认识三角形知识点课件.doc
- 格式:doc
- 大小:1.83 MB
- 文档页数:7
认识三角形1.三角形有关的概念1 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角简称三角形的角.2 三角形的表示三角形用符号“△”表示,顶点是A 、B 、C 的三角形,记作“△ABC ”,读作“三角形ABC ”;如图7 -4一l,三角形有三个顶点:A 、B 、C ;有三条边:AB 、BC 、AC;有三个角:A ∠、B ∠、C ∠.△ABC 的三边用c b a ,,表示时,A ∠所对的边BC 用a 表示.B ∠所对的边AC 用b 表示.C ∠所对的边AB 用c 表示.2.三角形的分类⎪⎩⎪⎨⎧是钝角)钝角三角形(有一个角是直角)直角三角形(有一个角是锐角)锐角三角形(三个角都形角三注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形.3.三角形中边的关系1三角形的任意两边之和大于第三边;2三角形的任意两边之差小于第三边如图7 -4 -1中,c b a b a c a b c b c a a c b c b a <-<-<->+>+>+,,;,,;注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形; 例如:有三条线段的长分别为3、4、6因为3 +4 >6,所以这三条线段能组成三角形.又如:有三条线段的长分别为3、4、8要为3+4 <8,所以这三条线段不能组成三角形.4.三角形的三种主要线段1高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高; 如图7 -4 -2,AD 是△ABC 的高,可表示为AD ⊥ BC 或ADC ∠=90°或ADB ∠= 90°;2中线:在三角形中,连接顶点和它对边中点的线段,叫做三角形的中线;如图7 -4 -3,AE 是△ABC 的中线,表示为BE=EC 或BE = 21BC 或BC= 2EC. 3角平分线:在三角形中,一个内角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线,一个角的平分线是一条射线,而三角形的角平分线是一条线段.如图7-4-4,AF 是ABC ∆的角平分线,可表示为CAF BAF ∠=∠或BAC BAF ∠=∠21或CAF BAC ∠=∠2.一个三角形中三条中线交于一点,三条角平分线交于一点,三条高所在直线交于一点;5.三角形的高、角平分线、中线的画法1三角形高的画法,如图7-4 -5.注意:①锐角三角形、直角三角形、钝角三角形都有三条高.②锐角三角形的三条高交于三角形内部一点.如图7 -4 -5甲,③钝角三角形的三条高交于三角形外部一点.如图7 -4 -5乙,④直角三角形的三条高交于直角顶点.如图7 -4 -5丙.2 三角形的中线的画法:将三角形一边的中点与这边所对角的顶点连接起来,就得到三角形一边上的中线. 3三角形的角平分线的画法:三角形的角平分线的画法与角平分线的画法相同,可以用量角器;防错档案:画钝角三角形的高容易出错,要抓住从三角形一顶点向对边作垂线段.6.面积法解题例如:如图7 -4 -6,在△ABC中,AB =AC,AC 边上的高BD= 10,求AB 边上的高CE 的长.解析:由三角形面积公式有:AC BD AB CE S ABC ⋅=⋅=∆2121 因为AB =AC,BD =10,所以CE= BD= 10.名题诠释例题1如图7 -4 -7,点D是△ABC的边BC上的一点,点E在AD上.1图中共有____个三角形;2以.AC为边的三角形是____;3以∠BDE为内角的三角形是____.解析1AD的左右两侧各有3个三角形,分别是△ABE、△ABD、△EBD、△ACE、△.ACD、△ECD,左右两侧组合又形成2个以BC为边的三角形,它们是△ABC、△EBC.故共有8个三角形.2 以AC为边的三角形有3个,它们是△.ACE、△ACD、△ACB. 3以∠BDE为内角的三角形有2个,它们是△EBD、△ABD.答案18 2△ACE、△ACD、△ACB 3△EBD、△ABD点评数三角形要注意选择恰当的顺序,做到不重不漏,注意最容易漏掉的是最大的三角形.例题2 下列三角形分别是什么三角形1已知一个三角形的两个内角分别是50°和60°;2 已知一个三角形的两个内角分别是35°和55°;3 已知一个三角形的两个内角分别是30°和45°;4 已知一个三角形的周长为16cm,有两边的长分别是6cm和4cm.解析确定三角形的形状,应紧扣定义.答案1 锐角三角形,因为三角形内角和为180°,而两个内角分别是50°和60°,所以第三个内角是70°,即这个三角形是锐角三角形.2 直角三角形,同理.3 钝角三角形,同理.4 等腰三角形.因为第三条边的长为16 -6 -4 =6cm.点评应全面考虑三角形的边和角的条件,再根据定义判别.例题3 下列长度的三条线段能组成三角形的是.A. lcm、2cm、3.5cmB.4cm、5cm、9cmC. 5cm、8cm、15cmD.8cm、8cm、9cm解析因为1+2<3.5,所以lcm、2cm、3.5cm的三条线段不能构成三角形因为4+5 =9,所以4cm、5cm、9cm的三条线段不能构成三角形;因为5+8<15,所以5cm、8cm、15cm的三条线段不能构成三角形;因为8+8 >9,所以8cm、8cm、9cm的三条线段能构成三角形.答案D点评三条线段能否构成三角形的条件是三角形三边的关系,即是否满足任意两边之和大于第三边.简便方法是检验较小的两边之和是否大于最大边.例题4 甲地离学校4km,乙地离学校lkm.记甲、乙两地之间的距离为dkm,则d的取值为.A.3B.5C.3或5 D.3≤d≤5解析本题应分两种情况讨论:1甲、乙两地与学校在一条直线上;2甲、乙两地与学校不在同一条直线上,则构成三角形,可利用三角形三边关系解题.答案D∠,G为AD的中点,延长BG交AC于E.F为例题5 如图7-4 -8,在△ABC中,1∠=2AB上一点,CF⊥AD于H,下面判断正确的有.①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH为△ACD边AD上的高;④AH是△ACF的角平分线和高线.A.l个B.2个 C.3个D.4个∠知AD平分∠BAE.但AD不是△ABE内的线段,故①错,AD应是△ABC的角平分线;同理,BE经解析由1∠=2过△ABD 的边AD 的中点G,但BE 不是△ABD 中的线段,故②不正确,正确的说法应是BG 是△ABD 边AD 上的中线;由于CH ⊥AD 于H,故CH 是△ACD 边AD 上的高,故③正确;AH 平分∠FAC 并且在△ACF 内,故AH 是△ACF 的角平分线,同理AH 也是△ACF 的高,故④正确.答案B点评 三角形的角平分线和角的平分线之间的区别:前者是线段,在三角形的内部,后者是射线,可以无限延伸.例题6在△ABC 中,AB =AC,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 两部分,求三角形各边的长,解析 中线BD 把三角形的周长分为12cm 和15cm 两部分,要分类讨论:1当腰长小于底边时,AB +AD =12,如图7-4 -9①;2当腰长大于底边时,AB +AD =15,如图7-4 -9②.答案设AB=x ,则有:AD= DC=x 21. 1若AB +AD =12,即x + x 21=12,x =8. AB =AC =8,DC =4,故BC= 15 -4= 11.此时AB +AC> BC,所以三角形三边长分别为8cm,8cm,llcm.2若AB+ .4D= 15,即x +x 21=15,x =10. 即AB =AC =10,DC =5,故BC=12 -5 =7.显然,此时三角形存在,所以三角形三边长分别为l0cm,l0cm,7cm .综上所述,此三角形的三边长分别为8cm,8cm .llcm 或l0cm,l0cm,7cm .例题7 如图7-4 -10,是甲、乙、丙、丁四位同学画的钝角△ABC 的高BE,其中画法错误的是____________解析 甲图错在把三自形的高线与AC 边的垂线定义相混淆,把“线段”画成“直线”;乙图错在未抓住“垂线”这一特征,画出的BE 与AC 不垂直;丙图错在没有过点B 画AC 的垂线,故不是高;丁图错在没有向点B 的对边画垂线. 答案 甲、乙、丙、丁例题8 如图7—4-11,在△ABC 中,AB =AC,AC 边上高BD=10,P 为边BC 上任意一点,PM ⊥AB,PN ⊥AC,垂足分别为M,N .求PM+PN 的值.解析 连接AP 后,PM 、PN 就转化为△APB 和△APC 的高,从而由面积法可求得PM+ PN 的值.答案 连接AP,由图7-4 -11可知:ABC ACP ABP S S S ∆∆∆=+, 即BD AC PN AC PM AB ⋅=⋅+⋅212121 因为AB =AC,BD =10,所以PM+PN= BD =10.速效基础演练1如图7 -4 -12,图中三角形的个数共有 .A 1个B .2个 C.3个 D .4个2 三角形两边的长分别为lcm 和4cru,第三边的长是一个偶数,则第三边的长是________,这个三角形是___________三角形3如图7 -4 -13.1 AD ⊥BC,垂足为D,则AD 是___________的高,_______=_______= 90°;2 若AE 平分BAC ∠,交BC 于E 点,AE 叫___________的角平分线,BAE ∠ =_______=21________; 3 若AF= FC,则△ABC 的中线是_________;4 若BC= GH= HF .则AG 是________的中线,AH 是_________的中线;4 如图7 -4 -14,在△ABC 中,C ∠ = 90°,D 、E 为AC 上的两点,且AE= DE,CBD ∠ =EBC ∠21,则下列说法中不正确的是 .A .BC 是△ABE 的高B .BE 是△ABD 的中线C .BD 足△EBC 的角平分线D .DBC EBD ABE ==∠5如图7 -4 -15,哪一个图表示AD 为△ABC 的高6 如果三角形的两边分别为3和5,那么这个三角形的周长可能是.A.15 B.16 C.8 D.77 下列长度的三条线段,能组成三角形的是.A. lcm,2cm,3cmB. 2cm,3cm,6cmC. 4cm,6cm,8cmD. 5cm,6cm,12cm8 如图7 -4 -16,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA =15米,OB =10米,A、B间的距离不可能是.A.5米B.10米C.15米D.20米∠的平分线CD;2画出AC边上的中线BM;9 如图7 -4 -17,在△ABC中,1画出C3画出△ABM的边BM上的高AH.10如图7 -4 -18.△ABC是周长为18cm的等边三角形,D是BC上一点,△ABD的周长比△ADC的周长多2cm,求BD、DC的长;11 等腰三角形的周长为30,一腰上的中线把其周长分成差为3的两部分,试求腰长.∠,交AC于点E,DE∥BC,EF∥AB,分别交AB、BC于点D、F,则BE 12已知如图7 -4 -19,在△ABC中,BE平分ABC∠的平分线吗请说明理由.是DEF13在△ABC 中,C ∠= 90°,BC =6,AC =8,AB =10,求边AB 上的高.知能提升突破1 如图7 -4 -20,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 上的中点,且ABC S ∆=42cm , 求阴影部分的面积阴S ;2 如图7 -4 - 21,在△ABC 中,AB= AC,BD 是AC 边上的高,P 为BC 延长线上的一点,AB PM ⊥,AC PN ⊥,垂足分别为M 、N .试问PM 、PN 与BD 之间有何关系3某木材市场上木棒规格和价格如下表: 规格1m 2m 3m 4m 5m 6m价格元/根 10 15 20 25 30 35 小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m 和5m 的木棒,还需要到 某木材市场上购买一根.问:1 有几种规格的木棒可供小明的爷爷选择2 选择哪一种规格的木棒最省钱。
小班数学《认识三角形》PPT课件目录CONTENCT •三角形基本概念•三角形图形识别•三角形边长与角度关系•三角形面积计算及应用•三角形变换与操作实践•总结回顾与拓展延伸01三角形基本概念三角形定义及性质三角形的定义由三条线段首尾顺次连接而成的图形。
三角形的基本性质三角形的任意两边之和大于第三边;三角形的三个内角之和等于180度。
三角形分类与特点按角分类锐角三角形(三个角都小于90度)、直角三角形(有一个角等于90度)、钝角三角形(有一个角大于90度)。
按边分类等边三角形(三边相等)、等腰三角形(有两边相等)、不属于以上两种的其他三角形。
生活中三角形应用举例建筑结构在建筑设计中,三角形结构常被用于增强稳定性,如桥梁的支撑结构、房屋的屋顶等。
交通工具部分交通工具的设计中融入了三角形元素,如自行车的车架、飞机的机翼等,以提供稳固的支撑和减少风阻。
物品设计许多日常用品也采用了三角形设计,如三脚架、三角形的桌子和椅子等,这些设计往往具有稳定性和美观性。
02三角形图形识别01 02 03 04 05等边三角形三边长度相等,三个内角均为60度。
等腰三角形有两边长度相等,两个内角相等。
直角三角形有一个内角为90度,其余两个内角之和为90度。
锐角三角形三个内角均小于90度。
钝角三角形有一个内角大于90度,其余两个内角为锐角。
常见三角形图形展示相似与全等三角形判断方法相似三角形判断方法如果两个三角形的对应角相等,则这两个三角形相似。
全等三角形判断方法如果两个三角形的三边及三个内角分别相等,则这两个三角形全等。
观察法拆分法标记法利用已知条件复杂图形中三角形识别技巧通过观察图形的形状和特征,寻找可能存在的三角形。
将复杂图形拆分成简单的图形,再寻找其中的三角形。
在图形上标记出可能的三角形,以便后续分析和计算。
如果已知某些线段或角度的信息,可以利用这些信息来辅助识别三角形。
03三角形边长与角度关系010203三角形两边之和大于第三边三角形两边之差小于第三边等腰三角形两腰相等,等边三角形三边相等三角形边长关系定理介绍角度和定理及其推论三角形内角和为180°等腰三角形底角相等,等边三角形三个角均为60°直角三角形中,两锐角互余,且其中一个锐角的度数为90°减去另一个锐角的度数1 2 3短直角边等于斜边的一半,长直角边等于短直角边的√3倍30°-60°-90°三角形两直角边相等,斜边等于直角边的√2倍45°-45°-90°三角形两直角边相等,斜边等于直角边的√2倍,且两个锐角均为45°等腰直角三角形特殊角度下三角形性质探讨04三角形面积计算及应用海伦公式介绍海伦公式表达式海伦公式应用举例海伦公式求解任意三角形面积假设三角形三边长度分别为a 、b 、c ,半周长p=(a+b+c)/2,则三角形面积S=√[p(p -a)(p-b)(p-c)]。
第三章三角形3.1.1 •认识三角形(三角形内角和定理)教学目标1 •知识目标1)能在三角形内角的基础上了解三角形的外角,掌握三角形内角和,掌握三角形外角与其邻角的关系。
2)通过学习可以发展学生的思维品质,提高动手能力,培养学生自住学习能力,合作探究,推理论证,学以致用的能力。
2.技能目标1)通过观察操作,推理等活动,利用拼图让学生猜想,启发学生添加辅助线验证三角形内角和定理,进而再验证外角性质。
2)通过老师耐心指点,学生猜想,然后合作探索,添加辅助线,运用转化思想进而验证定理。
3)学习到了人胆猜想,动手操作,积极探索,一步步推理论证的能力,同时也学会了转化思想。
3.情感态度与价值观1)通过教材知识和实际生活相联系,感受数学的实用性,体验数学的魅力, 还可以与各科知识相联系,有效激发学牛学习兴趣。
2)通过老师提出问题,学生自主思考,互动研讨,经历观察,分析,猜想,论证的过程,推导结论,同时借助多媒体的直观演示,加深学习对知识的理解,再通过习题练习,巩I古I重点内容,最后进行变式训练,从而熟练应用并突破难点。
3)在本节学习中,让学生体验到数学的逻辑,严密,科学美,对学生培养严谨认真的态度有积极意义;同时通过解决牛活中的实际问题,增强数学的牛活味,促使学生在生活中用数学眼光看待世界,用数学大脑去认识世界,学会用数学思考问题,并大胆提问,善于发现问题,并从屮发现的乐趣,同时培养了学生的创新能力。
教学重点、难点教学重点:验证三角形内角和定理,能运用三角形内角和定理进行推理和计算;动手操作,探索发现,验证三角形外角性质。
教学难点:添加辅助线证明三角形内角和定理和外角性质,运用三角形外角性质进行计算时能准确表达推理过程和方法,并运用到实际中去。
教学过程一、知识回顾1.师:展示课件图片,地板可以用正方形密铺而成,蜂巢可以用正六边形密铺而成,那么形状、大小完全相同的任意三角形能否镶嵌成平面图形呢?生:能师:通过课件展示形状、大小完全相同的任意三角形镶嵌成平面图形的过程, 其依据是什么?生:三角形三个内角的和等于180°师:小学和初一阶段又是如何验证三角形三个内角的和等于180度的呢?生:通过度量和撕角验证三角形三个内角的和等于180°师:展示课件,演示三角形撕角(即搬角)形成平角的过程,师:利用几何画板演示任意三角形的三个内角和等于180°师:用几何画板验证很多个三角形的内角和为180度,能不能作为三角形内角和定理的证明依据?生:不能。
认识三角形1.三角形有关的概念(1) 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角(简称三角形的角).(2) 三角形的表示三角形用符号“△”表示,顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。
如图7 -4 一l,三角形有三个顶点:A、B、C;有三条边: A B、B C、AC;有三个角: A 、B、 C .△ABC的三边用a,b,c 表示时,A所对的边BC用a表示. B 所对的边AC用b 表示. C 所对的边AB 用c表示.2.三角形的分类三锐角三角形(三个是角锐都角)角直角三角形(有一是个直角角)形钝角三角形(有一是个钝角角)注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形.3.三角形中边的关系(1)三角形的任意两边之和大于第三边;(2)三角形的任意两边之差小于第三边如图7 -4 -1 中,a b c,b c a,a c b;c b a,c a b,a b c 。
注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形。
例如:有三条线段的长分别为3、4、6 因为 3 +4 >6,所以这三条线段能组成三角形.又如:有三条线段的长分别为3、4、8 要为3+4 <8,所以这三条线段不能组成三角形.4.三角形的三种主要线段(1)高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高。
如图7 -4 -2,AD 是△ABC的高,可表示为AD BC或ADC =90°或ADB = 90°。
- 1 -(2)中线:在三角形中,连接顶点和它对边中点的线段,叫做三角形的中线。
如图7 -4 -3,AE是△ABC的中线,表示为BE=EC或BE = 12BC或BC= 2EC.(3)角平分线:在三角形中,一个内角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线,一个角的平分线是一条射线,而三角形的角平分线是一条线段.1如图7-4-4,AF是ABC 的角平分线,可表示为BAF CAF 或BAF BAC2或BAC 2 CAF .一个三角形中三条中线交于一点,三条角平分线交于一点,三条高所在直线交于一点。
5.三角形的高、角平分线、中线的画法(1)三角形高的画法,如图7-4 -5.注意:①锐角三角形、直角三角形、钝角三角形都有三条高.②锐角三角形的三条高交于三角形内部一点.如图7 -4 -5 甲,③钝角三角形的三条高交于三角形外部一点.如图7 -4 -5 乙,④直角三角形的三条高交于直角顶点.如图7 -4 -5 丙.(2) 三角形的中线的画法:将三角形一边的中点与这边所对角的顶点连接起来,就得到三角形一边上的中线.(3)三角形的角平分线的画法:三角形的角平分线的画法与角平分线的画法相同,可以用量角器。
防错档案:画钝角三角形的高容易出错,要抓住从三角形一顶点向对边作垂线段.6.面积法解题例如:如图7 -4 -6,在△ABC中,AB =AC,AC 边上的高BD= 1 0,求AB 边上的高CE的长.解析:由三角形面积公式有:S ABC 12CE AB12BD AC因为AB =AC,BD =10,所以CE= BD= 10.- 2 -名题诠释【例题1】如图7 -4 -7,点 D 是△ABC的边B C上的一点,点 E 在AD 上.(1)图中共有____个三角形;(2)以.AC为边的三角形是____;(3)以BDE为内角的三角形是____.【解析】(1) AD 的左右两侧各有 3 个三角形,分别是△ABE、△ABD、△EBD、△ACE、△.ACD、△ECD,左右两侧组合又形成 2 个以BC为边的三角形,它们是△ABC、△EBC.故共有8 个三角形.(2) 以AC为边的三角形有 3 个,它们是△.ACE、△ACD、△ACB. (3) 以BDE为内角的三角形有 2 个,它们是△EBD、△ABD.【答案】(1)8 (2)△ACE、△ACD、△ACB (3)△EBD、△ABD【点评】数三角形要注意选择恰当的顺序,做到不重不漏,注意最容易漏掉的是最大的三角形.【例题2】下列三角形分别是什么三角形?(1)已知一个三角形的两个内角分别是50°和60°;(2) 已知一个三角形的两个内角分别是35°和55°;(3) 已知一个三角形的两个内角分别是30°和45°;(4) 已知一个三角形的周长为16cm,有两边的长分别是6cm 和4cm.【解析】确定三角形的形状,应紧扣定义.【答案】(1)锐角三角形,因为三角形内角和为180°,而两个内角分别是50°和60°,所以第三个内角是70°,即这个三角形是锐角三角形.(2) 直角三角形,同理.(3)钝角三角形,同理.(4) 等腰三角形.因为第三条边的长为16 -6 -4 =6(cm).【点评】应全面考虑三角形的边和角的条件,再根据定义判别.【例题3】下列长度的三条线段能组成三角形的是( ).A. lcm、2cm、3.5cmB.4cm、5cm、9cmC. 5cm、8cm、15cmD.8cm、8cm、9cm【解析】因为1+2<3.5,所以lcm、2cm、3.5cm 的三条线段不能构成三角形因为4+5 =9,所以4cm、5cm、9cm 的三条线段不能构成三角形;因为5+8<15,所以5cm、8cm、15cm 的三条线段不能构成三角形;因为8+8 >9,所以8cm、8cm、9cm 的三条线段能构成三角形.【答案】 D【点评】三条线段能否构成三角形的条件是三角形三边的关系,即是否满足任意两边之和大于第三边.简便方法是检验较小的两边之和是否大于最大边.【例题4】甲地离学校4km,乙地离学校lkm .记甲、乙两地之间的距离为d km ,则d的取值为( ).A.3B.5C.3 或5 D.3≤d≤ 5【解析】本题应分两种情况讨论:(1)甲、乙两地与学校在一条直线上;(2)甲、乙两地与学校不在同一条直线上,则构成三角形,可利用三角形三边关系解题.【答案】 D【例题5】如图7-4 -8,在△ABC中,1= 2,G为A D 的中点,延长B G 交AC于E.F为A B 上一点,CF AD 于H,下面判断正确的有( ).- 3 -①AD 是△ABE的角平分线;②BE是△ABD 边AD 上的中线;③CH为△ACD边AD 上的高;④AH 是△ACF的角平分线和高线.A.l 个B.2 个 C.3 个D.4 个【解析】由1= 2 知AD 平分BAE.但AD 不是△ABE内的线段,故①错,AD 应是△ABC的角平分线;同理,BE经过△ABD 的边AD 的中点G,但BE不是△ABD中的线段,故②不正确,正确的说法应是BG是△ABD边AD 上的中线;由于CH AD 于H,故CH是△ACD边AD 上的高,故③正确;AH 平分FAC并且在△ACF内,故AH 是△ACF的角平分线,同理AH 也是△ACF的高,故④正确.【答案】 B【点评】三角形的角平分线和角的平分线之间的区别:前者是线段,在三角形的内部,后者是射线,可以无限延伸.【例题6】在△ABC中,AB =AC,AC边上的中线BD 把三角形的周长分为12cm 和15cm 两部分,求三角形各边的长,【解析】中线BD 把三角形的周长分为12cm 和15cm 两部分,要分类讨论:(1)当腰长小于底边时,AB +AD =12,如图7-4 -9①;(2)当腰长大于底边时,AB +AD =15,如图7-4 -9②..1【答案】设AB= x,则有:AD= DC= x21=12,x=8.(1)若AB +AD =12,即x + x2AB =AC =8,DC = 4,故BC= 15 -4= 11.此时AB +AC> BC,所以三角形三边长分别为8cm,8cm,llcm.1=15,x=10.(2)若AB+ .4D= 15,即x+ x2即AB =AC =10,DC = 5,故BC=12 -5 =7.显然,此时三角形存在,所以三角形三边长分别为l0cm,l0cm,7cm.综上所述,此三角形的三边长分别为8cm,8cm.llcm 或l0cm,l0cm,7cm.【例题7】如图7-4 -10,是甲、乙、丙、丁四位同学画的钝角△ABC 的高BE,其中画法错误的是____________- 4 -【解析】甲图错在把三自形的高线与AC边的垂线定义相混淆,把“线段”画成“直线”;乙图错在未抓住“垂线”这一特征,画出的BE与AC不垂直;丙图错在没有过点 B 画AC的垂线,故不是高;丁图错在没有向点 B 的对边画垂线.【答案】甲、乙、丙、丁【例题8】如图7—4-11,在△ABC 中,AB =AC,AC边上高BD=10,P 为边BC上任意一点,PM AB,PN A C,垂足分别为M,N .求PM+PN 的值.【解析】连接AP 后,PM、PN就转化为△APB和△APC的高,从而由面积法可求得PM+ PN 的值.【答案】连接AP,由图7-4 -11 可知:S ABP S S ,ACP ABC1 1 1即AB PM AC PN AC BD2 2 2因为AB =AC,BD =10,所以PM+PN= BD =10.速效基础演练1 如图7 -4 -12,图中三角形的个数共有( ).A 1 个B.2 个 C.3 个D.4 个2 三角形两边的长分别为lcm 和4cru,第三边的长是一个偶数,则第三边的长是________,这个三角形是___________三角形3 如图7 -4 -13.( 1 ) AD BC,垂足为D,则AD是___________的高,_______=_______= 90°;( 2 ) 若AE 平分BAC ,交BC于E 点,AE叫___________的角平分线,BAE =_______= ( 3 ) 若AF= F C,则△ABC的中线是_________; 12________;( 4 ) 若BC= GH= HF.则AG 是________的中线,AH 是_________的中线。
- 5 -4 如图7 -4 -14,在△ABC 中, C = 90°,D、E 为AC 上的两点,且AE= DE,CBD,则下列说法中不正确的是( ).1= EBC2A.BC是△ABE的高B.BE是△ABD 的中线C.BD 足△EBC的角平分线D.ABE EBD DBC5 如图7 -4 -15,哪一个图表示AD 为△ABC的高?( )6 如果三角形的两边分别为 3 和5,那么这个三角形的周长可能是( ).A.15 B.16 C.8 D.77 下列长度的三条线段,能组成三角形的是( ).A. lcm,2cm,3cmB. 2cm,3cm,6cmC. 4cm,6cm,8cmD. 5cm,6cm,12cm8 如图7 -4 -16,为估计池塘岸边A、B 两点的距离,小方在池塘的一侧选取一点O,测得OA =15 米,OB =10米,A、B 间的距离不可能是( ).A.5 米B.10 米C.15 米D.20 米9 如图7 -4 -17,在△ABC中,(1)画出 C 的平分线CD;(2)画出AC边上的中线BM;(3)画出△ABM 的边BM 上的高AH.10 如图7 -4 -18.△ABC是周长为18cm 的等边三角形,D 是BC上一点,△ABD 的周长比△ADC的周长多2cm,求B D、DC的长。