D选项正确.故选:D.【点睛】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7.C【解析】【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即22-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.【详解】∵关于x的一元二次方程(m-2)x2+2x+1=0有实数根,∴m-2≠0且△≥0,即22-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:C【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.A【解析】【分析】分类讨论:当6为等腰三角形的底边,则方程有等根,所以△=(k+5)2-4(3k+6)=0,解得k1=k2=1,于是根据根与系数的关系得两腰的和=k+5=6,不满足三角形三边的关系,故舍去;当6为等腰三角形的腰,则x=6为方程的解,把x=6代入方程可计算出k的值.【详解】当6为等腰三角形的底边,根据题意得△=(k+5)2-4(3k+6)=0,解得k1=k2=1,两腰的和=k+5=6,不满足三角形三边的关系,所以k1=k2=1舍去;当6为等腰三角形的腰,则x=6为方程的解,把x=6代入方程得36-6(k+5)+3k+6=0,解得k=4.故选:A【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-ba,x1•x2=ca.也考查了等腰三角形的性质.9.A 【解析】试题解析:由数轴可得:a −1<0,a −b <0, 则原式=1−a +a −b +b =1. 故选A. 10.C 【解析】 【分析】根据直角三角形两个锐角互余得40B ∠=,根据折叠性质得50A DAC '︒∠=∠=,可得结果. 【详解】Rt △ABC 中,∠ACB =90∘,∠A =50∘,所以40B ∠=0,在折叠过程中50A DAC '︒∠=∠=;DAC B A DB ''∠=∠+∠,解得∠A ′DB =10∘故选:C 【点睛】考核知识点:直角三角形的折叠问题. 11.10 【解析】 【分析】先将原式进行因式分解,然后将a 的值代入即可求出答案, 【详解】解:当a=3 原式=(a-3)2 =10故答案为:10 【点睛】本题考查二次根式的化简,解题的关键是熟练运用完全平方公式,本题属于基础题型. 12.6【解析】试题解析:根据题意可得:2@6 4.===()2@6@84@8 6.∴====故答案为6. 13.6 【解析】 【分析】观察分析,总结出:第n 个数是(1)[(1)]n --. 【详解】根据已知可得规律:第n 个数是(1)[(1)]n --所以,当n=136= 故答案为:6 【点睛】考核知识点:总结数列的规律;分析总结是关键. 14.面积为24. 【解析】 【分析】在直角△ACD 中,已知AD ,CD ,根据勾股定理可以求得AC ,根据AC ,BC ,AB 的关系可以判定△ABC 为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD 的面积. 【详解】 解:连接AC ,在Rt △ACD 中,AC 为斜边, 已知AD =4,CD =3,则AC =5,∵AC 2+BC 2=AB 2, ∴△ABC 为直角三角形,∴S 四边形ABCD =S △ABC ﹣S △ACD =12AC•CB ﹣12AD•DC =24, 答:面积为24.【点睛】本题考查了勾股定理及其逆定理在实际生活中的运用,考查了直角三角形面积的计算,本题中正确的判定△ABC 为直角三角形是解题的关键.15【解析】【分析】先计算算术平方根及二次根式乘法和乘方,再算加减.【详解】()2--1【点睛】考核知识点:实数的混合运算.掌握实数运算法则是关键.16.7或-1【解析】【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x 2-6x-7=0∴x 2-6x=7∴x 2-6x+9=7+9∴(x-3)2=16.12347,1x x x -=±∴==- 【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.8米【解析】【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理直接解答即可求出斜边.【详解】解:∵AC=4米,BC=3米,∠ACB=90°,∴,∴折断前高度为5+3=8(米).【点睛】此题主要考查学生对勾股定理在实际生活中的运用能力.18.m 的值为1,方程的另一根为x=2.【解析】【分析】由于x=-1是方程的一个根,直接把它代入方程即可求出m 的值,然后解方程可以求出方程的另一根.【详解】解:∵x=-1是关于x 的一元二次方程x 2-mx-2=0的一个根,∴(-1)2-m×(-1)-2=0,∴m=1,将m=1代入方程得x 2-x-2=0,(x-2)(x+1)=0解得:x=-1或x=2.故m 的值为1,方程的另一根为x=2.【点睛】本题考查一元二次方程的解及解一元二次方程,掌握因式分解的解方程技巧是解题关键.19.(1)证明见解析;(2)5.【解析】【分析】(1)由AC=4,CD=3,AD=5,根据勾股定理的逆定理进行证明即可得;(2)根据勾股定理求得BC的长,结合CD长即可求得BD长.【详解】解:(1)∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD2,∴△ACD是直角三角形,且∠C=90°;(2)∵在Rt△ABC中,∠C=90°,∴BC=8,∴BD=BC-CD=8-3=5.【点睛】本题考查了勾股定理以及勾股定理逆定理,熟练掌握相关内容是解题的关键.20.(1(21.【解析】【分析】(1)根据二次根式的乘法,分子分母都乘以),即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】=;解:(1)原式+⋯+.(2)原式=11.【点睛】此题考查了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.21.(1)(x−12)米;(2)x的值为20或16.【解析】【分析】(1)由甲和乙为正方形,且该地长为x米,宽为12米,可得出丙的长,也是乙的边长;(2)由(1)求得丙的长,再求出丙的宽,即可得出丙的面积,由此列出方程,求解即可.【详解】解:(1)因为甲和乙为正方形,结合图形可得丙的长为:(x−12)米.同样乙的边长也为(x−12)米,故答案为:(x−12)米;(2)结合(1)得,丙的长为:(x−12)米,丙的宽为12−(x−12)=(24−x)米,所以丙的面积为:(x−12)(24−x),列方程得,(x−12)(24−x)=32解方程得x1=20,x2=16.答:x的值为20或16.【点睛】本题考查了一元二次方程的应用,解题的关键是表示出有关的线段的长,难度不大.22.(1)瑶海区投入教育经费的年平均增长率为20%;(2)预算2020年该区投入教育经费10800万元.【解析】【分析】(1)设该县投入教育经费的年平均增长率为x,根据2017年该县投入教育经费6250万元和2019年投入教育经费9000万元列出方程,再求解即可;(2)根据2017年该县投入教育经费和每年的增长率,直接得出2020年该县投入教育经费9000×(1+0.2),再进行计算即可.【详解】(1)设瑶海区投入教育经费的年平均增长率为x,根据题意得:6250(1+x)2=9000 解得:x=0.2=20%所以瑶海区投入教育经费的年平均增长率为20%;(2)因为2019年该区投入教育经费为9000万元,且增长率为20%,所以2020年该区投入教育经费为:9000×(1+0.2)=10800(万元)答:预算2020年该区投入教育经费10800万元.【点睛】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.23.(1)证明见解析;(2)10.【解析】试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=32,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.。
沪科版八年级下册数学期中考试试题一、单选题1.下列各式计算正确的是( )A .6=B .=C .D .2.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 3.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是( )A .B .24C .24D .24 4.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则△正方形E 的边长是( )A.18 B .8 C .D . 5m >0,n >0)分别作了如下变形:()m n-====关于这两种变形过程的说法正确的是( )A .甲,乙都正确B .甲,乙都不正确C .只有甲正确D .只有乙正确6.实数a ,b a b a b -++的结果是( )A .21a b -+B .21a b -+C .21a b -+-D .21a b +- 7.若分式2545x x x ---的值为0,则x 的值为( ) A .-5 B .5 C .-5和5 D .无法确定 8.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 9.设a ,b 是方程x 2+x -2009=0的两个实数根,则a 2+2a +b 的值为( )A .2006B .2007C .2008D .200910.如图,在等腰Rt ABC 中,90ACB ∠=︒,点P 是ABC 内一点,且1CP =,BP =2AP =,以CP 为直角边,点C 为直角顶点,作等腰Rt DCP ,下列结论:△点A 与点D ;△AP PC ⊥;△AB =△2APB S =,其中正确结论有是( )A .△△△B .△△C .△△D .△△二、填空题11.若ab<0______.12.二次根式:已知3a =+3b =-22a b ab -= ___________.13.观察分析下列数据:03,--…,根据数据排列的规律得到第19个数据应是__________.14.已知:如图,AD 是等边ABC 中BAC ∠的平分线,P 是AD 上一点,E 为AC 中点,连接PC ,PE ,若6AB =,则PC PE +的最小值是__________.三、解答题15.计算:0(3)|1-.16.解方程:()()23525x x -=-.17.如图,在3×3的网格中,小正方形的边长为1,连接三个格点得到△ABC . (1)求△ABC 的周长.(2)BC 边上的高是多少?18.某校八年级一班的一个数学综合实践小组去超市调查某种商品“十一”期间的销售情况,下面是调查后小阳与其他两位同学交流的情况:小阳:据调查,该商品的进价为12元/件.小佳:该商品定价为20元时,每天可售240件.小欣:在定价为20元的基础上,涨价1元,每天少售20件.根据他们的对话,若销售的商品每天能获利1920元时,为尽快减少库存,应该怎样定价更合理?19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.(1)在图△中以格点为顶点画一个三角形,使三角形三边长分别为2(2)在图△中以格点为顶点画一个面积为10的正方形;(3)观察图△中带阴影的图形,请你将它适当剪开,重新拼成一个正方形(要求:在图△中用虚线作出,并用文字说明剪拼方法).20.已知关于x 的一元二次方程()25410a x x ---=.()1若该方程有实数根,求a 的取值范围.()2若该方程一个根为1-,求方程的另一个根.21.如图所示,把一张长方形纸片沿对角线折叠,将BC 折叠到'BC 位置且与AD 相交于F .(1)证明:BF FD =;(2)如图,若4AB =,8BC =,求AF 的长.22.如果1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,那么12b x x a+=-,12c x x a⋅=,这就是著名的韦达定理. 已知m ,n 是方程22510x x --=的两根,不解方程计算: (1)22m n+;23.如图,在Rt ABC △中,90C ∠=︒,30A ∠=︒,18cm BC =.动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点B 出发,沿BC 向点C 运动,如果动点P 以2cm /s ,Q 以1cm/s 的速度同时出发,一个动点停止后,另一个动点随之停止运动,设运动时间为(s)t ,解答下列问题:(1)求t 为何值时,PBQ △是等边三角形;(2)P ,Q 在运动过程中,PBQ △的形状不断发生变化,当t 为何值时,PBQ △是直角三角形?并说明理由.参考答案1.C【分析】根据合并同类二次根式法则和二次根式的乘法公式逐一判断即可.【详解】解:A .=B .C .,故本选项正确;D.故选C .【点睛】此题考查的是二次根式的运算,掌握合并同类二次根式法则和二次根式的乘法公式是解决此题的关键.2.C【分析】由方程有实数根可知根的判别式b 2﹣4ac ≥0,结合二次项的系数非零,可得出关于a 的一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a ≥1且a ≠5,故选:C .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组,由根的判别式结合二次项系数非零得出不等式组是关键.3.C【分析】先利用因式分解法解方程得到x 1=6,x 2=10,当第三边长为6时,利用等腰三角形的性质和勾股定理可计算出底边上的高=积;当第三边长为10时,利用勾股定理的逆定理可判断三角形为直角三角形,然后根据三角形面积公式求解.【详解】解:x 2-16x +60=0,(x -6)(x -10)=0,x -6=0或x -10=0,所以x 1=6,x 2=10,当第三边长为6时,三角形为等腰三角形,则底边上的高面积182=⨯⨯当第三边长为10时,三角形为直角三角形,此时三角形的面积=12×8×6=24. 故选:C .【点睛】本题考查了解一元二次方程—因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.4.D【解析】【分析】根据勾股定理分别求出正方形E 的面积,进而即可求解.【详解】解:由勾股定理得,正方形E 的面积=正方形A 的面积+正方形B 的面积+正方形C 的面积+正方形D 的面积=22+32+12+22=18,△正方形E 的边长故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.5.D【解析】【分析】甲的做法是先把分母有理化,再约分;乙的做法是先把分子分解因式,再约分.计算过程中,要考虑m=n 这种情况.【详解】甲的做法是先把分母有理化,再约分,如果m=n 则化简不成立;乙的做法是先把分子分解因式,再约分,正确.【点睛】本题考查的是分母有理化的计算方法.6.C【解析】【分析】根据二次根式的性质先化简,再根据绝对值的性质进行计算即可.【详解】解:观察实数a ,b 在数轴上的位置可知:a +1>0,a -b <0,1-b <0,a +b >0,a b a b -++, =|a +1|+|a -b |+2|1-b |-|a +b |=a +1+b -a +2(b -1)-(a +b )=a +1+b -a +2b -2-a -b=-a +2b -1.故选:C .【点睛】本题考查了二次根式的性质与化简、实数与数轴,解决本题的关键是掌握二次根式得性质及绝对值的性质.7.A【解析】【分析】根据分式值为0的条件:分子为0,分母不为0列方程或不等式即可. 【详解】解:△分式2545x x x ---的值为0, △5x -=0且245x x --≠0,解方程得,5x =±;解不等式得,1,5x x ≠-≠;故5x =-,【点睛】本题考查了分式值为0和解一元二次方程,解题关键是根据已知列出方程和不等式,准确求解.8.B【解析】【分析】根据配方的步骤计算即可解题.【详解】()2222++=+=-++=-++=x x x x x x x890,89,816916,47故B错误.且ACD选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.9.C【解析】【详解】分析:由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.解答:解:△a是方程x2+x-2009=0的根,△a2+a=2009;由根与系数的关系得:a+b=-1,△a2+2a+b=(a2+a)+(a+b)=2009-1=2008.故选C.10.C【解析】【分析】如图,作辅助线;证明△ACD △△BCP ,得到AD =PB△正确;由勾股定理的逆定理可证△ADP ═90°,进而证明△APD =45°,结合△DPC =45°,得到△正确;运用三角形的面积公式可以判断△不正确、△不正确,即可解决问题.【详解】如图,连接AD ,△△DCP =△ACB =90°,△△ACD =△BCP ,在△ACD 与△BCP 中,DC PCACD BCP AC BC=⎧⎪∠=∠⎨⎪=⎩,△△ACD △△BCP (SAS ),△AD =PB△正确;△△DCP =90°,DC =PC =1,△DP 2=2,△DP =AD△AP 2=4=AD 2+DP 2,△△ADP =90°,△△ADP 为等腰直角三角形,△△APD =45°,而△DPC =45°,△△APC =90°,即AP △CP ,故△正确;△△ADC =△ADP +△CDP =135°=△CPB ,△△CPB +△DPC =180°,△点P ,点B ,点D 共线,△BD=BP +PD =AD ,△AB=△△不正确,△S △ADB =122⨯=, △S △ABP =1,故△不正确,故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,三角形的面积公式等知识;作辅助线,构造直角三角形是解题的关键.11.【解析】【分析】首先由ab<0,-a 2b ≥0即可判定a>0,b<0,然后利用二次根式的性质,即可将此二次根式化简【详解】△ab<0,-a 2b ≥0△a>0,b<0故答案为:【点睛】此题考查了二次根式的化简,注意判定a 与b 的符号,然后根据二次根式的性质化简此题是关键12.【解析】【分析】先算-a b 、ab 的值,再利用因式分解和整体代入求解即可.【详解】 △3a =+3b =-△a b -=9-8=1ab ,△()22a b ab ab a b -=-,故填:【点睛】本题考查了因式分解和整体代入求值,熟练掌握提取公因式是关键.13.【解析】【分析】 通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(1)(1)(1)(1)----19个的答案.【详解】解:由题意知道:题目中的数据可以整理为:(1)1)1)1)(----- ;△第19个答案为:(1)-=-故答案为.【点睛】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.14.【解析】【分析】首先连接PB 、BE ,证明出AD 垂直平分BC ,得到PC+ PE= PB+ PE ,由两点间线段距离最短可知当点B ,P ,E 在一条直线上时,PB+ PE 取值最小,最后运用勾股定理求解即可.【详解】如图,连接PB 、BE , AD 是等边三角形ABC 中BAC ∠ 的平分线,∴AD 垂直平分BC ,∴PB= PC ,:.PC+ PE= PB+ PE ,由两点间线段距离最短可知,当点B ,P ,E在一条直线上时,PB+ PE取值最小,最小值为BE ,△ABC为等边三角形,且AB=6,E为AC的中点,.∴BC=AB=6,11322CE AC AB===,BE∴=即PC+ PB的最小值为故答案为:【点睛】本题查考等边三角形,角平分线的性质,垂直平分线的性质以及两点间线段距离最短,同时涉及勾股定理的运算,属于综合题,难度一般,熟练掌握这些性质是解题的关键.15.-【解析】【分析】根据二次根式的运算可直接进行求解.【详解】解:原式=11--【点睛】本题主要考查二次根式的运算及零次幂,熟练掌握二次根式的运算及零次幂是解题的关键.16.15 =x,213 3x=.【解析】【分析】根据因式分解法解一元二次方程的一般步骤解方程即可.【详解】解:()()23525x x -=-,()()50532x x ⎡⎤+⎣-=⎦-, ()()53130x x --=,50x -=或3130x -=,15=x ,2133x =. 【点睛】本题主要考查因式分解法解一元二次方程,熟练运用解一元二次方程的的几种方法是解题关键.17.(1)(2 【解析】【分析】(1)利用勾股定理分别求出三条边的长,进而可求出周长;(2)利用面积法求解即可;【详解】解:(1)由勾股定理得,AC = 221310BC ,AB =所以△ABC 的周长为(2)设BC 边上的高是h ,S △ABC =11331322222⨯-⨯⨯⨯-⨯⨯=4. △142BC h ⋅=,△h△BC . 【点睛】本题考查了勾股定理,以及三角形的面积公式,,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.18.20元【解析】【分析】根据“每件商品的利润×销售量=1920”设未知数列出方程,解方程即可得出结论.【详解】解:设每件商品定价为x元,则每件商品的销售利润为(x﹣12)元,根据题意得:[240﹣20(x﹣20)]×(x﹣12)=1920整理,得x2﹣44x+480=0,解得,x1=20,x2=24;△要尽快减小库存,△x=20,答:为尽快减少库存,每件定价20元.【点睛】本题考查了一元二次方程的实际应用,弄清题意,找准等量关系列出方程是解题的关键. 19.见解析【解析】【详解】试题分析:(1)根据勾股定理和已知条件,画出符合条件的三角形即可;(2的正方形即可;(3)如图,连接AB、BC,沿AB、BC的虚线剪开后,然后△△△分别对应拼接即可.试题解析:(1)如图△所示,△ABC即为所求作的三角形.(2)如图△所示,正方形ABCD的面积为10.(3)如图△所示,正方形ABCD即为重新拼成的正方形.剪拼方法:沿图△中的虚线剪开,然后△△△分别对应拼接即可.点睛:本题考查了勾股定理,格点三角形的应用,主要考查学生的观察计算能力和动手操作能力.20.(1)a 的取值范围为1a ≥且5a ≠;(2)方程的另一个根为13-. 【解析】【分析】(1)根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论;(2)将x =﹣1代入原方程求出a 的值,设方程的另一个根为m ,将a 代入原方程结合根与系数的关系即可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)△关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,△2504450a a -≠⎧⎨=-+-≥⎩()(),解得:a ≥1且a ≠5,△a 的取值范围为a ≥1且a ≠5. (2)△方程一个根为﹣1,△(a ﹣5)×(﹣1)2﹣4×(﹣1)﹣1=0,解得:a =2. 当a =2时,原方程为3x 2+4x +1=0,设方程的另一个根为m ,由根与系数的关系得:﹣m =13,解得:m =﹣13,△方程的另一个根为﹣13. 【点睛】本题考查了根的判别式以及根与系数的关系,根据一元二次方程的定义结合根的判别式得出关于a 的一元一次不等式组是解题的关键.21.(1)见解析;(2)3【解析】【分析】(1)根据矩形的性质可以得到//AD BC ,即可得到ADB DBC ∠=∠,再根据折叠的性质DBC DBC'∠=∠,进而得到BF FD =;(2)设AF 的长为x ,则8BF FD x ==-,然后利用勾股定理求解即可.【详解】解:(1)△四边形ABCD 是矩形,△//AD BC ,△ADB DBC ∠=∠,由折叠知,DBC DBC'∠=∠,△'DBC ADB ∠=∠,△BF FD =;(2)△四边形ABCD 是矩形,△8AD BC ==,90A ∠=︒,设AF 的长为x ,则8BF FD x ==-,△222BF AB AF =+,△()22248x x +=-,△3x =,即3AF =.【点睛】本题主要考查了矩形的性质,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.22.(1)-10;(2【解析】【详解】试题分析:(1)根据一元二次方程根与系数的关系求得m+n 、mn 的值,把式子22m n +通分后代入求知即可;(2)把根号下的式子化成完全平方公式的形式,再代入求值即可. 试题解析:52m n +=,12mn =- (1)22m n +=()210m n mn+=-.= 23.(1)t =12;(2)当t 为9或725时,PBQ △是直角三角形,理由见解析.【解析】【分析】(1)利用含30角的直角三角形的性质可求出236AB BC ==,根据题意可用t 表示出PB 和BQ 的长,再根据等边三角形的各边相等可列出关于t 的等式,解出t 即可.(2)由于60B ∠=︒,所以可分两种情况讨论△当90PQB ∠=︒时;△当90QPB ∠=︒时.利用含30角的直角三角形的边长的关系列出关于t 的等式,再解出t 即可.【详解】(1)在Rt ABC 中,90C ∠=︒,30A ∠=︒,18BC =,△236AB BC ==,△362PB t =-,BQ t =,△9060B A ∠=︒-∠=︒,△要使PBQ △是等边三角形,只需PB BQ =,即362t t -=,解得:12t =.故12t =时,PBQ △是等边三角形.(2)△PBQ △是直角三角形,且60B ∠=︒,△分类讨论△当90PQB ∠=︒时,30QPB ∠=︒,△2BP BQ =,即3622t t -=.解得:9t =.△当90QPB ∠=︒时,30PQB ∠=︒,△2BQ BP =,即2(362)t t =-. 解得:72721855t ⎛⎫=< ⎪⎝⎭. 综上,当t 为9或725时,PBQ △是直角三角形. 【点睛】本题考查了等边三角形和含30角的直角三角形的性质.根据等边三角形和含30角的直角三角形的边长关系列出关于t 的等式是解答本题的关键.。
沪科版八年级下册数学期中考试试卷一、单选题1.下列运算正确的是A 6=B =C3= D 3±2.化简二次根式=A B . C D .3.下列方程是一元二次方程的是 A .211x x-= B .y -=2410 C .x x x +=-2235 D .20ax bx c ++= 4.一元二次方程2(2)(2)(1)x x x -=-+的根为A .1x =B .121,2x x =-=C .121,2x x ==D .22x =5.下列说法中不正确的是A1的相反数是1 B .数轴上的点与实数一一对应C .一元二次方程210x x -+=的两根之积为-1D .直角三角形两直角边的比为26.关于x 的一元二次方程2420kx x -+=有实数根,则k 的取值范围是 A .2k = B .2k ≥ C .k2≤ D .k 2≤且0k ≠7.在钝角△ABC 中,AB=13,AC=15,高AD=12,则△ABC 面积为 A .14 B .24 C .64或24 D .648.若1n =,且n 为一元二次方程2210x ax +-=的一个根,则一元二次方程的另一根为 A .110-B .-1C .12-D .129.如图,直线l 过正方形ABCD 顶点B ,点A 、C 到直线l ,则正方形边长是A .3 BC .122 D .以上都不对10.若x ,y都是实数,且y >34,则y y --6834的值为A .-2B .2C .4D .无法计算 二、填空题 11x 的取值范围是______________; 12.如图,网格中每个小正方形的边长都为1,则△ABC 的边a 上的高是_______;13.一元二次方程()223320x m x m -+++=,若两根互为相反数,则m=_______;若两根互为倒数,则m=__________;14.有一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠使A 、C 两点重合,那么折痕长是____ 三、解答题15.计算:(---⎝⎭12216.解方程: x x x -=-22217.已知x 为一元二次方程)x x -+=220的两个实数根,化简并求代数式:x x x x x x -+-⎛⎫-÷ ⎪+⎝⎭221613的值.18.如图,货车高AC =3.2m ,AC 与地面垂直,货车卸货时后面支架AB 翻折落在地面A 1处,经过测量A 1C =1.6m ,求翻折点B 与地面的距离.19.已知关于x 的一元二次方程222(1)x m m x +=-的两个实数根为1x ,2x , (1)求m 的取值范围;(2)设12y x x =+,当m 取何值时,y 取最小值,并求出最小值.20.如图,已知点A 在BG 上,四边形ABCD 与四边形DEFG 都为正方形,其面积分别是7cm 2和11cm 2: (1)求AG 的长; (2)求△CDE 的面积.21.某国产著名品牌衬衫标价为400元/件,去年中秋节和国庆节期间经过两次优惠降价为324元 /件,并且两次降价的百分率相同: (1)求该种衬衫每次降价的百分率;(2)若该种品牌衬衫的进价为300元/件,两次降价共售出此种品牌衬衫100件,为使两次降价销售的总利润不少于3120元,第一次降价至少要销售出多少件该种衬衫?22.根据题意,解答下列问题:(1)如图△,已知直线24y x =+与x 轴、y 轴分别交于A 、B 两点,求线段AB 的长; (2)如图△,类比(1)的求解过程,请你通过构造直角三角形,求出点M (3,4)与N (-1,-2)之间的距离;(3)如图△,已知点()()111222,,,P x y P x y 是平面直角坐标系内任意的两点,求证:12PP =23.阅读材料,然后解答下列问题:其实我们可以将其进一步化简与计算:==)===212112;1==;===学会解决问题:(1(2;(3(4参考答案1.C2.A3.B4.C5.C6.D7.B8.C9.A10.A11.x≥2且x≠5【详解】解:由题意,得x-2≥0且5-x≠0,解得x≥2且x≠5.故答案为:x≥2且x≠5.12【详解】解: △ABC 的边a 上的高为h ,△114422h =⨯⨯13. 32- 13-【详解】解:若两根互为相反数, 则2m+3=0, △m=32-;若两根互为倒数, 则3m+2=1,△m=13-,故答案为:32-;13-.14.454【详解】解:如图,由勾股定理易得AC=15,设AC 的中点为E ,折线FG 与AB 交于F ,(折线垂直平分对角线AC ),AE=7.5.△△AEF=△B=90°,△EAF 是公共角, △△AEF△△ABC ,△912EF BC AE AB ==. △EF=22.54. △折线长=2EF=454. 故答案为:454.15.9【详解】解:原式=+123 =9 16.12x =,21x =-【详解】解:△x x x -=-222, △()220x x x -+-=, △()()210x x -+=, △20x -=或10x +=, △12x =,21x =-.17.12x -;2 【详解】解:()x x -+2320()(x x ∴-=20,,x x ∴=122 △原式()()()x x x x x xx x x x x x +-⎛⎫=-⋅=⋅= ⎪+---⎝⎭31113222 又226030x x x x ⎧+-≠⎨+≠⎩ 解得:,,x x x ≠≠≠-023△将x ===218.弯折点B 与地面的距离为1.2米 【详解】解:由题意得,AB =A 1B ,△BCA =90°, 设BC =xm ,则AB =A 1B =(3.2﹣x )m , 在Rt△A 1BC 中,A 1C 2+BC 2=A 1B 2, 即:1.62+x 2=(3.2﹣x )2, 解得:x =1.2,答:弯折点B 与地面的距离为1.2米. 19.(1)12m ≤;(2)当12m =时,y 最小=1. 【详解】(1)△222(1)x m m x +=-,△()22210x m x m +-+=,△一元二次方程有两个实数根, △△=224(1)40m m --≥, 解得:12m ≤, △m 的取值范围:12m ≤. (2)△关于x 的一元二次方程222(1)x m m x +=-的两个实数根为1x ,2x , △122(1)22y x x m m =+=--=-+, △20k =-<,△y 随m 的增大而减小, △12m ≤△当12m =时,y 最小=12212-⨯+=,20.(1)2;(2【详解】解:(1)△四边形ABCD 与四边形DEFG 都为正方形, 其面积分别是7cm 2和11cm 2,△,AD DG ==22711 ,90DAB DAG ∠=∠=︒,由勾股定理得:AG ==2 (2)如图,延长,CD 过E 作EM CD ⊥于,M正方形,ABCD 正方形,DGFE90,,ADC DAB GDE DE DG ∴∠=∠=∠=︒= ,90,ADG MDE DAG DME ∴∠=∠∠=∠=︒,ADG MDE ∴≌ 2,AG ME ∴== 27,CD =CD ∴= (负根舍去)所以△CDE 面积=⨯=12221.(1)10%;(2)至少要销售20件. 【详解】解:(1)设:该种衬衫每次降价的百分率为x ,由题意得: ()24001324x -=解得:120.1, 1.9x x ==(不合题意,舍去) 所以该种衬衫每次降价的百分率为10%;(2)设第一次降价要销售出y 件该种衬衫,由题意得:()()()%%y y ⎡⎤⨯--+⨯---≥⎡⎤⎣⎦⎣⎦24001103004001103001003120 36720,y ∴≥ 解得:20y ≥所以第一次降价至少要销售出20件该种衬衫.22.(1)(2)(3)见解析 【详解】解:(1)当x=0时,24y x =+=4;当y=0时,024x =+,x=-2; △A 点坐标(-2,0),B (0,4), 所以OA=2,OB=4,由勾股定理得:=(2)在如图中作MQ//y 轴与NQ//x 轴交于Q 点,则MQ=|4-(-2)|=6,NQ=|3-(-1)|=4,由勾股定理得:=(3)在如图中作P 2Q//y 轴与P 1Q//x 轴交于Q 点,P 2Q=21y y -,P 1Q=21x x -,由勾股定理得:P P ==1223.(1(2(3>(4)12 【详解】(1222=(2(3)因为-=>0,>(4=12.11。
八年级数学试卷1、 ..X 1在实数范围内有意义,则 x 的取值范围是( )A.x > 1B.x > IC.x V 1D.x < 12、 已知等腰三角形的一条腰长是 5,底边长是6,则它底边上的高为( )A.5B.3C.4D.73、 关于x 的方程(a — 5)x 2—4x — 1 = 0有实数根,则a 满足( )A.a > 1B. a > 1 且 a z 5C. a > 1 且 a z 5D.a z 54、 如果最简根式b a 3b 和2b a 2是同类二次根式,那么 a 、b 的值是()A.a = 0,b = 2B.a = 2,b = 0C.a =— 1,b = 1D.a = 1,b =— 25、 已知方程x 2 5x 2 0的两个解分别为x 1、x 2,则x 1x 2 x 1 x 2的值为( )A. 7B. 3C.7D.36、小明的作业本上有以下四题:① ;16a 4 = 4a 2;②.5a 10a 5; 2a ;8、如图,在Rt △ ABC 中,/万=)(7 , D E 是斜边BC 上两点,且/ DAE 45°, 将△上二]绕点以顺时针旋转90二后,得到△廿三,连接三「,下列结论: ①△匸卫二也厶^玉71; ②△上三j ■也△上TS ; ③三日一二二三; ④二J I —亠,其中正确的是( )A.②④B. ①④C.②③D. ①③9、化简二次根式.a 3结果是 ()题号 -——一-二二-三总分得分得分评卷人__ i名■■③ a J 1 u'a 2 1 品:④ <3aT a Y aA.4 个B.3 个C.2 个D.17、一个直角三角形的斜边长比直角边长大2a a ,做错的题有()个2,另一直角边长为 6,则斜边长为(A.6B.8C.10D.12一、选择题(每小题 3分,共30分)C.a、aD.a a10、在二一 L.中,一二僅」:7 = 5 , ^=r ,点站为占二的中4分,共20分)的根是 _____________b )2011的值为 ______ 13、 边长为a 的正三角形的面积等于 _14、 若关于x 的方程x 2— mx^ 3= 0有实数根,则 m 的值可以为 ____________ .(任意给出一个符合条件的值即可)数n (n > 1 )的等式表示出来 _________________________________________________________占八A.H _二7于点英,则S5V 等于( )12C.D?:(2 )计算(4 分):(J48(叮 2P.5)⑶计算(4分): 422 2 (2002. 3)0(x + 2) = 2 (x + 2) b 10,那么(a二、填空题(每小题15、观察下列各式:17、先化简,再求值( 6 分):x 2 x2 2x 1x 218、(6分)已知方程x2-4x+m=0的一个根为一2,求方程的另一根及19、(8分)已知M X y 2xy N3依谒■- x , y X\ y y x' , x y . y x甲、乙两个同学在8 8 x 18的条件下分别计算了M和N的值.甲说M的值比N大,乙说N的值比M大•请你判断他们谁的结论是正确的,并说明理由.20、(8分)在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/ m2下降到5月分的12600元/ m2;(1 )问4、5两月平均每月降价的百分率是多少?(参考数据:,0.9 0.95)10000 (2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破元/ m2?请说明理由。
沪科版八年级下册数学期中考试试题一、单选题1.下列各式是最简二次根式的是()A BCD 2x 的取值可以是()A .0B .1C .2D .43.下列等式成立的是()A .3+=B =C=D 34.以下列数据为长度的线段中,可以构成直角三角形的是()A .1,2,3B .2,3,4C .3,4,5D .2,3,551的值在()A .3和4之间B .4和5之间C .5和6之间D .6和7之间6.将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是()A .4-,21B .4-,11C .4,21D .8-,697.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,CD ⊥AB 于D ,则CD 的长是()A .5B .7C .125D .2458.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是()A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l9.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则可列方程为()A .222(4)(2)x x x =-+-B .2222(4)(2)x x x =-+-C .2224(2)x x =+-D .222(4)2x x =-+10.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是().A .0个B .1个C .2个D .1个或2个二、填空题11.比较大小:“>”,“<”或“=”).12.一元二次方程4(2)2x x x -=-的解为__________.13.若关于x 的一元二次方程220x kx --=的一个根为1x =,则这个一元二次方程的另一个根为_________.14.对于任意不相等的两个数a ,b ,定义一种运算※如下:3※2=32=-12※4=______________________.15.等腰三角形ABC 中,AB =AC =6,∠BAC =45°,以AC 为腰做等腰直角三角形ACD ,∠CAD 为90°,则点B 到CD 的距离为______.三、解答题1604(1-17.解方程230x x --=18.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边是有理数,另外两边长是无理数.19.已知关于x的一元二次方程x2+(m+2)x+m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x1,且x1+x2+2x1x2=3,求m的值.20.如图,将AB=5cm,AD=4cm的长方形ABCD,沿过顶点A的直线AP为折痕折叠,使顶点B落在边CD上的点q处,(1)求DQ的长;(2)求AP:PB.21.合肥市今年1月份新房销售量约为6000套,3月份销售量约为5400套.(1)如果2、3两个月平均下降率相同,求每月平均下降的百分率是多少?(参考数据:0.9)(2)如果销售继续回落,按此下降百分率,你预测5月份是否会跌破4500套?请说明理由.22.如图所示,已知在△ABC中,∠B=90º,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q同时从点B开始沿边BC向点C以1cm/s的速度移动,若一动点运动到终点,则另一动点也随之停止,设运动时间为t s.(1)当t=1时,△PBQ的周长=cm.(2)当t为多少时,△PBQ的面积等于4cm2?请说明理由.(3)当t=s时,PQ的长度最小,最小值为cm?参考答案1.A【解析】根据最简二次根式的定义即可求出答案.【详解】解:AB=C=,不是最简二次根式,故选项错误;aD=,不是最简二次根式,故选项错误;3故选A.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.D【分析】根据二次根式有意义的条件可得x-3≥0,再解即可.【详解】解:二次根式要有意义,则x-3≥0,即x≥3,故选:D .【点睛】此题考查二次根式有意义的条件,解题关键在于掌握二次根式定义.3.D 【解析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和A 错误;B =B 错误;C==,故C 错误;D 3,正确;故选:D .【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.4.C 【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、∵222123+≠,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;B 、∵222234+≠,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;C 、∵222345+=,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;D 、∵222235+≠,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.故选:C .【点睛】本题考查了勾股定理的逆定理,解题的关键是注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.C 【解析】【分析】正确估算出67,据此即可求解.【详解】解:∵62=36,72=49,∴67,∴51<6.故选:C .【点睛】6.A 【解析】【分析】根据配方法步骤解题即可.【详解】解:2850x x --=移项得285x x -=,配方得2284516x x -+=+,即()2421x -=,∴a =-4,b =21.故选:A 【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.7.C【解析】【分析】首先利用勾股定理计算出AB的长,再根据三角形的面积公式计算出CD的长即可.【详解】解:∵在Rt ABC中,∠ACB=90°,AC=4,BC=3,∴5,=∵12×AC×BC=12×CD×AB,∴12×3×4=12×5×CD,解得:CD=12 5.故选C.【点睛】本题主要考查了勾股定理,以及三角形的面积,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和等于斜边长的平方.8.A【解析】【分析】根据方位角的定义及勾股定理逐个分析即可.【详解】解:如图所示,过P点作AB的垂线PH,选项A:∵BP=AP=6km,且∠BPA=90°,∴△PAB为等腰直角三角形,∠PAB=∠PBA=45°,又PH⊥AB,∴△PAH为等腰直角三角形,∴PH=2=PA,故选项A错误;选项B:站在公路上向西南方向看,公路l的走向是南偏西45°,故选项B正确;选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确;选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.9.A 【解析】【分析】根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.【详解】解:根据勾股定理可得:x 2=(x-4)2+(x-2)2,故选:A .【点睛】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.10.D 【解析】【分析】根据直线y x a =+不经过第二象限,得到0a ≤,再分两种情况判断方程的解的情况.【详解】∵直线y x a =+不经过第二象限,∴0a ≤,∵方程2210ax x ++=,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=2444b ac a -=-,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a 的取值范围,再分类讨论.11.>.【解析】【分析】根据根式的性质把根号外的因式移入根号内,再比较即可.【详解】解:∵2827>∴故答案为:>.【点睛】本题考查了平方根的大小比较的应用,能选择适当的方法比较两个数的大小是解此题的关键.12.x =14或x =2【解析】【分析】根据一元二次方程的解法解出答案即可.【详解】4(2)2x x x -=-当x -2=0时,x =2,当x -2≠0时,4x =1,x =14,故答案为:x =14或x =2.【点睛】本题考查解一元二次方程,本题关键在于分情况讨论.13.-2【解析】【分析】由题目已知x =1是方程的根,代入方程后求出k 的值,再利用一元二次方程的求根方法即可答题.【详解】解:将x =1代入一元二次方程220x kx --=有:120k --=,k =-1,方程2+20x x -=(2)(1)0x x +-=即方程的另一个根为x =-2故本题的答案为-2.【点睛】本题主要考查了一元二次方程用已知根求方程未知系数以及利用因式分解法解一元二次方程,其中利用已知根代入方程求出未知系数是解题的关键.14.1.2【解析】【分析】依据新定义进行计算即可得到答案.【详解】解:∴12※4=41,12482==-故答案为:1.2【点睛】本题考查的是新定义下的实数的运算,弄懂定义的含义,掌握求解算术平方根是解题的关键.15.6-【解析】【分析】根据题目描述可以作出两个图形,由ACD △是等腰直角三角形,90CAD ∠=︒,利用等腰直角三角形的性质分别进行求解即可.【详解】本题有两种情况:(1)如图,∵ACD △是等腰直角三角形,90CAD ∠=︒,∴45ACD ∠=︒,∵45BAC ∠=︒,∴//AB CD ,∴点B 到CD 的距离等于点A 到CD 的距离,过点A 作AE CD ⊥于点E ,∴△AEC 为等腰直角三角形,AE =CE ,∴由勾股定理得:222AE CE AC +=,即222AE AC =,∵6AB AC ==,∴AE ==∴点B 到CD 的距离为(2)如图:∵ACD △是等腰直角三角形,90CAD ∠=︒,∴45ACD ∠=︒,∵45BAC ∠=︒,∴90AEC ∠=︒,AE =EC ,∴点B 到CD 的距离即BE 的长,∴由勾股定理得222AE CE AC +=,即222AE AC =,∵6AB AC ==,∴AE ==∴6BE AB AE =-=-B 到CD 的距离为6-.故答案为:6-【点睛】本题考查了等腰直角三角形的性质,解题的关键是根据题目描述正确作出两个图形.16【解析】【分析】根据二次根式的混合运算的运算顺序,先算乘除后算加减即可求解.【详解】4(1-41==【点睛】本题考查了二次根式的混合运算,掌握运算顺序和计算法则准确计算是解题关键.17.1x =2x =.【解析】【分析】根据公式法解一元二次方程的步骤依次计算即可.【详解】解:∵1a =,1b =-,3c =-,∴()2241413112130b ac =-=-⨯⨯-=+= >,∴12x =,∴1x =2x =【点睛】本题考查了公式法解一元二次方程,解题的关键是熟练掌握应用公式法的条件和要求.18.(1)见解析;(2)见解析.【解析】【分析】(1)构造边长3,4,5的直角三角形即可;(2)构造直角边为4的直角三角形即可(答案不唯一).【详解】解:(1)如图①中,△ABC 即为所求作.(2)如图②中,△DEF 即为所求作.【点睛】本题考查作图-应用与设计,无理数以及勾股定理的逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)见解析;(2)5.【解析】【分析】(1)先计算判别式的值,再利用非负数的性质判断△>0,然后根据判别式的意义得到结论;(2)根据根与系数的关系得到x1+x2=-(m+2),x1x2=m,则由x1+x2+2x1x2=3得到-(m+2)+2m=3,然后解关于m的方程即可.【详解】(1)证明:∵△=(m+2)2-4m=m2+4m+4-4m=m2+4>0,∴无论m取何值,此方程总有两个不相等的实数根;(2)解:根据题意得x1+x2=-(m+2),x1x=m,∵x1+x2+2x1x2=3,∴-(m+2)+2m=3,解得m=5,∴m的值为5.【点睛】本题考查了一元二次方程根与系数的关系及根的判别式,熟练掌握一元二次方程根与系数的关系及利用根的判别式判断方程根的情况是解题的关键.20.(1)3cm;(2【解析】【分析】(1)由折叠的性质可知△ABP≌AQP,根据全等三角形的性质可知AB=AQ=5,利用勾股定理即可求出线段DQ的长度;(2)由(1)可知DQ=6,所以CQ=DC−DQ=4,设PQ=x,则PB=PQ=x,所以CP=BC−BP=8−x,利用勾股定理可建立关于x的方程,解方程求出x的值,然后根据翻性质得PB的长度,计算比值即可.【详解】解:(1)由折叠的性质可知△ABP≌AQP,∴AB=AQ=5,∵四边形ABCD是矩形,∴∠D=90°,∵AD=4cm,∴DQ3cm,∴线段DQ的长度是3cm;(2)由(1)可知DQ=3,∴CQ=DC−DQ=2,设PQ=x,则PB=PQ=x,∴CP=BC−BP=4−x,在Rt△CPQ中,PQ2=CQ2+CP2∴x2=22+(4−x)2,解得:x=2.5,∴线段PQ的长度是2.5.∴PB=2.5,,∴AP2∴AP:PB【点睛】本题主要考查了矩形的性质,勾股定理的运用以及翻折变换前后的两个图形全等的性质,是综合题,但难度不大.21.(1)5%;(2)不会,理由见解析【解析】【分析】(1)根据今年1月份和3月份的住房销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据(1)下降的百分率继续回落,列出式子,与4500进行对比即可得出结论.【详解】(1)设该公司每月平均下降的百分率是x,则由题意得:26000(1)5400x -=,解得:0.055%x ==,2 1.05x =(不合题意,舍去),答:每月平均下降的百分率是5%.(2)如果按此下降的百分率继续回落,估计5月份的商品房成交量为:225400(1)54000.95=4873.5x -=⨯>4500因此可知5月份的商品房成交量不会跌破4500套.【点睛】本题考查了列方程解决实际问题中的平均降低率问题以及一元二次方程解法,解题的关键是正确理解题意,找到关键的数量关系并列出方程.22.(1);(2)t =2或t =4;见解析;(3)3【解析】【分析】(1)由题意可以得到AP 、PB 、BQ 的值,再由勾股定理得到PQ 的值,即可得到△PBQ 的周长;(2)由题意可以得到关于t 的方程,解方程即可得到t 的值;(3)由题意,可以把PQ 2用关于t 的关系式表示出来,然后用配方法可以得到PQ 2的最小值,从而得到PQ 的最小值.【详解】解:(1)由题意可得:t =1时,AP =1×1=1,BQ =1×1=1,∴PB =AB -PA =6-1=5,∴PQ =,∴△PBQ 的周长=PB +BQ +PQ cm ,故答案为;(2)由题意可得:142PBQ S PB BQ =⨯= ,∴(6-t )t =8,解之可得t =2或t =4,(3)由题意可得:()222226PQ PB BQ t t =+=-+=()22318t -+,∴当t =3时,2PQ 的最小值为18,PQ 的最小值为故答案为3;【点睛】本题考查三角形动点问题的综合应用,熟练掌握动点运动距离的求法、三角形面积的求法、勾股定理的应用及配方法求最值的方法是解题关键.。
沪科版八年级下册期中测试数学试题一、选择题(每题3分,共36分)1.1x =是关于x 的一元二次方程220x ax b ++=的解,则24(a b += )A .2-B .3-C .1-D .6- 2.化简24的结果是A .﹣4B .4C .±4D .23.下列二次根式中能与23合并的是( )A .8B .31 C .18 D .9 4.下列各式中正确的是( )A .42=±B 2(3)3-=-C 342=D 822=5.如图,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为( )A .3B .3C .5D .56.下列二次根式是最简二次根式的是( ) A.21 B.712 C.8 D.3 7.满足下列条件时,△ABC 不是直角三角形的为( )A .AB =41,BC =4,AC =5 B .AB :BC :AC =3:4:5C .△A :△B :△C =3:4:5D .AB =5,BC =12,AC =13 8.估计312632⨯+)(的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间9.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +a 2﹣1=0有一个根为x =0,则a 的值为( )A .0B .±1C .1D .﹣110.一元二次方程(x +1)(x ﹣1)=2x +3的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根11.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A .B .C .D .12.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为( )A .21x (x ﹣1)=36B .21x (x +1)=36 C .x (x ﹣1)=36D .x (x +1)=36二、填空题(每题3分,共18分)13.计算:312-= . 14.4x +x 的取值范围是15.计算)13)(13(+-的结果等于 .16.一元二次方程3x 2=4﹣2x 的解是 .17.如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为 .18. 如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线15y x b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2018的纵坐标是 .三、计算题(8题共66分)19. (12分) 解下列方程:(1)2(1)4x -=;(2) 2420x x -+= (3) x 2+6x =﹣720. (6分)计算:6)218(⨯-;21.(6分)x 为何值时,两个代数式x 2+1,4x +1的值相等?22. (8分)计算:0--.124(5π)2323. (8分)计算:21+(32)126324. (8分)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE△直线m于点E,BD△直线m于点D.△求证:EC=BD;△若设△AEC三边分别为a、b、c,利用此图证明勾股定理.25. (8分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量△ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(2≈1.414,精确到1米)26.(10分)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg与3.6万kg,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg .如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?参考答案一、选择题A,B,B,D,B,D,C,C,D,A,B,A二、填空题 13.3,14.4-≥x ,15.2,16.x 1=3131+-,x 2=3131--.,17.(﹣1,0),18.201723⎪⎭⎫ ⎝⎛.三、解答题(1)两边直接开平方得:12x -=±,12x ∴-=或12x -=-,解得:13x =,21x =-(2).∆=244128-⨯⨯=, 42x ∴=,122x x ∴==(3)解:△x 2+6x =﹣7,△x 2+6x +9=﹣7+9,即(x +3)2=2,则x +3=±2,△x =﹣3±2,即x 1=﹣3+2,x 2=﹣3﹣2.20.解:(1)原式=62168⨯-⨯ =43﹣3=33;21.解:(2)x 2+1=4x +1,x 2﹣4x =0,x (x ﹣4)=0,x 1=0,x 2=4.22.解:原式=21⨯-=2.23.解:原式346=+-+34=+-++7=.24.解△证明:△△ACB =90°,△△ACE +△BCD =90°.△△ACE +△CAE =90°,△△CAE =△BCD .在△AEC 与△BCD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC BCD CAE BDC CEA△△CAE △△BCD (AAS ).△EC =BD ;△解:由△知:BD =CE =aCD =AE =b△S 梯形AEDB =21(a +b )(a +b ) =21a 2+ab +21b 2. 又△S 梯形AEDB =S △AEC +S △BCD +S △ABC =21ab +21ab +21c 2 =ab +21c 2. △21a 2+ab +21b 2=ab +21c 2. 整理,得a 2+b 2=c 2.25.解:△CD△AC ,△△ACD=90°,△△ABD=135°,△△DBC=45°,△△D=45°,△CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=4002≈566(米),答:直线L上距离D点566米的C处开挖.26.解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x,根据题意得,2x+=,2.5(1)3.6解得:0.2x=-(不合题意舍去),x=, 2.2答:该养殖场蛋鸡产蛋量的月平均增长率为20%;(2)设至少再增加y个销售点,根据题意得,3.60.32 3.6(120%)+⨯+,y解得:9y,4答:至少再增加3个销售点.。
沪科版八年级数学下册期中测试卷一、选择题(每题4分,共40分)1.方程3x 2-6x -9=0的二次项系数、一次项系数、常数项分别为( )A .-6;3;-9B .3;-6;-9C .3;-6;9D .-3;-6;92.在二次根式6,8,12,12,-18中与2是同类二次根式的有( )A .1个B .2个C .3个D .4个3.计算34÷16的结果是( )A.22B.24C.3 22D.324.下列式子中是最简二次根式的是( )A.23B. 3C.42D.85.解方程2(x -1)2=3x -3的最适当的方法是( )A .直接开平方B .配方法C .公式法D .因式分解法6.关于x 的一元二次方程x 2-(2k -1)x +k 2+1=0有实数根,则k 的取值范围是( ) A .k ≤-34B .k >-34C .k ≥-34D .k <-347.若△ABC 的三边a ,b ,c 满足(a -b )2+|a 2+b 2-c 2|=0,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 的长为( ) A.125B.95C.65D.165(第8题) (第10题)9.某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.当每盆植入3株时,平均单株盈利5元;在同样的栽培条件下,若每盆每增加1株,平均单株盈利就减少0.5元,要使每盆的盈利为20元,需要每盆增加几株花苗?设每盆增加x株花苗,下面列出的方程中符合题意的是()A.(x+3)(5-0.5x)=20 B.(x-3)(5+0.5x)=20C.(x-3)(5-0.5x)=20 D.(x+3)(5+0.5x)=2010.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以AC为直角边的直角三角形,则CD的长为()A.76,2或3 B.3或76C.2或76D.2或3二、填空题(每题5分,共20分)11.若2-x在实数范围内有意义,则x的取值范围是________.12.一元二次方程x-1=x2-1的根是______________.(第13题)13.如图所示,将长方形纸片沿AD翻折,使点O落在BC边上的点E处,OA=10,OC=8,则点D的坐标为________.14.在平面直角坐标系xOy中,点D的坐标为(5,0),点P在第一象限且点P的纵坐标为4.当△ODP是腰长为5的等腰三角形时,点P的坐标为____________________.三、(每题8分,共16分)15.解方程:x2-6x-4=0.16.计算:(20+5+5)÷5-13×24- 5.四、(每题8分,共16分)17.有这样一道题:先化简,再求值:a+1-2a+a2,其中a=1 007.如图是小亮和小芳的解答过程.(1)________的解答是错误的,并说明理由;(2)先化简,再求值:a+2 a2-6a+9,其中a=-2 023.(第17题)18.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(第18题)(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向上滑动了多少米?五、(每题10分,共20分)19.已知关于x的方程x2-(m+1)x+2(m-1)=0.(1)求证:无论m取何值,方程总有实数根;(2)若等腰三角形一边长为4,另两边长恰好都是此方程的根,求此三角形的另两边长.20.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点.(1)判断△ABC的形状;(2)求AB边上的高.(第20题)六、(12分)21.如图,一块长10米,宽8米的地毯,为了美观设计了两横、四纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整块地毯面积的3 10.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价40元,其余部分每平方米造价30元,求这块地毯的总造价.(第21题)七、(12分)22.如图,在四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.(第22题)八、(14分)23.如图是一组由同样大小的四边形按照一定规律组成的图形,请根据排列规律完成下列问题:(第23题)(1)填写下表:图形序号四边形个数① 3②7③________④________……(2)根据表中规律猜想图形序号为○,n)的图形中四边形的个数(用含n的式子表示,不用说理);(3)是否存在一个图形恰好由91个四边形组成?若存在,求出图形序号;若不存在,说明理由.答案一、1.B 2.C 3.C 4.B5.D 6.A7.C8.A提示:连接AM,∵AB=AC,点M为BC的中点,∴AM⊥CM,BM=CM.∵AB=AC=5,BC=6,∴BM=CM=3.在Rt△ABM中,AB=5,BM=3,∴根据勾股定理,得AM=AB2-BM2=52-32=4.∵S△AMC =12MN·AC=12AM·MC,∴MN=AM·CMAC=125.9.A10.A提示:分三种情况:①当AD=AB时,CD=BC=3;②当AD=BD时,设CD=x,则AD=x+3.在Rt△ADC中,由勾股定理,得(x+3)2=x2+42,解得x=76,∴CD=76;③当BD=AB时,∵AB=32+42=5,∴BD=5,∴CD=5-3=2.综上所述,CD的长为3,76或2.二、11.x≤2 12.x=0或x=1 13.(0,5)14.(2,4)或(3,4)或(8,4)提示:由题意知,当△ODP是腰长为5的等腰三角形时,有以下三种情况:(1)如图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理,得DE=PD2-PE2=52-42=3,∴OE=OD-DE=5-3=2,∴此时点P的坐标为(2,4).(2)如图②所示,OP=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理,得OE=OP2-PE2=52-42=3,∴此时点P的坐标为(3,4).(3)如图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理,得DE=PD2-PE2=52-42=3,∴OE=OD+DE=5+3=8,∴此时点P的坐标为(8,4).综上所述,点P的坐标为(2,4)或(3,4)或(8,4).(第14题)三、15.解:x2-6x-4=0,移项,得x2-6x=4,配方,得x2-6x+9=4+9,即(x-3)2=13,解得x1=3+13,x2=3-13.16.解:原式=(2 5+5+5)÷5-2 2-5=(3 5+5)÷5-2 2-5=3+5-2 2-5=3-2 2.四、17.解:(1)小亮理由:原式=a+(1-a)2,∵a=1 007>1,∴(1-a)2=a-1,∴原式=a+(1-a)2=a+a-1=2a-1=2×1 007-1=2 013.∴小亮的解答是错误的.(2)原式=a+2 (a-3)2,∵a=-2 023<3,∴(a-3)2=3-a.∴原式=a+2 (a-3)2=a+2(3-a)=a+6-2a=6-a=2 029. 18.解:(1)根据勾股定理,得AO=AB2-OB2=132-52=12(米).答:这个梯子的顶端距地面有12米高.(2)∵梯子的顶端下滑了5米,∴梯子的顶端距离地面的高度OA′=12-5=7(米).根据勾股定理,得OB′=A′B′2-OA′2=132-72=2 30(米),∴BB′=OB′-OB=(2 30-5)米.答:当梯子的顶端下滑5米时,梯子的底端在水平方向上滑动了(2 30-5)米.五、19.(1)证明:∵Δ=[-(m+1)]2-4×2(m-1)=m2-6m+9=(m-3)2≥0,∴无论m取何值,方程总有实数根.(2)解:若腰长为4,将x=4代入原方程,得16-4(m+1)+2(m-1)=0,解得m=5,此时方程为x2-6x+8=0,解得x1=2,x2=4.∴组成三角形的三边长度为2,4,4;若底边长为4,则此方程有两个相等的实数根,∴Δ=0,即m=3,此时方程为x2-4x+4=0,解得x1=x2=2,而2+2=4,不能构成三角形,故舍去.∴此三角形的另两边长为4和2.20.解:(1)∵AB=52+52=5 2,BC=62+22=2 10,AC=12+32=10,∴BC2+AC2=(2 10)2+(10)2=(5 2)2=AB2,∴△ABC是直角三角形.(2)设AB边上的高为h,∵S△ABC =12BC×AC=12AB×h,∴h =2 10×105 2=2 2. 即AB 边上的高为2 2.六、21.解:(1)设配色条纹的宽度为x 米.根据题意,得(10-4x )(8-2x )=710×10×8,解得x 1=6(不符合题意,舍去),x 2=12.答:配色条纹的宽度为12米.(2)因为地毯配色条纹部分的造价为310×10×8×40=960(元),其余部分的造价为⎝ ⎛⎭⎪⎫1-310×10×8×30=1 680(元), 所以这块地毯的总造价为960+1 680=2 640(元).七、22.解:如图,连接AC ,过点C 作CE ⊥AB 于点E .∵AD ⊥CD ,∴∠D =90°.在Rt △ACD 中,AD =5,CD =12,∴AC =AD 2+CD 2=52+122=13.∵BC =13,∴AC =BC .∵CE ⊥AB ,AB =10,∴AE =BE =12AB =12×10=5.∴CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △DAC +S △ABC =12×5×12+12×10×12=30+60=90.(第22题)八、23.解:(1)13;21(2)图形序号为○,n)的图形中四边形的个数为n2+n+1(n为正整数).(3)存在一个图形恰好由91个四边形组成.依题意,得n2+n+1=91,解得n1=-10(舍去),n2=9,∴存在一个图形恰好由91个四边形组成,该图形序号为⑨.。
沪科版八年级下册数学期中考试试题一、单选题1)个.A .0个B .1C .2个D .32.方程x (x ﹣1)=x 的根是()A .x =2B .x =﹣2C .x 1=﹣2,x 2=0D .x 1=2,x 2=03.满足下列条件的三角形中,是直角三角形的是()A .三个内角度数之比是3:4:5B .三边长的平方比为5:12:13C .三边长度是1D .三个内角度数比为2:3:44.一元二次方程()222240a x x a --+-=的一个根是0,则 a 的值是()A .2B .1C .2或 2-D . 2-5﹣1)的值在()A .0到1之间B .1到2之间C .2到3之间D .3到4之间6.用配方法解下列方程,其中应在两端同时加上4的是()A .245x x +=B .225x x +=C .225x x -=D .2245x x -=7,那么a 一定是()A .负数B .正数C .正数或零D .负数或零8.小华早上从家出发到离家5千米的国际会展中心参观,实际每小时比原计划多走1千米,结果比原计划早到了15分钟,设小华原计划每小时行x 千米,可列方程()A .55114x x -=+B .551+14x x -=C .5515+1x x -=D .55151x x-=+9.如图,在四边形ABCD 中,∠DAB =∠BCD =90°,分别以四边形的四条边为边向外作四个正方形,若S 1+S 4=125,S 3=46,则S 2=()A .171B .79C .100D .8110.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0B.m2﹣2mn+n2=0C.m2+2mn﹣n2=0D.m2﹣2mn﹣n2=0二、填空题y=的自变量x的取值范围是______.11.函数12.在实数范围内分解因式2x-=________21013.若实数m、n满足|m﹣0,且m、n恰好是直角三角形的两条边长,则该直角三角形的斜边上的高为_______.14.如图,△ABC中,∠ACB=90°,AC=BC=4,点D,E分别是AB、AC的中点,在CD上找一点P,连接AP、EP,当AP+EP最小时,这个最小值是_____.三、解答题15.计算:(1;(2)21)1)-.16.解方程:(1)5x+2=3x2;(2)(x+1)2+2=3(x+1).17.已知三角形的两边长分别为3和5,第三边长为c18.晓明同学根据学习“数与式”积累的经验,想通过“由特殊到一般”的方法探究下面二次根式的运算规律.下面是晓明的探究过程,请你补充完整:(1)具体运算,发现规律.特例1===特例2===特例3=,特例4:(填写一个符合上述运算特征的例子).(2)观察、归纳,得出猜想.如果n为正整数,用含n的式子表示上述的运算规律为:.(3.19.已知等腰三角形ABC的底边BC=,D是腰AB上一点,且CD=4cm,BD=2cm.(1)求证:CD⊥AB;(2)求△ABC的面积.20.在《2020城市商业魅力排行榜》中,合肥第一次进入新一线城市名单.同时2020年合肥的GDP也首次进入万亿大关,合肥房价也随之增长,已知合肥某小区的2020年平均房价21780元/m2,而该小区2018年房价是18000元/m2,若两年增长率相等.求(1)平均增长率.(2)你估计2021年该小区平均房价会突破24000元/m2吗?21.3月20号上午,2021合肥蜀山区桃花文化节在小庙镇结义桃园景区开幕,开幕的当天吸引了大批市民前来赏花、踏青、摄影,感受大自然的魅力.一花卉商户购进了一批单价为50元的盆景,如果按每盆60元出售,可销售800盆,如果每盆提价0.5元出售,其销售量就减少10盆,现在要获利12000元,且销售成本不超过24000元,问这种盆景销售单价确定多少?这时应进多少盆盆景?22.我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例:已知x可取任何实数,试求二次三项式x2+6x﹣1最小值.解:x2+6x﹣1=x2+2×3•x+32﹣32﹣1=(x+3)2﹣10∵无论x取何实数,总有(x+3)2≥0.∵(x+3)2﹣10≥﹣10,即x2+6x﹣1的最小值是﹣10.即无论x取何实数,x2+6x﹣1的值总是不小于﹣10的实数.问题:(1)已知:y=x2﹣4x+7,求证:y是正数.知识迁移:(2)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=4cm,点P在边AC上,从点A向点C以2cm/s的速度移动,点Q在CB的速度从点C向点B移动.若点P,Q均以同时出发,且当一点移动到终点时,另一点也随之停止,设△PCQ的面积为Scm2,运动时间为t秒,求S的最大值.23.如图,四边形ACDE是证明勾股定理时用到的图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE c,这时我们把关于x的形如ax2=0的一元二次方程称为“勾系一元二次方程”.(1)写出一个“勾系一元二次方程”.(2)求证:关于x的“勾系一元二次方程”ax2cx+b=0必有实数根.(3)若x=﹣1是“勾系一元二次方程”ax2=0的一个根,且△ABC的面积是25,求四边形ACDE的周长.参考答案1.B【分析】根据最简二次根式的定义逐个判断即可.【详解】是最简二次根式;||a,故不是最简二次根式;则最简二次根式是①,共1个.故选:B.【点睛】本题考查的是最简二次根式的定义,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.D【解析】先将原方程整理为一般形式,然后利用因式分解法解方程.【详解】由原方程,得:x2﹣2x=0,∴x(x﹣2)=0,∴x﹣2=0或x=0,解得:x1=2,x2=0.故选D.【点睛】本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.3.C 【解析】【分析】根据条件判断三角形是否是直角三角形,可以从角中选取最大角,计算是否是直角,也可以根据勾股定理逆定里进行判断即可.【详解】解:A:当三个内角度数之比是3:4:5时,最大的角的度数是:51807590345⨯=<++ ,故选项A 不符合题意;B:当三边长的平方比为5:12:13时,因为2217+=,213=,1713≠,故该三角形不是直角三角形,故选项B 不符合题意;C:当三边长度是时,2213+=,23=,该三角形是直角三角形,故选项C符合题意;D:三个内角度数比为2:3:4时,最大的角的度数是:5180********⨯=>++,故选项D不符合题意;故选:C .【点睛】本题考查直角三角形的判定,从角和边两方面,通过相关的定理去推断是解题的切入点.4.D 【解析】【分析】根据一元二次方程的解定义把x=0代入一元二次方程得a 2-4=0,解得a=±2,然后根据一元二次方程的定义确定满足条件的a 的值.【详解】解:把0x =代入方程()22 2240a x x a --+-=得:240a -=,∴12a =,22a =-,当2a =时,由于二次项系数20a -=,方程()22 2240a xx a --+-=不是关于x 的二次方程,故2a≠.所以a 的值是2-.故选:D .【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.5.B 【解析】【分析】利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】原式=3∵12,∴132<1)的值在1到2之间.故选B .【点睛】本题考查了估算无理数的大小,熟练掌握运算法则是解答本题的关键.6.A 【解析】【分析】根据配方法,先将二次项系数化为1,进而方程的两边加上一次项系数一半的平方即可,据此分析即可【详解】A.24454x x ++=+,即()229x +=,故该选项符合题意;B.22151x x ++=+,即()216x +=,故该选项不符合题意;C.22151x x -+=+,即()216x -=,故该选项不符合题意;D.252112x x -+=+,即()2712x -=,故该选项不符合题意;故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.7.A【解析】【详解】解:如果1a=-﹣a,且a≠0,所以a一定是负数.故选A.8.B【解析】【分析】根据结果比“原计划早到了15分钟”,则等量关系为:昨天所用时间−今天所用时间14=,根据等量关系列方程即可解答.【详解】解:设小华原计划每小时行x千米,依题意得:55114 x x-=+,故选:B.【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.B【解析】【分析】连接BD,利用勾股定理的几何意义解答.【详解】由题意可知:S1=AB2,S2=BC2,S3=CD2,S4=AD2,连接BD,在直角△ABD 和△BCD 中,BD 2=AD 2+AB 2=CD 2+BC 2,即S 1+S 4=S 3+S 2,因此S 2=125﹣46=79,故选:B .【点睛】本题主要考查的是勾股定理的灵活运用,解答的关键是利用两个直角三角形公共的斜边.10.C 【解析】【分析】如图,根据等腰三角形的性质和勾股定理可得m 2+m 2=(n-m )2,整理即可求解【详解】m 2+m 2=(n ﹣m )2,2m 2=n 2﹣2mn+m 2,m 2+2mn ﹣n 2=0.故选C.11.x <3【解析】【分析】根据二次根式和分式有意义的条件即可求出自变量的取值范围.【详解】解:在3y x=-中,0≠,3-x≥0,∴x <3,故答案为:x <3.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.2(x x【解析】【分析】首先提取公因式2,然后再利用平方差公式进行因式分解.【详解】原式=2(.故答案为:.考点:因式分解13.125或4【解析】【分析】利用非负数的性质求出m ,n ,再分两种情况根据勾股定理求得第三边的长度,结合等面积法求得答案.【详解】解:设该直角三角形的第三边的长度为c ,该直角三角形的斜边上的高为h ,∵实数m 、n 满足|m ﹣,∴m-3=0且n-4=0.∴m=3,n=4.当n=4为直角边时,则.此时12×3×4=12×5×h ,则h=125.当n=4为斜边时,则c .此时1212×4×h ,则综上所述,该直角三角形的斜边上的高为125或374.故答案为:125或374.【点睛】本题考查了非负数的性质,勾股定理等知识,解题的关键是熟练掌握“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”.14.25【解析】【分析】要求PA+PE 的最小值,PA ,PE 不能直接求,可考虑通过作辅助线转化PA ,PE 的值,从而找出其最小值求解.【详解】如图,∵AC =BC =4,点D ,是AB 的中点,∴A 、B 关于CD 对称,连接BE ,则BE 就是PA+PE 的最小值,∵Rt △ABC 中,∠ACB =90°,AC=BC=4,点E 是AC 的中点,∴CE=2cm ,∴BE=22=2025+=CE BC ,∴PA+PE 的最小值是2515.(12(2)1+22【解析】【分析】(1)根据二次根式加减运算顺序和运算法则计算即可;(2)利用完全平方公式和平方差公式进行计算即可.【详解】(1)原式=42(2)原式=()3-1【点睛】此题考查二次根式相加减,完全平方公式,平方差公式,解题关键在于掌握运算法则.16.(1)x1=2,x2=﹣13;(2)x1=0,x2=1.【解析】【分析】(1)利用因式分解法求解即可;(2)利用因式分解法求解即可.【详解】(1)∵5x+2=3x2,∴3x2﹣5x﹣2=0,∴(x﹣2)(3x+1)=0,则x﹣2=0或3x+1=0,解得x1=2,x2=﹣1 3;(2)∵(x+1)2﹣3(x+1)+2=0,∴(x+1﹣2)(x+1﹣1)=0,则x(x﹣1)=0,∴x=0或x﹣1=0,解得x1=0,x2=1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.32c﹣6.【解析】【分析】由三角形三边关系求得c的取值范围;然后判断被开方数的正负,再化简开方,计算.【详解】解:由三边关系定理,得3+5>c ,5﹣3<c ,即8>c >2,=|c ﹣2|﹣12|c ﹣8|=c ﹣2﹣12(8﹣c )=32c ﹣6.【点睛】本题主要考查二次根式的化简方法与运用以及三角形三边关系定理,掌握其性质是解决此题关键.18.(1=;(2(n +n 为正整数);(3).【解析】【分析】(1)根据题目中的例子可以仿照例3,写出与例3连续的数字规律完成例4;(2)根据(1)中特例,可以写出相应的猜想;对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.(3利用规律化为(20181=+根式的乘法约分化简即可.【详解】(1)=.(1n =+(n 为正整数).∵左边===∵n 为正整数,∴10n +>.∴左边(1n n =+=+又∵右边(1n =+∴左边=右边.(1n=+.(3(20181=+【点睛】本题考查二次根式的混合运算、数字规律探究问题,解答本题的关键是明确题意,找出所求问题需要的条件,再应用规律计算.19.(1)见解析;(2)△ABC的面积为10cm².【解析】【分析】(1)先算CD²,BC²,BD²,发现三者之间的等量关系,再结合勾股定理的逆定理判断垂直;(2)先设AD=x,然后用含有x的式子表示AC,再结合勾股定理列出方程求x,最后求面积.【详解】(1)证明:∵,CD=4cm,BD=2cm,∴CD2=16,BC2=20,BD2=4,∴CD2+BD2=BC2,∴三角形BCD是直角三角形,∠BDC=90°,∴CD⊥AB;(2)解:设AD=x,则AB=x+2,∵△ABC为等腰三角形,且AB=AC,∴AC=x+2,在Rt△ACD中,AD2+CD2=AC2,∴x2+42=(x+2)2,解得:x=3,∴AB=5,∴S△ABC=12×AB×CD=12×5×4=10(cm²).【点睛】本题考查了勾股定理及其逆定理,等腰三角形的定义,通过设AD=x然后利用勾股定理列出方程是解决本题的关键.20.(1)年平均增长率为10%.(2)2021年该小区平均房价不会突破24000元/m2.【解析】【分析】解:(1)设年平均增长率为x,抓住2018年房价是18000元/m2两年后平均房价21780元/m2,列方程求解即可;(2)利用2020年的房价乘以(1+增长率)计算结果与24000元/m2比较即可.【详解】解:(1)设年平均增长率为x,依题意得:18000(1+x)2=21780,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:年平均增长率为10%.(2)21780×(1+10%)=23958(元/m2)<24000元/m2.答:2021年该小区平均房价不会突破24000元/m2.【点睛】本题考查增长率应用题,抓住等量关系,列方程解应用题,利用增长率预测房价是解题关键.21.这种盆景销售单价应定为80元,这时应进400盆盆景【解析】【分析】设这种盆景销售单价应定为x元,则每盆的利润为(x﹣50)元,可售出(2000﹣20x)盆,根据总利润=每盆的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合销售成本不超过24000元,即可确定x的值,此题得解.【详解】解:设这种盆景销售单价应定为x元,则每盆的利润为(x﹣50)元,可售出800﹣600.5x×10=(2000﹣20x)盆,依题意得:(x﹣50)(2000﹣20x)=12000,整理得:x 2﹣150x+5600=0,解得:x 1=70,x 2=80.当x =70时,2000﹣20x =600(盆),600×50=30000(元)>24000元,不合题意,舍去;当x =80时,2000﹣20x =400(盆),400×50=20000(元)<24000元.答:这种盆景销售单价应定为80元,这时应进400盆盆景.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)见解析;(2)当t =32时,S 【解析】【分析】(1)根据例题中的配方求最值;(2)根据三角形的面积公式求出S 和t 的关系式,再利用配方求最值.【详解】(1)y =x 2﹣4x+7=x 2﹣4x+4+3=(x ﹣2)2+3.∵(x ﹣2)2≥0.∴y≥0+3=3.∴y >0.∴y 是正数.(2)由题意:AP =2t ,CQ ,PC =6﹣2t .(∴S =12PC•CQ .=12(6﹣2t )2t 2﹣3t )t ﹣32)2∵(t ﹣32)2≥0.∴当t =32时,S 【点睛】本题考查利用配方求最值,正确配方是求解本题的关键.23.(1)2340x ++=;(2)见解析;(3)四边形ACDE 的周长为.【解析】【分析】(1)直接找一组勾股数代入方程即可;(2)通过判断根的判别式△的正负来证明结论;(3)利用根的意义和勾股定理作为相等关系先求得c 的值,根据三角形面积求得ab 的值,从而可求得四边形的周长.【详解】(1)满足a ,b ,c 为直角三角形的三边长即可,如a =3,b =4,c =5,勾系一元二次方程为:2340x ++=(答案不唯一),故答案为:2340x ++=.(2)Δ)2﹣4ab =2c 2﹣4ab ,∵a 2+b 2=c 2,∴Δ=2a 2+2b 2﹣4ab =2(a 2﹣2ab+b 2)=2(a ﹣b )2,∵(a ﹣b )2≥0,∴Δ≥0,∴关于x 的“勾系一元二次方程”ax 2cx+b =0必有实数根;(3)将x =﹣1是“勾系一元二次方程”ax 2+cx+b =0得:a =0,∴a+b c ,∵△ABC 的面积是25,∴1252ab =,∴ab =50,∵a 2+b 2=c 2,∴(a+b )2﹣2ab =c 2,c)2﹣2×50=c2,∴c2=100,解得c1=c2=10,∴a+b c=,∴四边形ACDE的周长为:=.【点睛】本题考查阅读理解类题目,要读懂题意,根据题目中所给的材料结合勾股定理和根的判别式解题是关键.。
2019-2020学年第二学期期中考试
八年级数学试卷
题 号 一 二 三 总 分 得 分
得分 评卷人
一、选择题(每小题3分,共30分)
1、1-x 在实数范围内有意义,则x 的取值范围是( ) A.x >1 B.x ≥l C.x <1 D.x ≤1
2、已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为( )
A.5
B.3
C.4
D.7
3、关于x 的方程(a -5)x 2
-4x -1=0有实数根,则a 满足( ) A.a ≥1 B.a >1且a ≠5 C.a ≥1且a ≠5 D.a ≠5
4、如果最简根式a b b -3和22+-a b 是同类二次根式,那么a 、b 的值是( ) A.a =0,b =2 B.a =2,b =0 C.a =-1,b =1 D.a =1,b =-2
5、已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为( ) A.7- B.3- C.7 D.3
6、小明的作业本上有以下四题:①4
16a =4a 2;②a a a 25105=⋅;
③ a a
a a a
=⋅=1
12;④a a a =-23,做错的题有( ) A.4个 B.3个 C.2个 D.1个
7、一个直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为( )
A.6
B.8
C.10
D.12
8、如图,在Rt △ABC 中,,D 、E 是斜边BC 上两点,且∠DAE =45°,
将△绕点顺时针旋转90后,得到△,连接,下列结论:
①△
≌△
; ②△
≌△
; ③
; ④
,其中正确的是( )
A.②④
B.①④
C.②③
D.①③ 9、化简二次根式3
a -结果是 ( )
A. a a
B.-a a -
C.a a -
D.a a
学校______________ 准考证号__________ 班 级______________ 姓
名______________
10、在中,,,点为的中点,
于点
,则
等于( ) A.
B.
C.
D.
得分 评卷人
二、填空题(每小题4分,共20分)
11、方程(x -1)(x +2)= 2(x +2)的根是 . 12、已知012=-++b a ,那么2011
)
(b a +的值为 .
13、边长为a 的正三角形的面积等于___ _
14、若关于x 的方程x 2
-mx +3=0有实数根,则m 的值可以为________.(任意给出一个符合条件的
值即可)
15、观察下列各式:,312311=+
,413412=+,5
1
4513=+…请你将发现的规律用含自然数n (n ≥1)的等式表示出来 .
得分 评卷人
三、解答题(共50分)
16、(1)解方程(4分):x 2
-2x -1=0.
(2)计算(4分):)5.023
1
3()81448(---
(3) 计算(4分): 2
11)32002(22402
++
---+-
17、先化简,再求值(6分):1
1212222--÷+++-+x x x x x x x ,其中23-=x
18、(6分)已知方程x 2
-4x+m=0的一个根为-2,求方程的另一根及m 的值.
19、(8分)已知M N
=
=.甲、乙两个同学在
18y =的条件下分别计算了M 和N 的值.甲说M 的值比N 大,乙说N 的值比M
大.请你判断他们谁的结论是正确的,并说明理由.
20、(8分)在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/2
m 下降到5月分的12600元/2
m ;
(1)问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)
(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000
元/2
m ?请说明理由。
21、(10分)若关于x 的一元二次方程012)2(22
2
=++--k x k x 有实数根βα、. (1)求实数k 的取值范围; (2)设k
t β
α+=,求t 的最小值。
期中考八数参考答案及评分标准:
一、(每小题3分,共30分) BCAAD DCBBA 二、(每小题4分,共20分)
11、x 1 =-2,x 2 = 3 12、-1 13、
14、答案不唯一,所填写的数值只要满足m 2
≥12即可,如4等 15、2
1
)1(21++=++
n n n n 三、16、(1)(4分)解:2212x x -+=
2(1)2x -=
12x -=
∴112x =+212x =-(2)(4分)
(3)(4分)
17、(6分)解:原式=)
1)(1(12)1(22-+-•++-+x x x x x x x =
2
1
212+-=++-+x x x x x …………………….3分 将23-=
x 代入上式,上式=3
3
2
231-
=+--
…………….6分 3
323234)5.023
1
3()814
48(=+--=---16
)21(12216)
21)(21(2
11)22(162
11
)32002(22402-=----+-=-+-+
--+-=++
---+-
18、(6分)解:把x =-2代入原方程得4+8+m =0,
解得m =-12 ……………………………………….3分 把m =-12代入原方程,得x 2
-4x -12=0, 解得x 1=-2,x 2=6,
所以方程的另一根为6,m =-12……………………………….6分
19、(8分)解:乙的结论正确.……………………………………….1分
理由:由18y =
,可得818x y ==,.………………….3分
因此
2
M =
====.5分
0N =
==………………………………………….7分
M N ∴<,即N 的值比M 大……………………………………………….8分
20、(8分)(1)解:设4、5两月份每月降价的百分率为x ,由题意可列方程: 14000(1-x )2=12600 化简:(1-x )2
=0.9
解得x 1≈0.05,x 2≈1.95(不合题意,舍去)……………….4分
(2)解:如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12600(1-x )2
=12600×0.9=11340>10000
由此可知7月份该市的商品房成交均价不会跌破10000元/2
m ………8分 注:第(2)小题也可以通过估算加以判断,只要正确就相应给分。
21、(10分)解:(1)∵一元二次方程012)2(22
2
=++--k x k x 有实数根βα、,
∴0≥∆, …………………………………………………2分
即0)12(4)2(42
2
≥---k k ,
解得2-≤k ……………………………………………………………4分 (3)由根与系数的关系得:k k 24)]2(2[-=---=+βα, …………… 6分 ∴24
24-=-=
+=
k
k k k
t β
α, ……………………………………7分 ∵2-≤k , ∴04
2<≤-k
, ∴224
4-<-≤
-k
,
即t的最小值为-4.………………………………10分。