4.对数求导法 参数方程的求导法则
- 格式:ppt
- 大小:1.15 MB
- 文档页数:26
求导法则与求导公式求导法则是用来求导数的基本方法和公式,它是微积分的基础,被广泛应用于数学、物理等领域。
在求导过程中,有一些基本的法则和公式可以帮助我们简化计算。
一、基本求导法则1.常数法则:如果f(x)=C,其中C为常数,则f'(x)=0。
2. 变量法则:如果f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
3.常数倍法则:如果f(x)=Cg(x),其中g(x)可导且C为常数,则f'(x)=Cg'(x)。
4.加减法则:如果f(x)=g(x)±h(x),其中g(x)和h(x)可导,则f'(x)=g'(x)±h'(x)。
5.乘法法则:如果f(x)=g(x)h(x),其中g(x)和h(x)可导,则f'(x)=g'(x)h(x)+g(x)h'(x)。
6.除法法则:如果f(x)=g(x)/h(x),其中g(x)和h(x)可导且h(x)不等于0,则f'(x)=(g'(x)h(x)-g(x)h'(x))/h(x)^27.复合函数法则:如果f(x)=g(h(x)),其中g和h都是可导函数,则f'(x)=g'(h(x))*h'(x)。
8.反函数法则:如果f和g是互为反函数,则f'(x)=1/g'(f(x))。
二、常用的求导公式1. 幂函数求导:(x^n)' = nx^(n-1)。
2.指数函数求导:(e^x)'=e^x。
3. 对数函数求导:(lnx)' = 1/x。
4. 三角函数求导:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x。
5. 反三角函数求导:(arcsinx)' = 1/√(1-x^2),(arccosx)' = -1/√(1-x^2),(arctanx)' = 1/(1+x^2)。
《高等数学》四隐函数的导数对数求导法由参数方程所确定函数的导数高等数学中的四隐函数的导数对数求导法指的是通过参数方程所确定的函数来求导。
这种方法在求解一些复杂函数的导数时非常有效,可以简化计算过程,提高求解的准确性和效率。
首先,我们来了解一下什么是隐函数和参数方程。
在数学中,当一个方程中的变量无法明确地表示出来时,就称为隐函数。
例如,x^2+y^2=1就是一个隐函数。
而参数方程是一种表示曲线的方法,其中,x和y是两个独立变量的函数。
参数方程可以将曲线上的点表示为(x(t),y(t))的形式,其中t是一个参数。
例如,x = cost,y = sint是描述一个单位圆的参数方程。
接下来,我们使用参数方程来求解隐函数的导数。
假设有两个参数方程x=f(t)和y=g(t),我们想要求解由这两个参数方程所确定的隐函数y=f(x)。
我们可以通过以下步骤来计算:步骤1:首先,通过第一个参数方程求解t关于x的导数,即 dt/dx = dx/dt ÷ dy/dt。
这个导数表示了x的变化速率对应于t的变化速率的比例关系。
步骤2:接下来,通过将t关于x的导数带入第二个参数方程,得到y关于t的导数 dy/dt。
这个导数表示了y对t的变化速率。
步骤3:最后,通过链式法则,将dy/dt乘以dx/dt,即 dy/dx = (dy/dt) ÷ (dx/dt)。
这个导数表示了y对x的变化速率。
这就是我们所要求解的隐函数的导数。
通过以上的步骤,我们可以得到通过参数方程所确定的隐函数的导数。
这种方法可以应用于各种隐函数求导的情况,无论是简单的方程还是复杂的曲线,都能有效地进行计算。
然而,需要注意的是,对于一些特殊的函数,使用参数方程进行求导可能并不是最方便的方法。
在实际应用中,我们可以根据具体问题和计算的需要选择不同的求导方法,以求解隐函数的导数。
总结起来,四隐函数的导数对数求导法是一种通过参数方程来求解隐函数导数的方法。
24个基本求导公式在微积分中,求导是一个非常基础且重要的概念。
它的作用是用来寻找函数的导数,即函数在给定的点上的斜率。
而求导的基本公式通常用来简化这个过程,使我们能够快速地求得函数的导数。
下面是24个常用的求导公式:1.常数规则:f(x)=c,其中c是常数,则f'(x)=0。
简单来说,常数的导数等于0。
2.幂规则:f(x) = x^n, 其中n是常数,则f'(x) = nx^(n-1)。
换句话说,幂函数的导数是常数乘以幂次减13.指数规则:f(x)=e^x,则f'(x)=e^x。
e是自然对数的底数,它的指数函数的导数就是自身。
4.对数规则:f(x) = ln(x),则f'(x) = 1/x。
这个公式适用于自然对数函数。
5.三角函数规则:f(x) = sin(x),则f'(x) = cos(x)。
即正弦函数的导数是余弦函数。
6.余弦函数规则:f(x) = cos(x),则f'(x) = -sin(x)。
即余弦函数的导数是负的正弦函数。
7.正切函数规则:f(x) = tan(x),则f'(x) = sec^2(x)。
即正切函数的导数是正割平方函数。
8.反三角函数规则:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
即反正弦函数的导数是1除以1减去x的平方根。
9.反余弦函数规则:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
即反余弦函数的导数是负1除以1减去x的平方根。
10.反正切函数规则:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
即反正切函数的导数是1除以1加x的平方。
11.双曲正弦函数规则:f(x) = sinh(x),则f'(x) = cosh(x)。
即双曲正弦函数的导数是双曲余弦函数。
12.双曲余弦函数规则:f(x) = cosh(x),则f'(x) = sinh(x)。
高中导数的基本公式14个导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
在高中数学中,我们学习了导数的基本概念和计算方法,其中最重要的就是导数的基本公式。
本文将介绍高中导数的基本公式14个。
1. 常数函数的导数为0如果函数f(x)是一个常数函数,那么它的导数f'(x)等于0。
这是因为常数函数在任何点处的斜率都是0,所以它的导数也是0。
2. 幂函数的导数如果函数f(x)是一个幂函数,即f(x) = x^n,其中n是一个正整数,那么它的导数f'(x)等于nx^(n-1)。
这是因为幂函数在任何点处的斜率都是nx^(n-1),所以它的导数也是nx^(n-1)。
3. 指数函数的导数如果函数f(x)是一个指数函数,即f(x) = a^x,其中a是一个正实数且不等于1,那么它的导数f'(x)等于a^x * ln(a)。
这是因为指数函数在任何点处的斜率都是a^x * ln(a),所以它的导数也是a^x * ln(a)。
4. 对数函数的导数如果函数f(x)是一个对数函数,即f(x) = log_a(x),其中a是一个正实数且不等于1,那么它的导数f'(x)等于1/(x * ln(a))。
这是因为对数函数在任何点处的斜率都是1/(x * ln(a)),所以它的导数也是1/(x * ln(a))。
5. 三角函数的导数如果函数f(x)是一个三角函数,即f(x) = sin(x)、cos(x)、tan(x)、cot(x)、sec(x)或csc(x),那么它的导数f'(x)分别为cos(x)、-sin(x)、sec^2(x)、-csc^2(x)、sec(x) * tan(x)和-csc(x) * cot(x)。
这是因为三角函数在任何点处的斜率分别为cos(x)、-sin(x)、sec^2(x)、-csc^2(x)、sec(x) * tan(x)和-csc(x) * cot(x),所以它们的导数分别为cos(x)、-sin(x)、sec^2(x)、-csc^2(x)、sec(x) * tan(x)和-csc(x) * cot(x)。
课题2导数的四则运算法则一、复习基本初等函数的导数公式用定义只能求出一些较简单的函数的导数(常函数、幂函数、正、余弦函数、指数函数、对数函数),对于比较复杂的函数则往往很困难。
本节我们就来建立求导数的基本公式和基本法则,借助于这些公式和法则就能比较方便地求出常见的函数——初等函数的导数,从而是初等函数的求导问题系统化,简单化。
二、导数的四则运算法则设函数)(x u u =、)(x v v =在点x 处可导,则函数)(x u ±)(x v ,)()(x v x u ⋅,)0)(()()(≠x v x v x u 也在点x 处可导,且有以下法则: (1) [])()()()(x v x u x v x u '±'='±推论:[]'±±'±'±'='±±±±n n u u u u u u u u 321321 (2) [])()()()()()(x v x u x v x u x v x u '+'=', 推论1: [])()(x u C x Cu '='(C 为常数); 推论2:此法则可以推广到有限个函数的积的情形. 例 w uv w v u vw u uvw '+'+'=')((3) )0(2≠'-'='⎥⎦⎤⎢⎣⎡v v v u v u v u , 三、例题分析例:求 的导数解:例:已知x x y ln 3=,求y '解:)1ln 3(ln 3)(ln ln )()ln (222333+=+='+'='='x x x x x x x x x x x y例: 解:例:求的导数x x x x y ln cos sin 2⋅+⋅= 解3ln 11cos )(3++-=x x x x f ()()'+'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛-'='3ln 11cos )(3x x x x f 0131sin 234+-+-=-x x x x xx x sin 13123--=(x)f ,1)(2'+=求设x xx f 22222)1()1()1()()1()(x x x x x x x x f +'+-+'='+='2222222)1(1)1(21x x x x x +-=+-+=x x x x x x xx x x x x x x x x x x x cos ln sin cos 2sin )(ln cos ln )(cos )(sin 2sin )(2)ln (cos )sin x 2y +-+='⋅+⋅'+'+'='⋅+'='(附加练习:求下列函数的导数(1)x x y 33log = (2)x x xy sin cos 41+-=,(3)π+-=x x y 32(4)xx y +=41(5) (6)设4sin cos 4)(3π-+=x x x f ,求)(x f '及)2(πf '(7)x x x y cos )ln 2(-=四、导数的应用 例1 [电流]电路中某点处的电流i 是通过该点处的电量q 关于时间的瞬时变化率,如果一电路中的电量为t t t q +=3)(,(1)求其电流函数i (t ) ?(2)t =3时的电流是多少? 解:(1)13)()(23+='+==t t t t i ,(2)i(3)=28例2 [电压的变化率]一个电阻为 Ω6,可变电阻R 为的电路中的电压由下式给出: ,求在R=Ω7电压关于可变电阻R 的变化率 解例3[气球体积关于半径的变化率]现将一气体注入某一球状气球,假定气体的压力不变.问当半径为2cm 时,气球的体积关于半径的增加率是多少?解:气球的体积V 与半径r 之间的函数关系为气球的体积关于半径的变化率为 半径为2cm 时气球的体积关于半径的变化率为小结导数的四则运算作业 上册 p57 1—6),1()11)(1()(22f xx x f '-+=求3256++=R R V 26256333R R R V R R +++''==++()-(625)()()07.01007)7(-=-='V 334r V π=24r V π=')/(1624/322cm cm dtdVr ππ=⋅==课题3复合函数的导数一、复习导数公式 导数的四则运算法则 二、复合函数的求导法则因为x x cos )(sin =',是否可以类似写出x x 2cos )2(sin ='呢? 由三角函数的倍角公式可知x x x cos sin 22sin = ])(cos sin cos )[(sin 2)2(sin '+'='x x x x x )sin (cos 222x x -= x 2c o s 2=显然x x 2cos )2(sin ≠',因为x 2sin 不再是基本初等函数而是一个复合函数,对于求复合函数的导数给出如下法则.定理:如果函数)(x u ϕ=在点x 处可导,而函数)(u f y =在对应的u 处可导,则复合函数[])(x f y ϕ=也在x 处可导,且有dxdudu dy dx dy ⋅= 或 )()(]))(([x u f x f ϕϕ''=', 简记为 x u x u y y ''='证明:当)(x u φ=在x 的某邻域内不等于常数时, ∆u ≠0, 给自变量x 一增量x ∆,相应函数有增量y u ∆∆,因为0y 0x )()(→∆→∆==时,处连续,固有在处可导,可知在x x u x x u φφ)()(lim lim lim lim0000x u f xu u y x u u y x y x u x x ϕ'⋅'=∆∆∆∆=∆∆⋅∆∆=∆∆→∆→∆→∆→∆即 )()(]))(([x u f x f ϕϕ''=' 或 dxdudu dy dx dy ⋅= 当)(x u φ=在x 的某邻域内为常数时, y =f [ϕ(x )]也是常数, 此时导数为零, 结论自然成立. 说明:(1)复合函数对自变量的导数等于它对中间变量的导数乘以中间变量对自变量的导数。