石油3-3碳酸盐岩储集层
- 格式:ppt
- 大小:3.82 MB
- 文档页数:43
碳酸盐岩引言:在第二次世界大战以后,由于在西亚地区的石灰岩和白云岩中发现了大量的石油,因而促进了现代碳酸盐沉积物的研究工作。
由于这些发现,石油工业部门感到对浅水碳酸盐的沉积作用、成岩作用和石化作用的基本知识的缺乏,于是展开对现代碳酸盐沉积环境的研究工作。
碳酸盐岩是重要的烃源岩和储集岩,在当前国内外的大油田中,碳酸盐岩占很大比例,据统计,在世界上储量在0.14亿吨以上的546个油田中,就数目而论,以碳酸盐岩为储集层者虽然只占总数的37.9%,但就储量而言,则占57.9%。
碳酸盐岩油气田的平均储量为2亿吨,而砂岩油气田的平均储量仅为0.9亿吨。
碳酸盐岩储集层不仅具有如上所述的高储量,而且往往具有极高的产能。
据统计,目前世界上共有9口日产量达万吨以上的高产井,其中8口属于碳酸盐储集层。
显然,碳酸岩储集层中的石油具有很大的经济价值,激励我们去了解碳酸盐岩作为储油岩所应具有的性质。
我国的碳酸盐岩油气田的勘探与开发有着悠久历史,如四川在碳酸盐岩地层中采气已经有两千多年历史,至今仍为我国重要的碳酸盐岩气田分布区。
此外,近年来在华北盆地老第三系和震旦亚阶至奥陶系中也证实了高产能碳酸盐岩储集层的存在,更进一步开拓了碳酸盐储集层在我国的广阔前景。
随着国内外对碳酸盐岩研究的日益深入,当前已从根本上改变了认为碳酸盐岩是单纯化学沉积的观点,绝大部分的现代海洋碳酸盐都是生物成因的。
与此同时,对碳酸盐岩含油性的研究和认识也获得了新飞跃。
碳酸盐岩孔隙空间特征在碳酸盐岩储集层中常见的和对油气储集作用影响较大的空隙类型,目前已知有以下几种。
①粒间孔隙:是指碎屑碳酸盐岩颗粒之间的孔隙,如内碎屑之间、生物碎屑之间、鲕粒直间的孔隙等。
其特征与碎屑岩的的粒间空隙相似。
碳酸盐岩的粒间孔隙一般是原生的,但也可以是次生的,如大颗粒之间的微晶基质的选择性溶解造成的粒间孔隙。
②粒内孔隙:组成碳酸盐岩的各种颗粒内部的孔隙,如骨屑、团块、内碎屑、鲕粒等颗粒内部的空隙。
1.8 简述油气藏的分类方法与主要类型。
答.油藏分类通常从以下几个方面进行:(1).储集层岩性。
储集层岩石为砂岩,则为砂岩油气藏,如果为碳酸盐岩,则为碳酸盐岩油气藏。
(2).圈闭类型。
主要类型有断层遮挡油藏,岩性油气藏,地层不整合油气藏,潜山油气藏,地层超覆油气藏。
(3).孔隙类型。
主要类型单一孔隙介质油气藏,如孔隙介质油藏;双重介质油气藏,如裂缝-溶洞型介质油藏,三重孔隙介质油气藏;如裂缝-溶洞-孔隙型介质油藏。
(4).流体性质。
油藏按原油密度大小分为轻质油藏、中质油藏和重质油藏等;气藏根据凝析油含量的多少细分为干气藏、湿气藏和凝析气藏。
(5).接触关系。
如底水油藏,边水油藏;层状油藏,层状边水油藏等。
1.9 简述砂岩储集层与碳酸盐岩储集层的主要区别。
答.大多数的碎屑岩都发育有开度较大的原生粒间孔隙,碳酸盐岩中发育了开度较大的次生孔隙(裂缝,溶洞等),则可以成为好的储集层。
碳酸盐岩与碎屑岩储层的区别:碳酸盐岩与碎屑岩相比,由于其化学性质不稳定,容易遭受剧烈的次生变化,通常经受更为复杂的沉积环境及沉积后的变化。
有以下几点区别:1.碳酸盐岩储集层储集空间的大小、形状变化很大,其原始孔隙度很大而最终孔隙度却较低。
因易产生次生变化所决定。
2.碳酸盐岩储集层储集空间的分布与岩石结构特征之间的关系变化很大。
以粒间孔等原生孔隙为主的碳酸盐岩储层其空间分布受岩石结构控制,而以次生孔隙为主的碳酸盐岩储层其储集空间分布与岩石结构特征无关系或关系不密切。
3.碳酸盐岩储集层储集空间多样,且后生作用复杂。
构成孔、洞、缝复合的孔隙空间系统。
4.碳酸盐岩储集层孔隙度与渗透率无明显关系。
孔隙大小主要影响孔隙容积。
2.1某天然气样品的摩尔组成为C1H4(0.90),C2H6(0.06)和C3H8(0.04)。
若地层压力为30MPa,地层温度为80℃,试确定气体的相对密度和地层条件下的偏差因子;若把天然气视作理想气体,储量计算的偏差为多少?解.(1) 此天然气平均摩尔质量:M =∑M i∗x jM=16×0.9+30×0.06+44×0.04=17.96相对密度:γg=M / M ai r =17.96 /28.97 = 0.62气体拟临界压力:p pc=∑P ci∗x jp pc=4.6408×0.9+4.8835×0.06+4.2568=4.64MP a气体拟临界温度:T pc=∑T ci∗x jT pc=190.67×0.9+305.50×0.06+370×0.04=204.73K对比压力:p pr=pp pc=304.64=6.47对比温度:T pr=TT pc=353204.73=1.72查图2.1.2 可得偏差因子为0.92,理想气体偏差因子为1在此处键入公式。
石油勘探中地质类型不同所产生的具体影响摘要通过对目前石油勘探过程的了解发现,不同的地质类型对应的勘探方法是不同的,同时不同的地质类型对石油勘探也产生了不同的影响。
在实际的石油勘探过程中,我们要对地质类型进行深入分析,通过对地质层的分类,按照不同的地质类别选择不同的勘探方法,使石油勘探满足实际要求,提高石油勘探的总体效果。
从目前石油勘探中已知的地质层类型来看,主要分为储集层、生油层和常规油田地质层和非常规油田地质层等。
我们只有对地质类型有足够的了解,并根据地质类型不同采取不同的勘探方法,才能从根本上提高石油勘探效果。
因此,我们必须对石油勘探中地质类型产生的具体影响进行深入分析。
关键词石油勘探;地质类型;具体影响中图分类号p62 文献标识码a 文章编号 1674-6708(2013)87-0114-010 引言随着石油勘探技术的发展,目前已经形成了针对不同地层的勘探技术和方法。
为了保证石油勘探的整体效果,我们在进行石油勘探之前,需要对地质类型进行判断,并根据不同的地质层采取相应的勘探技术,保证石油勘探取得预期效果。
从目前来看,地质类型是比较多样的,如果在石油勘探开始前不能对地质类型造成的影响进行准确判断,将会导致石油勘探无法找到有效方法,进而影响石油勘探的最终效果。
所以,在石油勘探开始之前,我们必须对地质类型产生的影响有足够的了解。
1 储集地质层对石油勘探的具体影响能够容纳和渗滤流体的岩层即称之为储集层。
碎屑岩储集层实际上已发现的石油储量中,约有半数以上的石油和3/4的天然气分布集中且广泛。
主要有碳酸盐岩类、碎屑岩类。
此外,还有变质岩、火山岩、泥岩等。
碳酸盐岩储集层主要构成是石灰岩、白云岩、生物碎屑灰岩等,是除了碎屑岩外的重要储集层。
碳酸盐储集层通常可以分为溶洞、孔隙、裂缝3 种。
我国发现的碎屑岩储集层的主要构成是砾岩、砂岩。
新生代陆相盆地的油气储集层大多数都是碎屑岩,形状细小,孔隙是指岩石结构的颗粒间的空隙,近于等轴状,与碎屑岩中的孔隙相似。
石油的储集层我们经常可以听到“油湖”和“油海”的说法,容易使人联想到石油就象湖泊和海洋一样在地下分布着,甚至有人担心,深怕我国边境油田的石油会流到外国去。
其实,这是夸张的比喻带给人们的错觉,实际情况并不是这样。
石油是储存在岩石的孔隙、洞穴和裂缝之中。
凡是具有孔、洞、缝,液体又可以在其中流动的岩石,就叫做储集层。
石油就是在储集层中储集和流动的。
专业人员主要用孔隙度和渗透率两个因素来衡量储集层的优劣。
孔隙度的数值大,表明储藏油的空间大、可以容纳较多的石油。
渗透率的数值高,则表示孔隙、缝洞之间的连通性好,石油容易流动,容易采出来,可以获得较高的产量。
储集层的类型种类比较多,大致可以分成三大类,即颗粒之间孔隙型储集层、溶蚀的洞穴型储集层和破裂的裂缝型储集层。
这些储集空间有的大到肉眼可以看见,有的微细到只有在显微镜下才能发现。
我国已发现的储集层是多种多样的,但也超不出以上三种类型。
以大庆油田为代表的属砂岩颗粒间的孔隙型储集层;以任丘油田为代表的属碳酸盐岩的溶蚀洞穴型和裂缝型储集层;以四川气田为代表的属碳酸盐岩裂缝型储集层。
还有一些特殊的储集层,如在辽河油田见到的火山岩储集层(孔隙型);在玉门鸭儿峡油田的变质岩储集层(裂缝型)以及青海油泉子油田的泥岩储集层(裂缝型)等等。
油气盖层为了不使储集层中的油气逸散掉,在储集层的上方需要有一套致密的、不渗透的地层把储集层中的油气保护起来。
这种致密不渗透的保护层就叫做盖层,适合做盖层的岩石有页岩、泥岩、盐岩、石膏等。
致密的泥灰岩和石灰岩有时也可以充作盖层。
盖层要有一定的厚度,太薄了就承受不住油气对它的压力,就不能阻止油气逸散,起不到保护的作用。
盖层的分布要稳定。
即厚度的变化不能太悬殊,更不能有的地方有盖层,有的地方没有盖层。
否则,就会在储集层的上方出现“漏洞”。
油气就会从“漏洞”中逸散出去。
盖层还要求不受地壳运动的破坏,如果一个完整的盖层被地壳运动破坏得支离破碎,也就失去了盖层的作用。
碳酸盐岩储层孔隙特征与评价碳酸盐岩储层是一种常见的油气储集岩层,其孔隙特征对于油气的储存和流动起着重要的控制作用。
本文将从孔隙类型、孔隙结构、孔隙连通性以及孔隙评价等方面对碳酸盐岩储层的孔隙特征进行论述。
一、孔隙类型碳酸盐岩储层的孔隙类型主要有溶蚀孔、溶洞孔和颗粒溶蚀孔等。
其中,溶蚀孔是由于地下水的溶蚀作用而形成的,其形状不规则,大小不一;溶洞孔是在溶蚀孔的基础上进一步扩大而成,通常呈洞穴状;颗粒溶蚀孔则是岩屑颗粒被溶解而形成的。
二、孔隙结构碳酸盐岩储层的孔隙结构包括孔隙度、孔隙分布和孔隙连通性等。
孔隙度是指岩石中的孔隙空间占总体积的百分比,是评价储层孔隙性质好坏的重要指标。
孔隙分布则是指孔隙在岩石中的分布情况,通常包括均质分布和非均质分布。
孔隙连通性是指孔隙之间是否能够形成连通通道,进而影响流体在储层中的运移。
三、孔隙评价对于碳酸盐岩储层的孔隙评价,常用的方法包括孔隙度测定、孔隙结构表征和物性参数计算等。
孔隙度可通过测定样品的饱和水、气渗透性或密度等方法来进行确定。
孔隙结构的表征通常通过介电常数测量、浸泡法、压汞法和扫描电镜等来进行分析。
物性参数的计算则基于孔隙度、孔喉直径和孔隙联通程度等指标。
碳酸盐岩储层的孔隙评价还需要考虑天然岩芯和井测数据,并结合地质背景、沉积环境和压力温度等因素进行综合分析。
通过孔隙评价,可以帮助石油工程师和地质学家更好地理解储层的储集规律和流体运移规律,从而指导油气勘探开发工作。
综上所述,碳酸盐岩储层的孔隙特征对于油气勘探开发具有重要意义。
通过对孔隙类型、孔隙结构和孔隙评价等方面的论述,可以深入了解碳酸盐岩储层的储层性质,进而为有效勘探和开发提供科学依据。
碳酸盐岩储层特征与勘探技术碳酸盐岩是一种重要的储层类型,其具有特殊的地质特征和储层形成机制。
本文将介绍碳酸盐岩储层的四大特征,并探讨相关的勘探技术。
一、碳酸盐岩储层特征1. 孔隙度高:碳酸盐岩中普遍存在着丰富的溶蚀孔洞和裂缝系统,使得其孔隙度相对较高。
这些孔洞和裂缝是物理储集空间的重要来源,对储层的储集和流动起着重要作用。
2. 渗透性差:虽然碳酸盐岩具有较高的孔隙度,但其渗透性却相对较差。
这是由于碳酸盐岩的溶蚀孔洞具有不连通性、细小性和复杂性等特点,使得流体在储层中的渗流受到一定的限制。
3. 孔隙类型多样:碳酸盐岩中的孔隙类型多样,主要包括海绵孔、缝状孔、溶蚀孔、溶洞和裂缝等。
这些孔隙种类的存在使得碳酸盐岩具备了多元的物理性质和流体储集方式,对勘探和开发提出了更高的要求。
4. 储层非均质性强:碳酸盐岩是一种典型的非均质储层,储集空间的分布和连通性较复杂。
因此,在勘探过程中需要进行准确的储层描述和预测,以避免勘探风险和开发难度。
二、碳酸盐岩储层勘探技术1. 地震勘探技术:地震勘探是碳酸盐岩储层勘探的主要技术手段。
通过地震波在不同层位的传播速度和反射强度,可以识别碳酸盐岩储层的存在与分布,并获得地质构造、岩性特征等信息。
2. 地质勘探技术:地质勘探是对碳酸盐岩储层进行详细的地质描述和解释的技术手段。
包括野外地质观察、岩心描述、层序地层分析等方法,可以帮助更全面地了解储层特征和分布规律。
3. 流体检测技术:流体检测技术是评价碳酸盐岩储层储集能力和勘探潜力的重要手段。
包括测井、石油地质化学和流体包裹体分析等方法,可以确定储层的孔隙度、渗透性、流体类型、含气饱和度等参数。
4. 工程地质技术:碳酸盐岩储层开发过程中,由于其非均质性强,需要进行开发过程的综合研究和监测。
包括岩石力学测试、封隔技术和水驱技术等方法,可有效解决碳酸盐岩储层的工程问题。
综上所述,碳酸盐岩储层具有孔隙度高、渗透性差、孔隙类型多样和储层非均质性强的特征。
具有连通孔隙,能使流体储存,并在其中渗滤的岩层,也称储集岩。
它是构成油气藏的基本要素之一。
储集层必须具备储存石油和天然气的空间和能使油气流动的条件。
如储集层中储存了油气则称含油气层。
绝大多数油气藏的含油气层是沉积岩(主要是砂岩、灰岩、白云岩),只有少数油气藏的含油气层是岩浆岩和变质岩。
储集层是控制油气分布、储量及产能(给出石油、天然气的能力)的主要因素储集层的孔隙(包括裂缝和孔洞)是指岩石中未被固体物质充填的空间。
地壳中不存在没有孔隙的岩石,但是不同的岩石,其孔隙大小、形状和发育程度是不同的。
因此,岩石孔隙发育程度直接影响储存油气的数量。
岩石孔隙发育程度用孔隙度(孔隙率)来表示,即岩石的孔隙体积与岩石体积之比(以百分数表示)。
自然界岩石的孔隙有连通孔隙和不连通孔隙。
此外,孔隙的大小也是直接影响油气在其中流动的重要因素。
岩石的孔隙按其大小(孔隙直径或裂缝宽度)可分为3类:①超毛细管孔隙。
指管形孔隙直径大于0.5毫米或裂缝宽度大于0.25毫米的孔隙。
这种孔隙中的流体可以在重力作用下自由流动。
岩石中的大裂缝、溶洞及未胶结或胶结疏松的砂岩层孔隙大部分属此类。
②毛细管孔隙。
指管形孔隙直径介于0.5~0.0002毫米之间,或裂缝宽度介于0.25~0.0001毫米之间的孔隙。
在这种孔隙中的流体,由于毛细管力的作用,流体不能自由流动。
要使流体在其中流动,需要有明显的超过重力的外力去克服毛细管阻力。
一般砂岩的孔隙属于此类。
③微毛细管孔隙。
指管形孔隙直径小于0.0002毫米,或裂缝宽度小于0.0001毫米的孔隙。
要使这种孔隙中的流体流动,需要非常高的剩余压力梯度,这在地下油层条件下一般是达不到的。
因此,对石油、天然气的开发无意义。
一般泥岩、页岩中的孔隙属于此类。
那些不连通的孔隙和微毛细管孔隙,对油气的储集是毫无意义的。
只有那些彼此连通的超毛细管孔隙和毛细管孔隙,才是有效的油气储集空间,即有效孔隙。
有效孔隙度(Pe)是指岩石有效孔隙体积(Ve)和岩石总体积(Vt)之比:砂岩有效孔隙度变化在5~30%之间,一般为10~20%;碳酸盐岩储集层孔隙度小于5%。
碳酸盐岩储集层的储集空间碳酸盐岩储集层的主要岩石类型包括石灰岩、白云岩、粒屑灰岩、礁灰岩等,其储集空间通常包括孔隙、溶洞和裂缝三类。
一般说来,孔隙和溶洞是主要的储集空间,裂缝是主要的渗滤通道,也是储集空间。
碳酸盐岩储集空间的形成过程是一个复杂而长期的过程,它贯穿在整个沉积过程及其以后的各个地质历史时期。
它除了受沉积环境的控制外,地下热动力场、地下或地表水化学场、构造应力场等因素均对它们的形成和发展有巨大的影响。
由于碳酸盐岩的特殊性(易溶性和不稳定性),使碳酸盐岩储集空间的演化相当复杂,孔隙类型多、变化快,往往在同一储集层内存在着多种类型的孔隙,各种孔隙又往往经受几种因素的作用和改造。
因此,对碳酸盐岩储集空间分类时,既要考虑它的原始成因,又要考虑它在整个地质历史过程中的改造和变化。
关于碳酸盐岩孔隙类型的划分方案较多。
Choquette和Pray(1970)根据受组构控制与不受组构控制两项关系,将碳酸盐岩孔隙划分为三大类型16种孔隙,其中有几种为常见类型,其它则为比较特殊的类型。
将根据碳酸盐岩孔隙的形成时间及成因,将其分为原生孔隙和次生孔隙两大类来进行论述。
∙原生孔隙碳酸盐岩的原生孔隙主要是指在沉积时期形成的与岩石组构有关的孔隙。
它们在成岩期可以发生一些变化。
原生孔隙包括粒间孔隙、粒内孔隙、生物骨架孔隙、生物体腔孔隙、遮蔽孔隙、鸟眼孔隙和生物潜穴等。
粒间孔隙:粒间孔隙是指粒屑碳酸盐岩粒屑之间未被基质填积和胶结物充填的原始孔隙空间。
粒间孔隙只有在粒屑含量很高(一般应大于50%)形成颗粒支撑格架时才能出现。
粒间孔隙的发育程度与粒屑的含量、大小、形状、分选程度以及粒屑的堆积方式,胶结物含量等因素密切相关,而它能否得以保存还取决于沉积后的地质历史时期淀晶方解石或其它可溶矿物的充填程度。
粒间孔隙是碳酸盐岩储集层的主要孔隙类型之一。
世界上相当多的碳酸盐岩储集层发育此类孔隙。
粒内孔隙:粒内孔隙是指组成碳酸盐岩的各种颗粒内部的孔隙,如骨屑、团块、内碎屑、鲕粒等颗粒内部的孔隙。
碳酸盐岩储集层隔夹层地质特征及成因——以伊拉克西古尔纳油田白垩系Mishrif组为例邓亚;郭睿;田中元;谭文豪;衣英杰;徐振永;肖聪;曹勋臣;陈良【摘要】通过岩心、薄片、测井等资料综合分析,研究伊拉克西古尔纳油田白垩系Mishrif组碳酸盐岩内隔夹层类型、孔渗关系、测井响应特征及识别标准,并从层序地层、沉积相及成岩作用的角度分析隔夹层的成因和分布特点.研究区发育颗粒灰岩、泥粒灰岩及粒泥灰岩3种隔夹层.隔夹层一般发育在局限台地相和蒸发台地相,部分发育在开阔台地相;在海侵体系域及早期高位体系域,形成广泛发育的隔夹层,且在层序边界处形成大规模、连续分布、物性较差的隔挡层.准同生期胶结作用、埋藏压实作用、埋藏期胶结作用等成岩作用造成孔隙度不断减小,从而破坏了储集空间,导致层内夹层的形成.表生期古潜水面以下的潜流环境由于CO2的脱气作用致使CaCO3大量沉淀出来并形成方解石胶结物,形成了区域内广泛分布的泥粒、颗粒灰岩隔夹层.通过测井综合分析确定了隔夹层测井识别标准并预测了隔夹层的展布特征,隔层主要发育在CRⅠ段、CRⅡ段内,夹层主要集中在mB1段内.就不同类型隔夹层而言,泥粒灰岩隔夹层数量比例最大,其次为颗粒灰岩隔夹层,最后为粒泥灰岩隔夹层.【期刊名称】《石油勘探与开发》【年(卷),期】2016(043)001【总页数】9页(P136-144)【关键词】碳酸盐岩;储集层隔夹层;地质特征;成因模式;测井响应特征;测井识别标准;西古尔纳油田;伊拉克【作者】邓亚;郭睿;田中元;谭文豪;衣英杰;徐振永;肖聪;曹勋臣;陈良【作者单位】中国石油勘探开发研究院;中国石油勘探开发研究院;中国石油勘探开发研究院;中国石油大学北京;中国石油勘探开发研究院;中国石油勘探开发研究院;中国石油大学北京;长江大学;中国石油海外勘探开发公司【正文语种】中文【中图分类】TE122.2目前,国内外学者对隔夹层的研究主要集中在其定义、分类、成因、物性标准、分布规律、识别方法及对油藏开发的影响[1-10]等方面,且研究的对象主要集中在砂岩油藏,对于碳酸盐岩油藏,特别是孔隙型碳酸盐岩储集层隔夹层的研究相当缺乏[2-3]。